The vibrational spectroscopy of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude so that the detection and identification of single molecules are possible. The enhancement of most linear and nonlinear vibrational spectroscopies has been demonstrated. In this review, we discuss theoretical approaches to understanding linear and nonlinear surface-enhanced vibrational spectroscopies. A unified description of enhancement mechanisms classified as either electromagnetic or chemical in nature is presented. Emphasis is placed on understanding the spectral changes necessary for interpretation of linear and nonlinear surface-enhanced vibrational spectroscopies.

Keyword(s): field gradientRamanSECARSSEHRSSEROASERSSESFG

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Willets KA, Van Duyne RP. 1.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97 [Google Scholar]
  2. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C. 2.  et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86 [Google Scholar]
  3. Myers Kelley A. 3.  2010. Hyper-Raman spectroscopy by molecular vibrations. Annu. Rev. Phys. Chem. 61:41–61 [Google Scholar]
  4. Sonntag MD, Pozzi EA, Jiang N, Hersam MC, Van Duyne RP. 4.  2014. Recent advances in tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 5:3125–30 [Google Scholar]
  5. Keller EL, Brandt NC, Cassabaum AA, Frontiera RR. 5.  2015. Ultrafast surface-enhanced Raman spectroscopy. Analyst 140:4922–31 [Google Scholar]
  6. Le Ru EC, Meyer M, Etchegoin PG. 6.  2006. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110:1944–48 [Google Scholar]
  7. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP. 7.  2007. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129:16249–56 [Google Scholar]
  8. Sonntag MD, Klingsporn JM, Garibay LK, Roberts JM, Dieringer JA. 8.  et al. 2012. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116:478–83 [Google Scholar]
  9. Milojevich CB, Mandrell BK, Turley HK, Iberi V, Best MD, Camden JP. 9.  2013. Surface-enhanced hyper-Raman scattering from single molecules. J. Phys. Chem. Lett. 4:3420–23 [Google Scholar]
  10. Zhang Y, Zhen YR, Neumann O, Day JK, Nordlander P, Halas NJ. 10.  2014. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nature Commun. 5:4424 [Google Scholar]
  11. Jensen L, Aikens CM, Schatz GC. 11.  2008. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 37:1061–73 [Google Scholar]
  12. Morton SM, Silverstein DW, Jensen L. 12.  2011. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111:3962–94 [Google Scholar]
  13. Payton JL, Morton SM, Moore JE, Jensen L. 13.  2014. A hybrid atomistic electrodynamics–quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc. Chem. Res. 47:88–99 [Google Scholar]
  14. Osawa M, Matsuda N, Yoshii K, Uchida I. 14.  1994. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 98:12702–7 [Google Scholar]
  15. Wu DY, Liu XM, Huang YF, Ren B, Xu X, Tian ZQ. 15.  2009. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J. Phys. Chem. C 113:18212–22 [Google Scholar]
  16. Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. 16.  2010. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132:9244–46 [Google Scholar]
  17. Long DA. 17.  2002. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules New York: Wiley [Google Scholar]
  18. Zhao LL, Jensen L, Schatz GC. 18.  2006. Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters. Nano Lett. 6:1229–34 [Google Scholar]
  19. Jensen L, Zhao LL, Schatz GC. 19.  2007. Size-dependance of the enhanced Raman scattering of pyridine adsorbed on Agn(n = 2–8, 20) clusters. J. Phys. Chem. C 111:4756–64 [Google Scholar]
