1932

Abstract

Quantum information promises dramatic advances in computing last seen in the digital revolution, but quantum hardware is fragile, noisy, and resource intensive. Chemistry has a role in developing new materials for quantum information that are robust to noise, scalable, and operable in ambient conditions. While molecular structure is the foundation for understanding mechanism and reactivity, molecular structure/quantum function relationships remain mostly undiscovered. Using singlet fission as a specific example of a multielectron process capable of producing long-lived spin-entangled electronic states at high temperatures, I describe how to exploit molecular structure and symmetry to gain quantum function and how some principles learned from singlet fission apply more broadly to quantum science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052515
2024-06-28
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-042018-052515.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052515&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Truhlar DG, Garrett BC, Klippenstein SJ. 1996.. Current status of transition-state theory. . J. Phys. Chem. 100:(31):12771800
    [Crossref] [Google Scholar]
  2. 2.
    Pechukas P. 1981.. Transition state theory. . Annu. Rev. Phys. Chem. 32::15977
    [Crossref] [Google Scholar]
  3. 3.
    Chandrasekhar J, Smith SF, Jorgensen WL. 1985.. Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. . J. Am. Chem. Soc. 107:(1):15463
    [Crossref] [Google Scholar]
  4. 4.
    Chandler D. 1998.. Barrier crossings: classical theory of rare but important events. . In Classical and Quantum Dynamics in Condensed Phase Simulations, ed. BJ Berne, G Ciccotti, DF Coker , pp. 323. Singapore:: World Sci.
    [Google Scholar]
  5. 5.
    Dellago C, Bolhuis PG, Csajka FS, Chandler D. 1998.. Transition path sampling and the calculation of rate constants. . J. Chem. Phys. 108:(5):196477
    [Crossref] [Google Scholar]
  6. 6.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL. 2002.. Transition path sampling: throwing ropes over rough mountain passes, in the dark. . Annu. Rev. Phys. Chem. 53::291318
    [Crossref] [Google Scholar]
  7. 7.
    Ladd TD, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien JL. 2010.. Quantum computers. . Nature 464:(7285):4553
    [Crossref] [Google Scholar]
  8. 8.
    DiVincenzo DP. 1995.. Quantum computation. . Science 270:(5234):25561
    [Crossref] [Google Scholar]
  9. 9.
    Preskill J. 2018.. Quantum computing in the NISQ era and beyond. . Quantum 2::79
    [Crossref] [Google Scholar]
  10. 10.
    Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. 2019.. Trapped-ion quantum computing: progress and challenges. . Appl. Phys. Rev. 6:(2):021314
    [Crossref] [Google Scholar]
  11. 11.
    Alexeev Y, Bacon D, Brown KR, Calderbank R, Carr LD, et al. 2021.. Quantum computer systems for scientific discovery. . PRX Quantum 2:(1):017001
    [Crossref] [Google Scholar]
  12. 12.
    Marcus RA. 1993.. Electron transfer reactions in chemistry. Theory and experiment. . Rev. Mod. Phys. 65:(3):599610
    [Crossref] [Google Scholar]
  13. 13.
    Chandler D. 1998.. Electron transfer in water and other polar environments, how it happens. . In Classical and Quantum Dynamics in Condensed Phase Simulations, ed. BJ Berne, G Ciccotti, DF Coker , pp. 2549. Singapore:: World Sci.
    [Google Scholar]
  14. 14.
    Lin J, Balamurugan D, Zhang P, Skourtis SS, Beratan DN. 2015.. Two-electron transfer pathways. . J. Phys. Chem. B 119:(24):758997
    [Crossref] [Google Scholar]
  15. 15.
    Tornow S, Bulla R, Anders FB, Nitzan A. 2008.. Dissipative two-electron transfer: a numerical renormalization group study. . Phys. Rev. B 78:(3):035434
    [Crossref] [Google Scholar]
  16. 16.
    Bulla R, Tornow S, Anders F. 2008.. Electronic correlations in electron transfer systems. . Adv. Solid State Phys. 47::6978
    [Crossref] [Google Scholar]
  17. 17.
    Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, et al. 2012.. Proton-coupled electron transfer. . Chem. Rev. 112:(7):401693
    [Crossref] [Google Scholar]
  18. 18.
    Hammes-Schiffer S. 2015.. Proton-coupled electron transfer: moving together and charging forward. . J. Am. Chem. Soc. 137:(28):886071
    [Crossref] [Google Scholar]
  19. 19.
