1932

Abstract

The behavior of halide salts at the vapor/water interface has been the focus of a tremendous amount of work in the past ten years. A molecular view of the interface has been introduced with the observation that large anions have some affinity for the interface, but a quantitative description of the driving forces that determine ion adsorption or repulsion at the interface is still missing. This review discusses recent developments that are based on classical and quantum-chemical molecular simulations as well as developments that are based on simple potential models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-032511-143813
2012-05-05
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/physchem/63/1/annurev-physchem-032511-143813.html?itemId=/content/journals/10.1146/annurev-physchem-032511-143813&mimeType=html&fmt=ahah

Literature Cited

  1. Ball P.1.  2008. Water as an active constituent in cell biology. Chem. Rev. 108:74–108 [Google Scholar]
  2. Koneshan S, Rasaiah J, Lynden-Bell R, Lee S. 2.  1998. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C. J. Phys. Chem. B 102:4193–204 [Google Scholar]
  3. Clark GN, Cappa CD, Smith JD, Saykally RJ, Head-Gordon T. 3.  2010. The structure of ambient water. Mol. Phys. 108:1415–33 [Google Scholar]
  4. Sedlmeier F, Horinek D, Netz R. 4.  2011. Spatial correlations of density and structural fluctuations in liquid water: a comparative simulation study. J. Am. Chem. Soc. 133:1391–98 [Google Scholar]
  5. Laage D, Hynes JT. 5.  2007. Reorientional dynamics of water molecules in anionic hydration shells. Proc. Natl. Acad. Sci. USA 104:11167–72 [Google Scholar]
  6. Laage D, Hynes J. 6.  2006. A molecular jump mechanism of water reorientation. Science 311:832–35 [Google Scholar]
  7. Lang EW, Ludemann HD. 7.  1982. Anomalities of liquid water. Angew. Chem. Int. Ed. 21:315–29 [Google Scholar]
  8. Born M.8.  1920. Volumen und Hydratationswärme der Ionen. Phys. Z. 1:45–48 [Google Scholar]
  9. Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH. 9.  et al. 1998. The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102:7787–94 [Google Scholar]
  10. Marcus Y.10.  1997. Ion Properties New York: Marcel Dekker [Google Scholar]
  11. Reif M, Hünenberger PH. 11.  2011. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. J. Chem. Phys. 134:144104 [Google Scholar]
  12. Berendsen HJC, Grigera JR, Straatsma TP. 12.  1987. The missing term in effective pair potentials. J. Phys. Chem. 91:6269–71 [Google Scholar]
  13. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 13.  1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–35 [Google Scholar]
  14. Åqvist J.14.  1990. Ion-water interaction potentials derived from free-energy perturbation simulations. J. Phys. Chem. 94:8021–24 [Google Scholar]
  15. Jensen KP, Jorgensen WL. 15.  2006. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2:1499–509 [Google Scholar]
  16. Lamoureux G, Roux B. 16.  2006. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J. Phys. Chem. B 110:3308–22 [Google Scholar]
  17. Straatsma TP, Berendsen HJC. 17.  1988. Free-energy of ionic hydration—analysis of a thermodynamic integration technique to evaluate free-energy differences by molecular-dynamics simulations. J. Chem. Phys. 89:5876–86 [Google Scholar]
  18. Kastenholz MA, Hünenberger PH. 18.  2006. Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. J. Chem. Phys. 124:124106 [Google Scholar]
  19. Kastenholz MA, Hünenberger PH. 19.  2006. Computation of methodology-independent ionic solvation free energies from molecular simulations. II. The hydration free energy of the sodium cation. J. Chem. Phys. 124:224501 [Google Scholar]
  20. Reif MM, Hünenberger PH. 20.  2011. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. J. Chem. Phys. 134:144103 [Google Scholar]
  21. Horinek D, Mamatkulov S, Netz R. 21.  2009. Rational design of ion force fields based on thermodynamic solvation properties. J. Chem. Phys. 130:124507Provides a thorough discussion of ion-water interaction parameter optimization. [Google Scholar]
  22. Smith DE, Dang LX. 22.  1994. Computer simulations of NaCl association in polarizable water. J. Chem. Phys. 100:3757–66 [Google Scholar]