  20. King FW, Van Duyne RP, Schatz GC. 20.  1978. Theory of Raman scattering by molecules adsorbed on electrode surfaces. J. Chem. Phys. 69:4472–81 [Google Scholar]
  21. Moskovits M. 21.  1978. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69:4159–61 [Google Scholar]
  22. Moskovits M. 22.  1979. Enhanced Raman scattering by molecules adsorbed on electrodes—a theoretical model. Solid State Commun. 32:59–62 [Google Scholar]
  23. Kerker M, Wang DS, Chew H. 23.  1980. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl. Opt. 19:4159–74 [Google Scholar]
  24. Gersten JI. 24.  1980. The effect of surface roughness on surface enhanced Raman scattering. J. Chem. Phys. 72:5779–80 [Google Scholar]
  25. Gersten JI. 25.  1980. Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 72:5780–81 [Google Scholar]
  26. Gersten J, Nitzan A. 26.  1980. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73:3023–37 [Google Scholar]
  27. Metiu H, Das P. 27.  1984. The electromagnetic theory of surface enhanced spectroscopy. Annu. Rev. Phys. Chem. 35:507–36 [Google Scholar]
  28. Moskovits M. 28.  1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57:783–26 [Google Scholar]
  29. Moskovits M. 29.  2005. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36:485–96 [Google Scholar]
  30. Le Ru EC, Etchegoin PG. 30.  2009. Principles of Surface-Enhanced Raman Spectroscopy Amsterdam: Elsevier [Google Scholar]
  31. Silberstein L. 31.  1917. L. Molecular refractivity and atomic interaction. II. Philos. Mag. 33:521–33 [Google Scholar]
  32. Jensen L, Astrand P, Osted A, Kongsted J, Mikkelsen K. 32.  2002. Polarizability of molecular clusters as calculated by a dipole interaction model. J. Chem. Phys. 116:4001–10 [Google Scholar]
  33. Sonntag MD, Chulhai D, Seideman T, Jensen L, Van Duyne RP. 33.  2013. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 135:17187–92 [Google Scholar]
  34. Morton SM, Jensen L. 34.  2010. A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles. J. Chem. Phys. 133:074103 [Google Scholar]
  35. Chulhai DV, Jensen L. 35.  2014. Simulating surface-enhanced Raman optical activity using atomistic electrodynamics–quantum mechanical models. J. Phys. Chem. A 118:9069–79 [Google Scholar]
  36. Efrima S, Metiu H. 36.  1979. Classical theory of light scattering by an adsorbed molecule. I. Theory. J. Chem. Phys. 70:1602–13 [Google Scholar]
  37. Efrima S, Metiu H. 37.  1979. Resonant Raman scattering by adsorbed molecules. J. Chem. Phys. 70:1939–47 [Google Scholar]
  38. Efrima S, Metiu H. 38.  1979. Light scattering by a molecule near a solid surface. II. Model calculations. J. Chem. Phys. 70:2297–309 [Google Scholar]
  39. Litz JP, Brewster RP, Lee AB, Masiello DJ. 39.  2013. Molecular-electronic structure in a plasmonic environment: elucidating the quantum image interaction. J. Phys. Chem. C 117:12249–57 [Google Scholar]
  40. Masiello DJ. 40.  2014. Multiscale theory and simulation of plasmon-enhanced molecular optical processes. Int. J. Quantum Chem. 114:1413–20 [Google Scholar]
  41. Corni S, Tomasi J. 41.  2001. Enhanced response properties of a chromophore physisorbed on a metal particle. J. Chem. Phys. 114:3739–51 [Google Scholar]
  42. Corni S, Tomasi J. 42.  2002. Excitation energies of a molecule close to a metal surface. J. Chem. Phys. 117:7266–78 [Google Scholar]
  43. Corni S, Tomasi J. 43.  2002. Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: a theoretical study. J. Chem. Phys. 116:1156–64 [Google Scholar]
  44. Jørgensen S, Ratner MA, Mikkelsen KV. 44.  2001. Heterogeneous solvation: an ab initio approach. J. Chem. Phys. 115:3792–803 [Google Scholar]