    Kouwenhoven L, Glazman L. 2001.. Revival of the Kondo effect. . Phys. World 14:(1):3338
    [Crossref] [Google Scholar]
  20. 20.
    Wilson KG. 1975.. The renormalization group: critical phenomena and the Kondo problem. . Rev. Mod. Phys. 47:(4):773840
    [Crossref] [Google Scholar]
  21. 21.
    Nozières P, Blandin A. 1980.. Kondo effect in real metals. . J. Phys. 41:(3):193211
    [Crossref] [Google Scholar]
  22. 22.
    Yoo G, Lee S-SB, Sim H-S. 2018.. Detecting Kondo entanglement by electron conductance. . Phys. Rev. Lett. 120:(14):146801
    [Crossref] [Google Scholar]
  23. 23.
    Nelson DR. 1988.. Vortex entanglement in high-Tc superconductors. . Phys. Rev. Lett. 60:(19):197376
    [Crossref] [Google Scholar]
  24. 24.
    Sachdev S. 2003.. Colloquium: order and quantum phase transitions in the cuprate superconductors. . Rev. Mod. Phys. 75:(3):91332
    [Crossref] [Google Scholar]
  25. 25.
    Sachdev S. 1999.. Quantum phase transitions. . Phys. World 12::3338
    [Crossref] [Google Scholar]
  26. 26.
    Mayländer M, Chen S, Lorenzo ER, Wasielewski MR, Richert S. 2021.. Exploring photogenerated molecular quartet states as spin qubits and qudits. . J. Am. Chem. Soc. 143:(18):705058
    [Crossref] [Google Scholar]
  27. 27.
    Nagashima H, Kawaoka S, Akimoto S, Tachikawa T, Matsui Y, et al. 2018.. Singlet-fission-born quintet state: sublevel selections and trapping by multiexciton thermodynamics. . J. Phys. Chem. Lett. 9:(19):585561
    [Crossref] [Google Scholar]
  28. 28.
    Rugg BK, Smyser KE, Fluegel B, Chang CH, Thorley KJ, et al. 2022.. Triplet-pair spin signatures from macroscopically aligned heteroacenes in an oriented single crystal. . PNAS 119:(29):e2201879119
    [Crossref] [Google Scholar]
  29. 29.
    Dill RD, Smyser KE, Rugg BK, Damrauer NH, Eaves JD. 2023.. Entangled spin-polarized excitons from singlet fission in a rigid dimer. . Nat. Commun. 14:(1):1180
    [Crossref] [Google Scholar]
  30. 30.
    Smyser KE, Eaves JD. 2020.. Singlet fission for quantum information and quantum computing: the parallel model. . Sci. Rep. 10:(1):18480
    [Crossref] [Google Scholar]
  31. 31.
    Jacobberger RM, Qiu Y, Williams ML, Krzyaniak MD, Wasielewski MR. 2022.. Using molecular design to enhance the coherence time of quintet multiexcitons generated by singlet fission in single crystals. . J. Am. Chem. Soc. 144:(5):227683
    [Crossref] [Google Scholar]
  32. 32.
    Lubert-Perquel D, Salvadori E, Dyson M, Stavrinou PN, Montis R, et al. 2018.. Identifying triplet pathways in dilute pentacene films. . Nat. Commun. 9:(1):4222
    [Crossref] [Google Scholar]
  33. 33.
    Tayebjee MJY, Sanders SN, Kumarasamy E, Campos LM, Sfeir MY, McCamey DR. 2017.. Quintet multiexciton dynamics in singlet fission. . Nat. Phys. 13:(2):18288
    [Crossref] [Google Scholar]
  34. 34.
    Arute F, Arya K, Babbush R, Bacon D, Bardin JC, et al. 2019.. Quantum supremacy using a programmable superconducting processor. . Nature 574:(7779):50510
    [Crossref] [Google Scholar]
  35. 35.
    Lloyd S. 1996.. Universal quantum simulators. . Science 273:(5278):107378
    [Crossref] [Google Scholar]
  36. 36.
    Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, et al. 1995.. Elementary gates for quantum computation. . Phys. Rev. A 52:(5):345767
    [Crossref] [Google Scholar]
  37. 37.
    Nielsen MA, Chuang IL. 2010.. Quantum Computation and Quantum Information. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  38. 38.
    Smith MB, Michl J. 2010.. Singlet fission. . Chem. Rev. 110:(11):6891936
    [Crossref] [Google Scholar]
  39. 39.
