1932

Abstract

Small-angle X-ray scattering (SAXS) is a powerful method to study the structural properties of materials at the nanoscale. Recent progress in instrumentation and analysis methods has led to rapidly growing applications of this technique for the characterization of biological macromolecules in solution. Ab initio and rigid-body modeling methods allow one to build three-dimensional, low-resolution models from SAXS data. With the new approaches, oligomeric states of proteins and macromolecular complexes can be assessed, chemical equilibria and kinetic reactions can be studied, and even flexible objects such as intrinsically unfolded proteins can be quantitatively characterized. This review describes the analysis methods of SAXS data from macromolecular solutions, ranging from the computation of overall structural parameters to advanced three-dimensional modeling. The efficiency of these methods is illustrated by recent applications to biological macromolecules and nanocomposite particles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040412-110132
2013-04-01
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/64/1/annurev-physchem-040412-110132.html?itemId=/content/journals/10.1146/annurev-physchem-040412-110132&mimeType=html&fmt=ahah

Literature Cited

  1. Guinier A. 1.  1939. La diffraction des rayons X aux très petits angles; application a l'étude de phénomènes ultramicroscopiques. Ann. Phys. (Paris) 12:161–237Considered to be the first publication on SAXS, introduces the classical Guinier equation. [Google Scholar]
  2. Blundell TL, Johnson LN. 2.  1976. Protein Crystallography New York: Academic [Google Scholar]
  3. Feigin LA, Svergun DI. 3.  1987. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: PlenumDescribes the principles of SAXS and its use for different types of objects. [Google Scholar]
  4. Koch MH, Vachette P, Svergun DI. 4.  2003. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36:147–227 [Google Scholar]
  5. Putnam CD, Hammel M, Hura GL, Tainer JA. 5.  2007. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40:191–285 [Google Scholar]
  6. Svergun DI. 6.  2007. Small-angle scattering studies of macromolecular solutions. J. Appl. Crystallogr. 40:S10–17 [Google Scholar]
  7. Svergun DI, Koch MHJ. 7.  2003. Small-angle scattering studies of biological macromolecules. Rep. Prog. Phys. 66:1735–82 [Google Scholar]
  8. Tsuruta H, Irving T. 8.  2008. Experimental approaches for solution X-ray scattering and fiber diffraction. Curr. Opin. Struct. Biol. 18:601–8 [Google Scholar]
  9. Stuhrmann HB. 9.  1974. Neutron small-angle scattering of biological macromolecules in solution. J. Appl. Crystallogr. 7:173–78 [Google Scholar]
  10. Petoukhov MV, Svergun DI. 10.  2006. Joint use of small-angle X-ray and neutron scattering to study biological macromolecules in solution. Eur. Biophys. J. 35:567–76 [Google Scholar]
  11. Jacques DA, Guss JM, Svergun DI, Trewhella J. 11.  2012. Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution. Acta Crystallogr. D 68:620–26 [Google Scholar]
  12. Tardieu A, Le Verge A, Riès-Kautt M, Malfois M, Bonneté F. 12.  et al. 1999. Proteins in solution: from X-ray scattering intensities to interaction potentials. J. Cryst. Growth 196:193–203 [Google Scholar]
  13. Finet S, Skouri-Panet F, Casselyn M, Bonnete F, Tardieu A. 13.  2004. The Hofmeister effect as seen by SAXS in protein solutions. Curr. Opin. Colloid Interface Sci. 9:112–16 [Google Scholar]
  14. Hamiaux C, Perez J, Prange T, Veesler S, Ries-Kautt M, Vachette P. 14.  2000. The BPTI decamer observed in acidic pH crystal forms pre-exists as a stable species in solution. J. Mol. Biol. 297:697–712 [Google Scholar]
  15. Mylonas E, Svergun DI. 15.  2007. Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Crystallogr. 40:S245–49 [Google Scholar]
  16. Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI. 16.  2007. ATSAS 2.1: towards automated and web-supported small-angle scattering data analysis. J. Appl. Crystallogr. 40:S223–28 [Google Scholar]
  17. Porod G. 17.  1982. General theory. Small-Angle X-Ray Scattering O Glatter, O Kratky 17–51 New York: Academic [Google Scholar]
  18. Fischer H, Neto MD, Napolitano HB, Polikarpov I, Craievich AF. 18.  2010. Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J. Appl. Crystallogr. 43:101–9 [Google Scholar]
