1932

Abstract

We highlight the recent progress in ultrafast dynamic microscopy that combines ultrafast optical spectroscopy with microscopy approaches, focusing on the application transient absorption microscopy (TAM) to directly image energy and charge transport in solar energy harvesting and conversion systems. We discuss the principles, instrumentation, and resolutions of TAM. The simultaneous spatial, temporal, and excited-state-specific resolutions of TAM unraveled exciton and charge transport mechanisms that were previously obscured in conventional ultrafast spectroscopy measurements for systems such as organic solar cells, hybrid perovskite thin films, and molecular aggregates. We also discuss future directions to improve resolutions and to develop other ultrafast imaging contrasts beyond transient absorption.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052605
2019-06-14
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052605.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052605&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lewis NS, Crabtree G 2005. Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18–21, 2005 Washington, DC: US Department of Energy
    [Google Scholar]
  2. 2.
    Semonin OE, Luther JM, Choi S, Chen HY, Gao J et al. 2011. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–33
    [Google Scholar]
  3. 3.
    Kamat PV 2011. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2:242–51
    [Google Scholar]
  4. 4.
    Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD et al. 2013. Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311–14
    [Google Scholar]
  5. 5.
    Günes S, Neugebauer H, Sariciftci NS 2007. Conjugated polymer-based organic solar cells. Chem. Rev. 107:1324–38
    [Google Scholar]
  6. 6.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ 2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–47
    [Google Scholar]
  7. 7.
    Nie W, Tsai H, Asadpour R, Blancon J-C, Neukirch AJ et al. 2015. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–25
    [Google Scholar]
  8. 8.
    Shank CV 1983. Measurement of ultrafast phenomena in the femtosecond time domain. Science 219:1027–31
    [Google Scholar]
  9. 9.
    Fleming G 1986. Chemical Applications of Ultrafast Spectroscopy New York: Oxford Univ. Press
    [Google Scholar]
  10. 10.
    Gelinas S, Rao A, Kumar A, Smith SL, Chin AW et al. 2014. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343:512–16
    [Google Scholar]
  11. 11.
    Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86
    [Google Scholar]
  12. 12.
    Cheng YC, Fleming GR 2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:241–62
    [Google Scholar]
  13. 13.
    Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M et al. 2014. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344:1001–5
    [Google Scholar]
  14. 14.
    Bakulin AA, Morgan SE, Kehoe TB, Wilson MWB, Chin AW et al. 2015. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8:16–23
    [Google Scholar]
  15. 15.
    Mehlenbacher RD, McDonough TJ, Grechko M, Wu M-Y, Arnold MS, Zanni MT 2015. Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy. Nat. Commun. 6:321
    [Google Scholar]
  16. 16.
    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S 2007. The structure of suspended graphene sheets. Nature 446:60–63
    [Google Scholar]
  17. 17.
    Azubel M, Koivisto J, Malola S, Bushnell D, Hura GL et al. 2014. Electron microscopy of gold nanoparticles at atomic resolution. Science 345:909–12
    [Google Scholar]
  18. 18.
    Min W, Freudiger CW, Lu S, Xie XS 2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30
    [Google Scholar]
  19. 19.
    Hildner R, Brinks D, Nieder JB, Cogdell RJ, Van Hulst NF 2013. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340:1448–51
    [Google Scholar]
  20. 20.
    Yurtsever A, van der Veen RM, Zewail AH 2012. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335:59–64
    [Google Scholar]
  21. 21.
    Hassan MT, Baskin JS, Liao B, Zewail AH 2017. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photonics 11:425–30
    [Google Scholar]
  22. 22.
    Liao B, Najafi E, Li H, Minnich AJ, Zewail AH 2017. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy. Nat. Nanotechnol. 12:871–76
    [Google Scholar]
  23. 23.
    Terada Y, Yoshida S, Takeuchi O, Shigekawa H 2010. Real-space imaging of transient carrier dynamics by nanoscale pump–probe microscopy. Nat. Photonics 4:869–74
    [Google Scholar]
  24. 24.
    Cocker TL, Jelic V, Gupta M, Molesky SJ, Burgess JAJ et al. 2013. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 7:620–25
    [Google Scholar]
  25. 25.
    Yoshida S, Aizawa Y, Wang Z-H, Oshima R, Mera Y et al. 2014. Probing ultrafast spin dynamics with optical pump–probe scanning tunnelling microscopy. Nat. Nanotechnol. 9:588–93
    [Google Scholar]
  26. 26.
    Cocker TL, Peller D, Yu P, Repp J, Huber R 2016. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539:263–67
    [Google Scholar]
  27. 27.
    Jahng J, Brocious J, Fishman DA, Yampolsky S, Nowak D et al. 2015. Ultrafast pump-probe force microscopy with nanoscale resolution. Appl. Phys. Lett. 106:083113
    [Google Scholar]
  28. 28.
    Nowak D, Morrison W, Wickramasinghe HK, Jahng J, Potma E et al. 2016. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2:e1501571
    [Google Scholar]
  29. 29.
    Min W, Lu S, Chong S, Roy R, Holtom GR, Xie XS 2009. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461:1105–9
    [Google Scholar]
  30. 30.