    Greyson EC, Stepp BR, Chen X, Schwerin AF, Paci I, et al. 2010.. Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling. . J. Phys. Chem. B 114:(45):1422332
    [Crossref] [Google Scholar]
  40. 40.
    Smith MB, Michl J. 2013.. Recent advances in singlet fission. . Annu. Rev. Phys. Chem. 64::36186
    [Crossref] [Google Scholar]
  41. 41.
    Hanna MC, Nozik AJ. 2006.. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. . J. Appl. Phys. 100:(7):074510
    [Crossref] [Google Scholar]
  42. 42.
    Teichen PE, Eaves JD. 2012.. A microscopic model of singlet fission. . J. Phys. Chem. B 116:(37):1147381
    [Crossref] [Google Scholar]
  43. 43.
    Teichen PE, Eaves JD. 2015.. Collective aspects of singlet fission in molecular crystals. . J. Chem. Phys. 143:(4):044118
    [Crossref] [Google Scholar]
  44. 44.
    Lewis SG, Smyser KE, Eaves JD. 2021.. Clock transitions guard against spin decoherence in singlet fission. . J. Chem. Phys. 155:(19):194109
    [Crossref] [Google Scholar]
  45. 45.
    Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD, et al. 2020.. Exploiting chemistry and molecular systems for quantum information science. . Nat. Rev. Chem. 4:(9):490504
    [Crossref] [Google Scholar]
  46. 46.
    Weber JR, Koehl WF, Varley JB, Janotti A, Buckley BB, et al. 2010.. Quantum computing with defects. . PNAS 107:(19):851318
    [Crossref] [Google Scholar]
  47. 47.
    Childress L, Hanson R. 2013.. Diamond NV centers for quantum computing and quantum networks. . MRS Bull. 38:(2):13438
    [Crossref] [Google Scholar]
  48. 48.
    von Kugelgen S, Freedman DE. 2019.. A chemical path to quantum information. . Science 366:(6469):107071
    [Crossref] [Google Scholar]
  49. 49.
    Yu C-J, von Kugelgen S, Laorenza DW, Freedman DE. 2021.. A molecular approach to quantum sensing. . ACS Cent. Sci. 7:(5):71223
    [Crossref] [Google Scholar]
  50. 50.
    Feynman RP. 1986.. Quantum mechanical computers. . Found. Phys. 16:(6):50731
    [Crossref] [Google Scholar]
  51. 51.
    Schumacher B. 1995.. Quantum coding. . Phys. Rev. A 51:(4):273847
    [Crossref] [Google Scholar]
  52. 52.
    Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. 1987.. Dynamics of the dissipative two-state system. . Rev. Mod. Phys. 59:(1):185
    [Crossref] [Google Scholar]
  53. 53.
    Caldeira AO, Leggett AJ. 1983.. Quantum tunnelling in a dissipative system. . Ann. Phys. 149:(2):374456
    [Crossref] [Google Scholar]
  54. 54.
    Sahrapour MM, Makri N. 2013.. Tunneling, decoherence, and entanglement of two spins interacting with a dissipative bath. . J. Chem. Phys. 138:(11):114109
    [Crossref] [Google Scholar]
  55. 55.
    Cheng YC, Silbey RJ. 2004.. Stochastic Liouville equation approach for the effect of noise in quantum computations. . Phys. Rev. A 69:(5):052325
    [Crossref] [Google Scholar]
  56. 56.
    Horodecki R, Horodecki P, Horodecki M, Horodecki K. 2009.. Quantum entanglement. . Rev. Mod. Phys. 81:(2):865942
    [Crossref] [Google Scholar]
  57. 57.
    Haljan PC, Lee PJ, Brickman K-A, Acton M, Deslauriers L, Monroe C. 2005.. Entanglement of trapped-ion clock states. . Phys. Rev. A 72:(6):062316
    [Crossref] [Google Scholar]
  58. 58.
    Cirac JI, Zoller P. 1995.. Quantum computations with cold trapped ions. . Phys. Rev. Lett. 74:(20):409194
    [Crossref] [Google Scholar]
  59. 59.
    Langer C, Ozeri R, Jost JD, Chiaverini J, DeMarco B, et al. 2005.. Long-lived qubit memory using atomic ions. . Phys. Rev. Lett. 95:(6):060502
    [Crossref] [Google Scholar]
  60. 60.
    Rosenband T, Schmidt PO, Hume DB, Itano WM, Fortier TM, et al. 2007.. Observation of the 1S03P0 clock transition in 27Al+. . Phys. Rev. Lett. 98:(22):220801
    [Crossref] [Google Scholar]
  61. 61.