  19. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG. 19.  et al. 2012. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45:342–50Presents the latest features of the ATSAS package and describes many of the programs mentioned in this review. [Google Scholar]
  20. Glatter O. 20.  1977. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 10:415–21The first publication of the indirect Fourier transform to calculate the distance distribution function. [Google Scholar]
  21. Svergun DI. 21.  1992. Determination of the regularization parameter in indirect transform methods using perceptual criteria. J. Appl. Crystallogr. 25:495–503 [Google Scholar]
  22. Kratky O, Porod G. 22.  1949. Roentgenuntersuchung geloester Fadenmolekuele. Recl. Trav. Chim. Pays-Bas 69:1106–22 [Google Scholar]
  23. Doniach S. 23.  2001. Changes in biomolecular conformation seen by small angle X-ray scattering. Chem. Rev. 101:1763–78 [Google Scholar]
  24. Bernadó P. 24.  2010. Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur. Biophys. J. 39:769–80 [Google Scholar]
  25. Franke D, Kikhney AG, Svergun DI. 25.  2012. Automated acquisition and analysis of small angle X-ray scattering data. Nucl. Instrum. Methods A 689:52–59 [Google Scholar]
  26. Stuhrmann HB. 26.  1970. New method for determination of surface form and internal structure of dissolved globular proteins from small-angle X-ray measurements. Z. Phys. Chem. 72:177–82 [Google Scholar]
  27. Stuhrmann HB. 27.  1970. Interpretation of small-angle scattering functions of dilute solutions and gases: a representation of the structures related to a one-particle scattering function. Acta Crystallogr. A 26:297–306Introduces the spherical harmonics for SAXS data-analysis methods. [Google Scholar]
  28. Svergun DI, Volkov VV, Kozin MB, Stuhrmann HB. 28.  1996. New developments in direct shape determination from small-angle scattering. 2. Uniqueness. Acta Crystallogr. A 52:419–26 [Google Scholar]
  29. Chacon P, Moran F, Diaz JF, Pantos E, Andreu JM. 29.  1998. Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm. Biophys. J. 74:2760–75The first publication on ab initio bead modeling from SAXS data. [Google Scholar]
  30. Bada M, Walther D, Arcangioli B, Doniach S, Delarue M. 30.  2000. Solution structural studies and low-resolution model of the Schizosaccharomyces pombe sap1 protein. J. Mol. Biol. 300:563–74 [Google Scholar]
  31. Chacon P, Diaz JF, Moran F, Andreu JM. 31.  2000. Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. J. Mol. Biol. 299:1289–302 [Google Scholar]
  32. Svergun DI. 32.  1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76:2879–86 [Google Scholar]
  33. Vigil D, Gallagher SC, Trewhella J, Garcia AE. 33.  2001. Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys. J. 80:2082–92 [Google Scholar]
  34. Walther D, Cohen FE, Doniach S. 34.  2000. Reconstruction of low-resolution three-dimensional density maps from one-dimensional small-angle X-ray solution scattering data for biomolecules. J. Appl. Crystallogr. 33:350–63 [Google Scholar]
  35. Svergun DI, Nierhaus KH. 35.  2000. A map of protein-rRNA distribution in the 70 S Escherichia coli ribosome. J. Biol. Chem. 275:14432–39 [Google Scholar]
  36. Jacques DA, Langley DB, Hynson RMG, Whitten AE, Kwan A. 36.  et al. 2011. A novel structure of an antikinase and its inhibitor. J. Mol. Biol. 1:214–26 [Google Scholar]
  37. Diepholz M, Venzke D, Prinz S, Batisse C, Flörchinger B. 37.  et al. 2008. A different conformation for EGC stator subcomplex in solution and in the assembled yeast V-ATPase: possible implications for regulatory disassembly. Structure 16:1789–98 [Google Scholar]
  38. Franke D, Svergun DI. 38.  2009. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42:342–46 [Google Scholar]
  39. Svergun DI, Petoukhov MV, Koch MHJ. 39.  2001. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80:2946–53Introduces the concept of ab initio DR modeling. [Google Scholar]
  40. Koch MHJ, Vachette P, Svergun DI. 40.  2003. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36:147–227 [Google Scholar]
  41. Kozin MB, Svergun DI. 41.  2001. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34:33–41 [Google Scholar]