  45. Neuhauser D, Lopata K. 45.  2007. Molecular nanopolaritonics: cross manipulation of near-field plasmons and molecules. I. Theory and application to junction control. J. Chem. Phys. 127:154715 [Google Scholar]
  46. Lopata K, Neuhauser D. 46.  2009. Multiscale Maxwell–Schrdinger modeling: a split field finite-difference time-domain approach to molecular nanopolaritonics. J. Chem. Phys. 130:104707 [Google Scholar]
  47. Arcisauskaite V, Kongsted J, Hansen T, Mikkelsen KV. 47.  2009. Charge transfer excitation energies in pyridine-silver complexes studied by a QM/MM method. Chem. Phys. Lett. 470:285–88 [Google Scholar]
  48. Masiello DJ, Schatz GC. 48.  2008. Many-body theory of surface-enhanced Raman scattering. Phys. Rev. A 78:042505 [Google Scholar]
  49. Masiello DJ, Schatz GC. 49.  2010. On the linear response and scattering of an interacting molecule-metal system. J. Chem. Phys. 132:064102 [Google Scholar]
  50. Chen H, McMahon JM, Ratner MA, Schatz GC. 50.  2010. Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: a RT-TDDFT/FDTD approach. J. Phys. Chem. C 114:14384–92 [Google Scholar]
  51. Watson MA, Rappoport D, Lee EMY, Olivares-Amaya R, Aspuru-Guzik A. 51.  2012. Electronic structure calculations in arbitrary electrostatic environments. J. Chem. Phys. 136:024101 [Google Scholar]
  52. Jensen LL, Jensen L. 52.  2008. Electrostatic interaction model for the calculation of the polarizability of large noble metal nanoclusters. J. Phys. Chem. C 112:15697–703 [Google Scholar]
  53. Jensen LL, Jensen L. 53.  2009. Atomistic electrodynamics model for optical properties of silver nanoclusters. J. Phys. Chem. C 113:15182–90 [Google Scholar]
  54. Morton SM, Jensen L. 54.  2011. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. J. Chem. Phys. 135:134103 [Google Scholar]
  55. Payton JL, Morton SM, Moore JE, Jensen L. 55.  2012. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136:214103 [Google Scholar]
  56. Janesko BG, Scuseria GE. 56.  2006. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects. J. Chem. Phys. 125:124704 [Google Scholar]
  57. Chulhai DV, Jensen L. 57.  2013. Determining molecular orientation with surface-enhanced Raman scattering using inhomogenous electric fields. J. Phys. Chem. C 117:19622–31 [Google Scholar]
  58. Barron LD. 58.  2004. Molecular Light Scattering and Optical Activity Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  59. Yang WH, Schatz GC, Van Duyne RP. 59.  1995. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103:869–75 [Google Scholar]
  60. Jensen L, Åstrand PO, Mikkelsen KV. 60.  2001. An atomic capacitance-polarizability model for the calculation of molecular dipole moments and polarizabilities. Int. J. Quantum Chem. 84:513–22 [Google Scholar]
  61. Ayars EJ, Hallen HD, Jahncke CL. 61.  2000. Electric field gradient effects in Raman spectroscopy. Phys. Rev. Lett. 85:4180–83 [Google Scholar]
  62. Hallen HD, Jahncke CL. 62.  2003. The electric field at the apex of a near-field probe: implications for nano-Raman spectroscopy. J. Raman Spectrosc. 34:655–62 [Google Scholar]
  63. Banik M, El-Khoury PZ, Nag A, Rodriguez-Perez A, Guarrottxena N. 63.  et al. 2012. Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. ACS Nano 6:10343–54 [Google Scholar]
  64. Aikens CM, Madison LR, Schatz GC. 64.  2013. Raman spectroscopy: the effect of field gradient on SERS. Nat. Photonics 7:508–10 [Google Scholar]
  65. Takase M, Ajiki H, Mizumoto Y, Komeda K, Nara M. 65.  et al. 2013. Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat. Photonics 7:550–54 [Google Scholar]