    Warren WS. 1997.. The usefulness of NMR quantum computing. . Science 277:(5332):168890
    [Crossref] [Google Scholar]
  62. 62.
    Vandersypen LMK, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL. 2001.. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. . Nature 414:(6866):88387
    [Crossref] [Google Scholar]
  63. 63.
    Chuang IL, Gershenfeld N, Kubinec M. 1998.. Experimental implementation of fast quantum searching. . Phys. Rev. Lett. 80:(15):340811
    [Crossref] [Google Scholar]
  64. 64.
    Buffoni L, Gherardini S, Cruzeiro EZ, Omar Y. 2022.. Third law of thermodynamics and the scaling of quantum computers. . Phys. Rev. Lett. 129:(15):150602
    [Crossref] [Google Scholar]
  65. 65.
    Zadrozny JM, Gallagher AT, Harris TD, Freedman DE. 2017.. A porous array of clock qubits. . J. Am. Chem. Soc. 139:(20):708994
    [Crossref] [Google Scholar]
  66. 66.
    Singh S, Jones WJ, Siebrand W, Stoicheff BP, Schneider WG. 1965.. Laser generation of excitons and fluorescence in anthracene crystals. . J. Chem. Phys. 42:(1):33042
    [Crossref] [Google Scholar]
  67. 67.
    Swenberg CE, Stacy WT. 1968.. Bimolecular radiationless transitions in crystalline tetracene. . Chem. Phys. Lett. 2:(5):32728
    [Crossref] [Google Scholar]
  68. 68.
    Johnson RC, Merrifield RE. 1970.. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. . Phys. Rev. B 1:(2):896902
    [Crossref] [Google Scholar]
  69. 69.
    Merrifield RE. 1968.. Theory of magnetic field effects on the mutual annihilation of triplet excitons. . J. Chem. Phys. 48:(9):431819
    [Crossref] [Google Scholar]
  70. 70.
    Shockley W, Queisser HJ. 1961.. Detailed balance limit of efficiency of p-n junction solar cells. . J. Appl. Phys. 32:(3):51019
    [Crossref] [Google Scholar]
  71. 71.
    Zeng T, Ananth N, Hoffmann R. 2014.. Seeking small molecules for singlet fission: a heteroatom substitution strategy. . J. Am. Chem. Soc. 136:(36):1263847
    [Crossref] [Google Scholar]
  72. 72.
    Akdag A, Wahab A, Beran P, Rulíšek L, Dron PI, et al. 2015.. Covalent dimers of 1,3-diphenylisobenzofuran for singlet fission: synthesis and electrochemistry. . J. Org. Chem. 80:(1):8089
    [Crossref] [Google Scholar]
  73. 73.
    Greyson EC, Vura-Weis J, Michl J, Ratner MA. 2010.. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. . J. Phys. Chem. B 114:(45):1416877
    [Crossref] [Google Scholar]
  74. 74.
    Akdag A, Havlas Z, Michl J. 2012.. Search for a small chromophore with efficient singlet fission: biradicaloid heterocycles. . J. Am. Chem. Soc. 134:(35):1462431
    [Crossref] [Google Scholar]
  75. 75.
    Johnson JC, Akdag A, Zamadar M, Chen X, Schwerin AF, et al. 2013.. Toward designed singlet fission: solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. . J. Phys. Chem. B 117:(16):468095
    [Crossref] [Google Scholar]
  76. 76.
    Gilligan AT, Miller EG, Sammakia T, Damrauer NH. 2019.. Using structurally well-defined norbornyl-bridged acene dimers to map a mechanistic landscape for correlated triplet formation in singlet fission. . J. Am. Chem. Soc. 141:(14):596171
    [Crossref] [Google Scholar]
  77. 77.
    Burdett JJ, Bardeen CJ. 2012.. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. . J. Am. Chem. Soc. 134:(20):8597607
    [Crossref] [Google Scholar]
  78. 78.
    Chan W-L, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu XY. 2011.. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. . Science 334:(6062):154145
    [Crossref] [Google Scholar]
  79. 79.
    Casanova D. 2018.. Theoretical modeling of singlet fission. . Chem. Rev. 118:(15):7164207
    [Crossref] [Google Scholar]
  80. 80.
    Berkelbach TC, Hybertsen MS, Reichman DR. 2013.. Microscopic theory of singlet exciton fission. I. General formulation. . J. Chem. Phys. 138:(11):114102
    [Crossref] [Google Scholar]
  81. 81.