  42. Volkov VV, Svergun DI. 42.  2003. Uniqueness of ab initio shape determination in small angle scattering. J. Appl. Crystallogr. 36:860–64 [Google Scholar]
  43. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S. 43.  et al. 2010. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat. Commun. 1:95 [Google Scholar]
  44. Debye P. 44.  1915. Zerstreuung von Roentgenstrahlen. Ann. Phys. 46:809–23 [Google Scholar]
  45. Yang SC, Park S, Makowski L, Roux B. 45.  2009. A rapid coarse residue-based computational method for X-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys. J. 96:4449–63 [Google Scholar]
  46. Svergun DI, Barberato C, Koch MHJ. 46.  1995. CRYSOL: a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28:768–73 [Google Scholar]
  47. Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G. 47.  1998. Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc. Natl. Acad. Sci. USA 95:2267–72Presents the first experimental proof of the denser hydration shell surrounding proteins in solution. [Google Scholar]
  48. Fraser RDB, MacRae TP, Suzuki E. 48.  1978. An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules. J. Appl. Crystallogr. 11:693–94 [Google Scholar]
  49. Cammarata M, Levantino M, Schotte F, Anfinrud PA, Ewald F. 49.  et al. 2008. Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nat. Methods 5:881–86 [Google Scholar]
  50. Schneidman-Duhovny D, Hammel M, Sali A. 50.  2010. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38:W540–44 [Google Scholar]
  51. Poitevin F, Orland H, Doniach S, Koehl P, Delarue M. 51.  2011. AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 39:W184–89 [Google Scholar]
  52. Grishaev A, Guo L, Irving T, Bax A. 52.  2010. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J. Am. Chem. Soc. 132:15484–86 [Google Scholar]
  53. Bardhan J, Park S, Makowski L. 53.  2009. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules. J. Appl. Crystallogr. 42:932–43 [Google Scholar]
  54. Park S, Bardhan JP, Roux B, Makowski L. 54.  2009. Simulated X-ray scattering of protein solutions using explicit-solvent models. J. Chem. Phys. 130:134114 [Google Scholar]
  55. Svergun DI, Petoukhov M, Koch MHJ, König S. 55.  2000. Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J. Biol. Chem. 275:297–302 [Google Scholar]
  56. Nicastro G, Habeck M, Masino L, Svergun DI, Pastore A. 56.  2006. Structure validation of the Josephin domain of ataxin-3: conclusive evidence for an open conformation. J. Biomol. NMR 36:267–77 [Google Scholar]
  57. De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E. 57.  et al. 2009. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc. Natl. Acad. Sci. USA 106:19807–12 [Google Scholar]
  58. Roseman AM. 58.  2000. Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr. D 56:1332–40 [Google Scholar]
  59. Konarev PV, Petoukhov MV, Svergun DI. 59.  2001. MASSHA: a graphic system for rigid body modelling of macromolecular complexes against solution scattering data. J. Appl. Crystallogr. 34:527–32 [Google Scholar]
  60. Svergun DI. 60.  1991. Mathematical methods in small-angle scattering data analysis. J. Appl. Crystallogr. 24:485–92 [Google Scholar]
  61. Petoukhov MV, Svergun DI. 61.  2005. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys. J. 89:1237–50Presents a versatile set of programs for rigid-body modeling. [Google Scholar]
  62. Gabel F, Simon B, Nilges M, Petoukhov M, Svergun D, Sattler M. 62.  2008. A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. J. Biomol. NMR 41:199–208 [Google Scholar]
  63. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M. 63.  et al. 2011. Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat. Struct. Biol. 18:564–70 [Google Scholar]
  64. Petoukhov MV, Monie TP, Allain FHT, Matthews S, Curry S, Svergun DI. 64.  2006. Conformation of polypyrimidine tract binding protein in solution. Structure 14:1021–27 [Google Scholar]
  65. Morgan HP, Mertens HDT, Guariento M, Schmidt CQ, Soares DC. 65.  et al. 2012. Structural analysis of the C-terminal region (modules 18–20) of complement regulator factor H (FH). PLoS ONE 7:2e32187 [Google Scholar]
  66. Mallam AL, Jarmoskaite I, Tijerina P, Del Campo M, Seifert S. 66.  et al. 2011. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc. Natl. Acad. Sci. USA 108:12254–59 [Google Scholar]