  66. Feibelman PJ. 66.  1975. Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface. Phys. Rev. B 12:1319–36 [Google Scholar]
  67. Moskovits M, DiLella DP, Maynard KJ. 67.  1988. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation. Langmuir 4:67–76 [Google Scholar]
  68. Sass JK, Neff H, Moskovits M, Holloway S. 68.  1981. Electric field gradient effects on the spectroscopy of adsorbed molecules. J. Phys. Chem. 85:621–23 [Google Scholar]
  69. Moskovits M, DiLella DP. 69.  1980. Surface-enhanced Raman spectroscopy of benzene and benzene-d6 adsorbed on silver. J. Chem. Phys. 73:6068–75 [Google Scholar]
  70. Wolkow RA, Moskovits M. 70.  1986. Benzene adsorbed on silver: an electron energy loss and surface-enhanced Raman study. J. Chem. Phys. 84:5196–99 [Google Scholar]
  71. Polubotko A. 71.  1990. SERS phenomenon as a manifestation of quadrupole interaction of light with molecules. Phys. Lett. A 146:81–84 [Google Scholar]
  72. Moore JE, Morton SM, Jensen L. 72.  2012. Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS. J. Phys. Chem. Lett. 3:2470–75 [Google Scholar]
  73. Morton SM, Jensen L. 73.  2009. Understanding the molecule-surface chemical coupling in SERS. J. Am. Chem. Soc. 131:4090–98 [Google Scholar]
  74. Zhao L, Jensen L, Schatz GC. 74.  2006. Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128:2911–19 [Google Scholar]
  75. Zhao X, Liu S, Li Y, Chen M. 75.  2010. DFT study of chemical mechanism of pre-SERS spectra in pyrazine-metal complex and metal-pyrazine-metal junction. Spectrochim. Acta A 75:794–98 [Google Scholar]
  76. Campion A, Kambhampati P. 76.  1998. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27:241–50 [Google Scholar]
  77. Albrecht AC. 77.  1961. On the theory of Raman intensities. J. Chem. Phys. 34:1476–84 [Google Scholar]
  78. Klingsporn JM, Jiang N, Pozzi EA, Sonntag MD, Chulhai D. 78.  et al. 2014. Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 136:3881–87 [Google Scholar]
  79. Lombardi JR, Birke RL. 79.  2008. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112:5605–17 [Google Scholar]
  80. Kim K, Kim KL, Lee HB, Shin KS. 80.  2012. Similarity and dissimilarity in surface-enhanced Raman scattering of 4-aminobenzenethiol, 4,4′-dimercaptoazobenzene, and 4,4′-dimercaptohydrazobenzene on Ag. J. Phys. Chem. C 116:11635–42 [Google Scholar]
  81. Valley N, Greeneltch N, Van Duyne RP, Schatz GC. 81.  2013. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J. Phys. Chem. Lett. 4:2599–604 [Google Scholar]
  82. Zayak AT, Hu YS, Choo H, Bokor J, Cabrini S. 82.  et al. 2011. Chemical Raman enhancement of organic adsorbates on metal surfaces. Phys. Rev. Lett. 106:083003 [Google Scholar]
  83. Barron LD, Buckingham AD. 83.  2010. Vibrational optical activity. Chem. Phys. Lett. 492:199–213 [Google Scholar]
  84. Efrima S. 84.  1983. The effect of large electric field gradients on the Raman optical activity of molecules adsorbed on metal surfaces. Chem. Phys. Lett. 102:79–82 [Google Scholar]
  85. Efrima S. 85.  1985. Raman optical activity of molecules adsorbed on metal surfaces: theory. J. Chem. Phys. 83:1356–62 [Google Scholar]
  86. Hecht L, Barron LD. 86.  1994. Linear polarization Raman optical activity. The importance of the non-resonant term in the Kramers-Heisenberg-Dirac dispersion formula under resonance conditions. Chem. Phys. Lett. 225:519–24 [Google Scholar]
  87. Hecht L, Barron L. 87.  1995. Rayleigh and Raman optical activity from chiral surfaces and interfaces. J. Mol. Struct. 348:217–20 [Google Scholar]
  88. Janesko BG, Scuseria GE. 88.  2009. Molecule–surface orientational averaging in surface enhanced Raman optical activity spectroscopy. J. Phys. Chem. C 113:9445–49 [Google Scholar]