  23. Rogers DM, Beck TL. 23.  2010. Quasichemical and structural analysis of polarizable anion hydration. J. Chem. Phys. 132:104505 [Google Scholar]
  24. Kirkwood JG, Buff FP. 24.  1951. The statistical mechanical theory of solutions. I. J. Chem. Phys. 19:774–77 [Google Scholar]
  25. Weerasinghe S, Smith PE. 25.  2003. A Kirkwood-Buff-derived force field for sodium chloride in water. J. Chem. Phys. 119:11342–49 [Google Scholar]
  26. Gee MB, Cox NR, Jiao Y, Bentenitis N, Weerasinghe S, Smith PE. 26.  2011. A Kirkwood-Buff-derived force field for aqueous alkali halides. J. Chem. Theory Comput. 7:1369–80 [Google Scholar]
  27. Klasczyk B, Knecht V. 27.  2010. Kirkwood-Buff derived force field for alkali chlorides in simple point charge water. J. Chem. Phys 132:024109 [Google Scholar]
  28. Fyta M, Kalcher I, Dzubiella J, Vrbka L, Netz RR. 28.  2010. Ionic force field optimization based on single-ion and ion-pair solvation properties. J. Chem. Phys. 132:024911 [Google Scholar]
  29. Joung IS, Cheatham TE. 29.  2008. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112:9020–41 [Google Scholar]
  30. Paluch M.30.  2000. Electrical properties of free surface of water and aqueous solutions. Adv. Colloid Interface Sci. 84:27–45 [Google Scholar]
  31. Du Q, Superfine R, Freysz E, Shen Y. 31.  1993. Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70:2313–16 [Google Scholar]
  32. Tian CS, Shen YR. 32.  2009. Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470:1–6 [Google Scholar]
  33. Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz RR, Horinek D. 33.  2008. Water at polar and nonpolar solid walls. Biointerphases 3:FC23–39 [Google Scholar]
  34. Sedlmeier F, Horinek D, Netz RR. 34.  2009. Nanoroughness, intrinsic density profile, and rigidity of the air-water interface. Phys. Rev. Lett. 103:136102 [Google Scholar]
  35. Liu D, Ma G, Levering LM, Allen HC. 35.  2004. Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108:2252–60 [Google Scholar]
  36. Petersen PB, Saykally RJ. 36.  2006. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57:333–64 [Google Scholar]
  37. Padmanabhan V, Daillant J, Belloni L, Mora S, Alba M, Konovalov O. 37.  2007. Specific ion adsorption and short-range interactions at the air aqueous solution interface. Phys. Rev. Lett. 99:086105 [Google Scholar]
  38. Frumkin A.38.  1924. Phasengrenzkräfte und Adsorption an der Trennflä che Luft/Lösung anorganischer Rlektrolyte. Z. Phys. Chem. 109:34 [Google Scholar]
  39. Jarvis NL, Scheiman MA. 39.  1968. Surface potentials of aqueous electrolyte solutions. J. Phys. Chem. 72:74–78 [Google Scholar]
  40. Weissenborn PK, Pugh RJ. 40.  1996. Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence. J. Colloid Interface Sci. 184:550–63 [Google Scholar]
  41. Weissenborn PK, Pugh RJ. 41.  1995. Surface-tension and bubble coalescence phenomena of aqueous solutions of electrolytes. Langmuir 11:1422–26 [Google Scholar]
  42. Wagner C.42.  1924. Phys. Z. 25474 [Google Scholar]
  43. Onsager L, Samaras NNT. 43.  1934. The surface tension of Debye-Hückel electrolytes. J. Chem. Phys 2:528–36 [Google Scholar]
  44. Kharkats YI, Ulstrup J. 44.  1991. The electrostatic Gibbs energy of finite-size ions near a planar boundary between two dielectric media. J. Elanal. Chem. 308:17–26 [Google Scholar]
  45. Markin V, Volkov A. 45.  2002. Quantitative theory of surface tension and surface potential of aqueous solutions of electrolytes. J. Phys. Chem. B 106:11810–17 [Google Scholar]
  46. Boström M, Williams DRM, Ninham BW. 46.  2001. Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87:168103 [Google Scholar]
  47. Boström M, Williams DRM, Ninham BW. 47.  2001. Surface tension of electrolytes: specific ion effects explained by dispersion forces. Langmuir 17:4475–78 [Google Scholar]
  48. Manciu M, Ruckenstein E. 48.  2003. Specific ion effects via ion hydration: I. Surface tension. Adv. Colloid Interface Sci. 105:63–101 [Google Scholar]
  49. Huang D, Cottin-Bizonne C, Ybert C, Bocquet L. 49.  2008. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip. Langmuir 24:1442–50 [Google Scholar]
  50. Huang D, Geissler P, Chandler D. 50.  2001. Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105:6704–9 [Google Scholar]