    Berkelbach TC, Hybertsen MS, Reichman DR. 2013.. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. . J. Chem. Phys. 138:(11):114103
    [Crossref] [Google Scholar]
  82. 82.
    Berkelbach TC, Hybertsen MS, Reichman DR. 2014.. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. . J. Chem. Phys. 141:(7):074705
    [Crossref] [Google Scholar]
  83. 83.
    Chan W-L, Berkelbach TC, Provorse MR, Monahan NR, Tritsch JR, et al. 2013.. The quantum coherent mechanism for singlet fission: experiment and theory. . Acc. Chem. Res. 46:(6):132129
    [Crossref] [Google Scholar]
  84. 84.
    Farag MH, Krylov AI. 2018.. Singlet fission in perylenediimide dimers. . J. Phys. Chem. C 122:(45):2575363
    [Crossref] [Google Scholar]
  85. 85.
    Scholes GD, Rumbles G. 2006.. Excitons in nanoscale systems. . Nat. Mater. 5:(9):68396
    [Crossref] [Google Scholar]
  86. 86.
    Coulson CA, Rushbrooke GS. 1940.. Note on the method of molecular orbitals. . Math. Proc. Camb. Philos. Soc. 36:(2):193200
    [Crossref] [Google Scholar]
  87. 87.
    Zirzlmeier J, Lehnherr D, Coto PB, Chernick ET, Casillas R, et al. 2015.. Singlet fission in pentacene dimers. . PNAS 112:(17):532530
    [Crossref] [Google Scholar]
  88. 88.
    Kumarasamy E, Sanders SN, Tayebjee MJY, Asadpoordarvish A, Hele TJH, et al. 2017.. Tuning singlet fission in π-bridge-π chromophores. . J. Am. Chem. Soc. 139:(36):1248894
    [Crossref] [Google Scholar]
  89. 89.
    Yamauchi A, Tanaka K, Fuki M, Fujiwara S, Kimizuka N, et al. 2023.. Room-temperature quantum coherence of entangled multiexcitons in a metal-organic framework. . ChemRxiv. https://doi.org/10.26434/chemrxiv-2023-nz6rz
  90. 90.
    Alguire EC, Subotnik JE, Damrauer NH. 2015.. Exploring non-Condon effects in a covalent tetracene dimer: How important are vibrations in determining the electronic coupling for singlet fission?. J. Phys. Chem. A 119:(2):299311
    [Crossref] [Google Scholar]
  91. 91.
    Kobori Y, Fuki M, Nakamura S, Hasobe T. 2020.. Geometries and terahertz motions driving quintet multiexcitons and ultimate triplet-triplet dissociations via the intramolecular singlet fissions. . J. Phys. Chem. B 124:(42):941119
    [Crossref] [Google Scholar]
  92. 92.
    Bayliss SL, Laorenza DW, Mintun PJ, Kovos BD, Freedman DE, Awschalom DD. 2020.. Optically addressable molecular spins for quantum information processing. . Science 370:(6522):130912
    [Crossref] [Google Scholar]
  93. 93.
    Roffe J. 2019.. Quantum error correction: an introductory guide. . Contemp. Phys. 60:(3):22645
    [Crossref] [Google Scholar]
  94. 94.
    Orsborne SRE, Gorman J, Weiss LR, Sridhar A, Panjwani NA, et al. 2023.. Photogeneration of spin quintet triplet-triplet excitations in DNA-assembled pentacene stacks. . J. Am. Chem. Soc. 145:(9):543138
    [Crossref] [Google Scholar]
  95. 95.
    Kawashima Y, Hamachi T, Yamauchi A, Nishimura K, Nakashima Y, et al. 2023.. Singlet fission as a polarized spin generator for dynamic nuclear polarization. . Nat. Commun. 14:(1):1056
    [Crossref] [Google Scholar]
  96. 96.
    Wolfowicz G, Tyryshkin AM, George RE, Riemann H, Abrosimov NV, et al. 2013.. Atomic clock transitions in silicon-based spin qubits. . Nat. Nanotechnol. 8:(8):56164
    [Crossref] [Google Scholar]
  97. 97.
    Giménez-Santamarina S, Cardona-Serra S, Clemente-Juan JM, Gaita-Ariño A, Coronado E. 2020.. Exploiting clock transitions for the chemical design of resilient molecular spin qubits. . Chem. Sci. 11:(39):1071828
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052515
Loading
/content/journals/10.1146/annurev-physchem-042018-052515
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error