  89. Bouř P. 89.  2007. Matrix formulation of the surface-enhanced Raman optical activity theory. J. Chem. Phys. 126:136101 [Google Scholar]
  90. Novák V, Šebestík J, Bouř P. 90.  2012. Theoretical modeling of the surface-enhanced Raman optical activity. J. Chem. Theor. Comput. 8:1714–20 [Google Scholar]
  91. Acevedo R, Lombardini R, Halas NJ, Johnson BR. 91.  2009. Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells. J. Phys. Chem. A 113:13173–83 [Google Scholar]
  92. Lombardini R, Acevedo R, Halas NJ, Johnson BR. 92.  2010. Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods. J. Phys. Chem. C 114:7390–400 [Google Scholar]
  93. Abdali S, Blanch EW. 93.  2008. Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 37:980–92 [Google Scholar]
  94. Chulhai DV, Jensen L. 94.  2015. Plasmonic circular dichroism of 310- and -helix using a discrete interaction model/quantum mechanics method. J. Phys. Chem. A 119:5218–23 [Google Scholar]
  95. Jensen L. 95.  2009. Surface-enhanced vibrational Raman optical activity: a time-dependent density functional theory approach. J. Phys. Chem. A 113:4437–44 [Google Scholar]
  96. Golab JT, Sprague JR, Carron KT, Schatz GC. Duyne RP. 96. , Van 1988. A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory. J. Chem. Phys. 88:7942–51 [Google Scholar]
  97. Murphy DV, Raben KUV, Chang RK, Dorain PB. 97.  1982. Surface-enhanced hyper-Raman scattering from SO2−3adsorbed on Ag powder. Chem. Phys. Lett. 85:43–47 [Google Scholar]
  98. Kneipp K, Kneipp H, Seifert F. 98.  1995. Near-infrared excitation profile study of surface-enhanced hyper-Raman scattering and surface-enhanced Raman scattering by means of tunable mode-locked Ti:sapphire laser excitation. Chem. Phys. Lett. 233:519–24 [Google Scholar]
  99. Yang WH, Hulteen J, Schatz GC, Van Duyne RP. 99.  1996. A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: experiment and theory. J. Chem. Phys. 104:4313–23 [Google Scholar]
  100. Li XY, Huang QJ, Petrov VI, Xie YT, Luo Q. 100.  et al. 2005. Surface-enhanced hyper-Raman and surface-enhanced Raman scattering from molecules adsorbed on nanoparticles-on-smooth-electrode (NOSE) substrate I. Pyridine, pyrazine and benzene. J. Raman Spectrosc. 36:555–73 [Google Scholar]
  101. Leng W, Myers Kelley A. 101.  2006. Surface-enhanced hyper-Raman spectra and enhancement factors for three SERS chromophores. SEHRS spectra on Ag films at pulse energies below 2 pJ. J. Am. Chem. Soc. 128:3492–93 [Google Scholar]
  102. Yang WH, Schatz GC. 102.  1992. Ab initio and semiempirical molecular orbital studies of surface enhanced and bulk hyper-Raman scattering from pyridine. J. Chem. Phys. 97:3831–45 [Google Scholar]
  103. Mullin J, Valley N, Blaber MG, Schatz GC. 103.  2012. Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra. J. Phys. Chem. A 116:9574–81 [Google Scholar]
  104. Kneipp K, Kneipp H, Kneipp J. 104.  2013. Plasmonics for enhanced vibrational signatures. Plasmonics: Theory and Applications TV Shahbazyan, MI Stockman 103–24 New York: Springer [Google Scholar]
  105. Valley N, Jensen L, Autschbach J, Schatz GC. 105.  2010. Theoretical studies of surface enhanced hyper-Raman spectroscopy: the chemical enhancement mechanism. J. Chem. Phys. 133:054103 [Google Scholar]
  106. Milojevich CB, Silverstein DW, Jensen L, Camden JP. 106.  2011. Probing two-photon properties of molecules: large non-Condon effects dominate the resonance hyper-Raman scattering of rhodamine 6G. J. Am. Chem. Soc. 133:14590–92 [Google Scholar]