  51. Horinek D, Herz A, Vrbka L, Sedlmeier F, Mamatkulov S, Netz R. 51.  2009. Specific ion adsorption at the air/water interface: the role of hydrophobic solvation. Chem. Phys. Lett. 479:173–83Discusses the relation between bulk ion solvation and surface properties of ions. [Google Scholar]
  52. Levin Y, Santos APD, Diehl A. 52.  2009. Ions at the air-water interface: an end to a hundred-year-old mystery?. Phys. Rev. Lett. 103:257802 [Google Scholar]
  53. Levin Y.53.  2009. Polarizable ions at interfaces. Phys. Rev. Lett. 102:147803 [Google Scholar]
  54. Netz RR.54.  2004. Water and ions at interfaces. Curr. Opin. Colloid Interface Sci. 9:192–97 [Google Scholar]
  55. Jungwirth P, Tobias DJ. 55.  2006. Specific ion effects at the air/water interface. Chem. Rev. 109:1259–81Detailed review of simulation studies of ions at the air/water interface. [Google Scholar]
  56. Chang TM, Dang LX. 56.  2006. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Rev. 106:1305–22 [Google Scholar]
  57. Perera L, Berkowitz ML. 57.  1991. Many-body effects in molecular-dynamics simulations of Na+(H2O)n and Cl (H2O)n clusters. J. Chem. Phys 95:1954–63 [Google Scholar]
  58. Wilson MA, Pohorille A, Pratt LR. 58.  1988. Surface potential of the water liquid–vapor interface. J. Chem. Phys 88:3281–85 [Google Scholar]
  59. Jungwirth P, Tobias DJ. 59.  2002. Ions at the air water interface. J. Phys. Chem. B 106:6361–73 [Google Scholar]
  60. Vrbka L, Mucha M, Minofar B, Jungwirth P, Brown EC, Tobias DJ. 60.  2004. Propensity of soft ions for the airy water interface. Curr. Opin. Colloid Interface Sci. 9:67–73 [Google Scholar]
  61. dos Santos DJVA, Müller-Plathe F, Weiss VC. 61.  2008. Consistency of ion adsorption and excess surface tension in molecular dynamics simulations of aqueous salt solutions. J. Phys. Chem. C 112:19431–42 [Google Scholar]
  62. Chandler D.62.  2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:640–47 [Google Scholar]
  63. Luo G, Malkova S, Yoon J, Schultz DG, Lin B. 63.  et al. 2006. Ion distributions near a liquid-liquid interface. Science 311:216–18 [Google Scholar]
  64. Horinek D, Netz RR. 64.  2007. Specific ion adsorption at hydrophobic solid surfaces. Phys. Rev. Lett. 99:226104 [Google Scholar]
  65. Kathmann SM, Kuo IFW, Mundy CJ, Schenter GK. 65.  2011. Understanding the surface potential of water. J. Phys. Chem. B 115:4369–77 [Google Scholar]
  66. Kathmann S, Kuo I, Mundy C. 66.  2008. Electronic effects on the surface potential at the vapor-liquid interface of water. J. Am. Chem. Soc. 130:16556–61 [Google Scholar]
  67. Archontis G, Leontidis E. 67.  2006. Dissecting the stabilization of iodide at the air-water interface into components: a free energy analysis. Chem. Phys. Lett. 420:199–203 [Google Scholar]
  68. Noah-Vanhoucke J, Geissler P. 68.  2009. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. Proc. Natl. Acad. Sci. USA 106:15125–30 [Google Scholar]
  69. Caleman C, Hub JS, van Maaren PJ, van der Spoel D. 69.  2011. Atomistic simulation of ion solvation in water explains surface preference of halides. Proc. Natl. Acad. Sci. USA 108:6838–42 [Google Scholar]
  70. Yu HA, Karplus M. 70.  1988. A thermodynamic analysis of solvation. J. Chem. Phys. 89:2366–79 [Google Scholar]
  71. Paschek D.71.  2004. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: an examination of five popular water models. J. Chem. Phys. 120:6674–90 [Google Scholar]
  72. Setny P, Baron R, McCammon JA. 72.  2010. How can hydrophobic association be enthalpy driven?. J. Chem. Theory Comput. 6:2866–71 [Google Scholar]
  73. Baer MD, Mundy CJ. 73.  2011. Toward an understanding of the specific ion effect using density functional theory. J. Phys. Chem. Lett. 2:1088–93DFT quantum chemical study of iodide adsorption at the vapor/water interface. [Google Scholar]
  74. Grimme S.74.  2004. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25:1463–73 [Google Scholar]
  75. Dang LX.75.  2002. Computational study of ion binding to the liquid interface of water. J. Phys. Chem. B 106:10388–94 [Google Scholar]
/content/journals/10.1146/annurev-physchem-032511-143813
Loading
/content/journals/10.1146/annurev-physchem-032511-143813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error