  67. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. 67.  2003. PRIMUS: a Windows PC-based system for small angle scattering data analysis. J. Appl. Crystallogr. 26:1277–82 [Google Scholar]
  68. Bernadó P, Pérez Y, Blobel J, Fernández-Recio J, Svergun DI, Pons M. 68.  2009. Structural characterization of unphosphorylated STAT5a oligomerization equilibrium in solution by small-angle X-ray scattering. Protein Sci. 18:716–26 [Google Scholar]
  69. Niemann HH, Petoukhov MV, Härtlein M, Moulin M, Gherardi E. 69.  et al. 2008. X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB. J. Mol. Biol. 377:489–500 [Google Scholar]
  70. Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R. 70.  et al. 2009. Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J. 276:1398–417 [Google Scholar]
  71. Golub GH, Reinsh C. 71.  1970. Singular value decomposition and least squares solution. Numer. Math. 14:403–20 [Google Scholar]
  72. Konarev PV, Petoukhov MV, Volkov VV, Svergun DI. 72.  2006. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39:277–86 [Google Scholar]
  73. Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de Weert M. 73.  et al. 2007. A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol. 5:1089–97 [Google Scholar]
  74. Giehm L, Svergun DI, Otzen DE, Vestergaard B. 74.  2011. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc. Natl. Acad. Sci. USA 108:3246–51 [Google Scholar]
  75. Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI. 75.  2007. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129:5656–64Introduces the ensemble optimization method for studies of flexible macromolecules. [Google Scholar]
  76. Kleywegt GJ. 76.  1997. Validation of protein models from Cα coordinates alone. J. Mol. Biol. 273:371–76 [Google Scholar]
  77. Pelikan M, Hura GL, Hammel M. 77.  2009. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen. Physiol. Biophys. 28:174–89 [Google Scholar]
  78. Yang S, Blachowicz L, Makowski L, Roux B. 78.  2010. Multidomain assembled states of Hck tyrosine kinase in solution. Proc. Natl. Acad. Sci. USA 107:15757–62 [Google Scholar]
  79. Rozycki B, Kim YC, Hummer G. 79.  2011. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19:109–16 [Google Scholar]
  80. Bernadó P, Svergun DI. 80.  2012. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering. Mol. BioSyst. 8:151–67 [Google Scholar]
  81. Bronstein LM, Dixit S, Tomaszewski J, Stein B, Svergun DI. 81.  et al. 2006. Hybrid polymer particles with a protective shell: synthesis, structure, and templating. Chem. Mater. 9:2418–30 [Google Scholar]
  82. Bronstein LM, Karlinsey RL, Yi Z, Werner-Zwanziger U, Konarev PV. 82.  et al. 2007. Composite solid polymer electrolytes based on pluronics: Does ordering matter?. Chem. Mater. 19:6258–65 [Google Scholar]
  83. Shtykova EV, Malyutin A, Dyke J, Stein B, Konarev PK. 83.  et al. 2010. Hydrophilization of magnetic nanoparticles with modified alternating copolymers. Part 2: behavior in solution. J. Phys. Chem. C 114:21908–13 [Google Scholar]
  84. Shtykova EV, Kuchkina NV, Shifrina ZB, Bronstein LM, Svergun DI. 84.  2012. Unusual structural morphology of dendrimer/CdS nanocomposites revealed by synchrotron X-ray scattering. J. Phys. Chem. C 116:8069–78 [Google Scholar]
  85. Blanchet CE, Zozulya AV, Kikhney AG, Franke D, Konarev PK. 85.  et al. 2012. Instrumental setup for high-throughput small- and wide-angle solution scattering at the X33 beamline of EMBL Hamburg. J. Appl. Crystallogr. 45:489–95 [Google Scholar]
  86. Pernot P, Theveneau P, Giraud T, Nogueira Fernandes R, Nurizzo D. 86.  et al. 2010. New beamline dedicated to solution scattering from biological macromolecules at the ESRF. J. Phys. Conf. Ser. 247:012009 [Google Scholar]
  87. Classen S, Rodic I, Holton J, Hura GL, Hammel M, Tainer JA. 87.  2010. Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. J. Synchrotron Radiat. 17:774–81 [Google Scholar]
  88. David G, Perez J. 88.  2009. Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the synchrotron SOLEIL SWING beamline. J. Appl. Crystallogr. 42:892–900 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040412-110132
Loading
/content/journals/10.1146/annurev-physchem-040412-110132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error