  107. Chung YC, Ziegler LD. 107.  1988. The vibronic theory of resonance hyper-Raman scattering. J. Chem. Phys. 88:7287–94 [Google Scholar]
  108. Shoute LCT, Bartholomew GP, Bazan GC, Myers Kelley A. 108.  2005. Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: one-photon and two-photon states. J. Chem. Phys. 122:184508 [Google Scholar]
  109. Shoute LCT, Blanchard-Desce M, Myers Kelley A. 109.  2005. Resonance hyper-Raman excitation profiles and two-photon states of a donor-acceptor substituted polyene. J. Phys. Chem. A 109:10503–11 [Google Scholar]
  110. Silverstein DW, Jensen L. 110.  2012. Vibronic coupling simulations for linear and nonlinear optical processes: simulation results. J. Chem. Phys. 136:064110 [Google Scholar]
  111. Milojevich CB, Silverstein DW, Jensen L, Camden JP. 111.  2011. Probing one-photon inaccessible electronic states with high sensitivity: wavelength scanned surface enhanced hyper-Raman scattering. ChemPhysChem 12:101–3 [Google Scholar]
  112. Silverstein DW, Jensen L. 112.  2012. Vibronic coupling simulations for linear and nonlinear optical processes: theory. J. Chem. Phys. 136:064111 [Google Scholar]
  113. Silverstein DW, Milojevich CB, Camden JP, Jensen L. 113.  2013. Investigation of linear and nonlinear Raman scattering for isotopologues of Ru(bpy)2+3. J. Phys. Chem. C 117:20855–66 [Google Scholar]
  114. Eisenthal KB. 114.  1996. Liquid interfaces probed by second-harmonic and sum-frequency spectroscopy. Chem. Rev. 96:1343–60 [Google Scholar]
  115. Liu D, Ma G, Levering LM, Allen HC. 115.  2004. Vibrational spectroscopy of aqueous sodium halide solutions and air-liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108:2252–60 [Google Scholar]
  116. Du Q, Superfine R, Freysz E, Shen YR. 116.  1993. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70:2313–16 [Google Scholar]
  117. Hu D, Yang Z, Chou KC. 117.  2013. Interactions of polyelectrolytes with water and ions at air/water interfaces studied by phase-sensitive sum frequency generation vibrational spectroscopy. J. Phys. Chem. C 117:15698–703 [Google Scholar]
  118. Miyamae T, Ito E, Noguchi Y, Ishii H. 118.  2011. Characterization of the interactions between Alq3 thin films and Al probed by two-color sum-frequency generation spectroscopy. J. Phys. Chem. C 115:9551–60 [Google Scholar]
  119. Miyamae T, Takada N, Tsutsui T. 119.  2012. Probing buried organic layers in organic light-emitting diodes under operation by electric-field-induced doubly resonant sum-frequency generation spectroscopy. Appl. Phys. Lett. 101:073304 [Google Scholar]
  120. Yamaguchi S, Tahara T. 120.  2015. Development of electronic sum frequency generation spectroscopies and their application to liquid interfaces. J. Phys. Chem. C 119:14815–28 [Google Scholar]
  121. Chen Z, Shen YR, Somorjai GA. 121.  2002. Studies of polymer surfaces by sum frequency generation vibrational spectroscopy. Annu. Rev. Phys. Chem. 53:437–65 [Google Scholar]
  122. Shen YR, Ostroverkhov V. 122.  2006. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106:1140–54 [Google Scholar]
  123. Ye S, Luo Y. 123.  2014. Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy. Sci. China Chem. 57:1646–61 [Google Scholar]
  124. Ishiyama T, Imamura T, Morita A. 124.  2014. Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114:8447–70 [Google Scholar]
  125. Alieva E, Kuzik L, Yakovlev V. 125.  1998. Sum frequency generation spectroscopy of thin organic films on silver using visible surface plasmon generation. Chem. Phys. Lett. 292:542–46 [Google Scholar]
  126. Alieva E, Petrov Y, Yakovlev V, Eliel E, van der Ham E. 126.  et al. 1997. Giant enhancement of sum-frequency generation upon excitation of a surface plasmon-polariton. JETP Lett. 66:609–13 [Google Scholar]
  127. Baldelli S, Eppler AS, Anderson E, Shen YR, Somorjai GA. 127.  2000. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays. J. Chem. Phys. 113:5432–38 [Google Scholar]
  128. Zhang D, Dougal SM, Yeganeh MS. 128.  2000. Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR-visible sum frequency generation spectroscopy. Langmuir 16:4528–32 [Google Scholar]
  129. Humbert C, Busson B, Abid JP, Six C, Girault H, Tadjeddine A. 129.  2005. Self-assembled organic monolayers on gold nanoparticles: a study by sum-frequency generation combined with UV-Vis spectroscopy. Electrochim. Acta 50:3101–10 [Google Scholar]
  130. Pluchery O, Humbert C, Valamanesh M, Lacaze E, Busson B. 130.  2009. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys. Chem. Chem. Phys. 11:7729–37 [Google Scholar]
  131. Lis D, Caudano Y, Henry M, Demoustier-Champagne S, Ferain E, Cecchet F. 131.  2013. Selective plasmonic platforms based on nanopillars to enhance vibrational sum-frequency generation spectroscopy. Adv. Opt. Mater. 1:244–55 [Google Scholar]
  132. Liu WT, Shen YR. 132.  2014. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. PNAS 111:1293–97 [Google Scholar]
  133. Yeh YL, Lei J, Chen SY, Chang AHH, Lin CK. 133.  et al. 2015. A theoretical investigation of surface-enhanced sum-frequency generation. Sci. China Chem. 63:136–44 [Google Scholar]
  134. Lotem H, Lynch RT, Bloembergen N. 134.  1976. Interference between Raman resonances in four-wave difference mixing. Phys. Rev. A 14:1748–55 [Google Scholar]
  135. Cheng JX, Xie XS. 135.  2003. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108:827–40 [Google Scholar]
  136. Thorvaldsen AJ, Ferrighi L, Ruud K, Agren H, Coriani S, Jorgensen P. 136.  2009. Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS). Phys. Chem. Chem. Phys. 11:2293–304 [Google Scholar]
  137. Liang E, Weippert A, Funk JM, Materny A, Kiefer W. 137.  1994. Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering. Chem. Phys. Lett. 227:115–20 [Google Scholar]
  138. Baltog I, Baibarac M, Lefrant S. 138.  2005. Coherent anti-Stokes Raman scattering on single-walled carbon nanotube thin films excited through surface plasmons. Phys. Rev. B 72:245402 [Google Scholar]
  139. Addison CJ, Konorov SO, Brolo AG, Blades MW, Turner RF. 139.  2009. Tuning gold nanoparticle self-assembly for optimum coherent anti-Stokes Raman scattering and second harmonic generation response. J. Phys. Chem. C 113:3586–92 [Google Scholar]
  140. Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S. 140.  2003. Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. J. Raman Spectrosc. 34:651–54 [Google Scholar]
  141. Steuwe C, Kaminski CF, Baumberg JJ, Mahajan S. 141.  2011. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11:5339–43 [Google Scholar]
  142. Yampolsky S, Fishman DA, Dey S, Hulkko E, Banik M. 142.  et al. 2014. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photonics 8:650–56 [Google Scholar]
  143. Chew H, Wang DS, Kerker M. 143.  1984. Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres. J. Opt. Soc. Am. B 1:56–66 [Google Scholar]
  144. Hua X, Voronine DV, Ballmann CW, Sinyukov AM, Sokolov AV, Scully MO. 144.  2014. Nature of surface-enhanced coherent Raman scattering. Phys. Rev. A 89:043841 [Google Scholar]
  145. Parkhill JA, Rappoport D, Aspuru-Guzik A. 145.  2011. Modeling coherent anti-Stokes Raman scattering with time-dependent density functional theory: vacuum and surface enhancement. J. Phys. Chem. Lett. 2:1849–54 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error