    Kubo A, Jung YS, Kim HK, Petek H 2007. Femtosecond microscopy of localized and propagating surface plasmons in silver gratings. J. Phys. B 40:S259
    [Google Scholar]
  31. 31.
    Huang L, Hartland GV, Chu L-Q, Luxmi, Feenstra RM et al. 2010. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett 10:1308–13
    [Google Scholar]
  32. 32.
    Wei L, Min W 2012. Pump-probe optical microscopy for imaging nonfluorescent chromophores. Anal. Bioanal. Chem. 403:2197–202
    [Google Scholar]
  33. 33.
    Jin JY, Zhang JY, Wilson JW, Simpson MJ, Degan S et al. 2011. In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature. Biomed. Opt. Express 2:1576–83
    [Google Scholar]
  34. 34.
    Graham MW, Shi S-F, Wang Z, Ralph DC, Park J, McEuen PL 2013. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene. Nano Lett 13:5497–502
    [Google Scholar]
  35. 35.
    Silva WR, Graefe CT, Frontiera RR 2015. Toward label-free super-resolution microscopy. ACS Photonics 3:79–86
    [Google Scholar]
  36. 36.
    Man MK, Margiolakis A, Deckoff-Jones S, Harada T, Wong EL et al. 2017. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12:36–40
    [Google Scholar]
  37. 37.
    Zewail AH 2006. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57:65–103
    [Google Scholar]
  38. 38.
    Shorokhov D, Zewail AH 2016. Perspective: 4D ultrafast electron microscopy—evolutions and revolutions. J. Chem. Phys. 144:080901
    [Google Scholar]
  39. 39.
    Grumstrup EM, Gabriel MM, Cating EEM, Van Goethem EM, Papanikolas JM 2015. Pump–probe microscopy: visualization and spectroscopy of ultrafast dynamics at the nanoscale. Chem. Phys. 458:30–40
    [Google Scholar]
  40. 40.
    Fischer MC, Wilson JW, Robles FE, Warren WS 2016. Pump-probe microscopy. Rev. Sci. Instrum. 87:031101
    [Google Scholar]
  41. 41.
    van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S et al. 2006. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8:3486–95
    [Google Scholar]
  42. 42.
    Chong S, Min W, Xie XS 2010. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1:3316–22
    [Google Scholar]
  43. 43.
    Grancini G, Polli D, Fazzi D, Cabanillas-Gonzalez J, Cerullo G, Lanzani G 2011. Transient absorption imaging of P3HT:PCBM photovoltaic blend: evidence for interfacial charge transfer state. J. Phys. Chem. Lett. 2:1099–105
    [Google Scholar]
  44. 44.
    Wong CY, Penwell SB, Cotts BL, Noriega R, Wu H, Ginsberg NS 2013. Revealing exciton dynamics in a small-molecule organic semiconducting film with subdomain transient absorption microscopy. J. Phys. Chem. C 117:22111–22
    [Google Scholar]
  45. 45.
    Schnedermann C, Lim JM, Wende T, Duarte AS, Ni L et al. 2016. Sub-10 fs time-resolved vibronic optical microscopy. J. Phys. Chem. Lett. 7:4854–59
    [Google Scholar]
  46. 46.
    Nah S, Spokoyny B, Stoumpos C, Soe CMM, Kanatzidis M, Harel E 2017. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11:285–88
    [Google Scholar]
  47. 47.
    Seto K, Tsukada T, Okuda Y, Tokunaga E, Kobayashi T 2014. Development of a balanced detector with biased synchronous detection and application to near shot noise limited noise cancelling of supercontinuum pulse light. Rev. Sci. Instrum. 85:023702
    [Google Scholar]
  48. 48.
    Hayashi-Takagi A, Kasai H, Tsurui H, Miyazaki J, Kobayashi T 2014. Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes. Opt. Express 22:9024–32
    [Google Scholar]
  49. 49.
    van Dijk MA, Lippitz M, Orrit M 2005. Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry. Phys. Rev. Lett. 95:267406
    [Google Scholar]
  50. 50.
    Liebel M, Toninelli C, van Hulst NF 2018. Room-temperature ultrafast nonlinear spectroscopy of a single molecule. Nat. Photonics 12:45–49
    [Google Scholar]
  51. 51.
    Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO et al. 2013. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat. Photonics 7:449–53
    [Google Scholar]
  52. 52.
    Penwell SB, Ginsberg LDS, Noriega R, Ginsberg NS 2017. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nat. Mater. 16:1136–41
    [Google Scholar]
  53. 53.
    Oracz J, Adolfsson K, Westphal V, Radzewicz C, Borgström MT et al. 2017. Ground state depletion nanoscopy resolves semiconductor nanowire barcode segments at room temperature. Nano Lett 17:2652–59
    [Google Scholar]
  54. 54.
    Massaro ES, Hill AH, Grumstrup EM 2016. Super-resolution structured pump–probe microscopy. ACS Photonics 3:501–6
    [Google Scholar]
  55. 55.
    Nechay BA, Siegner U, Achermann M, Bielefeldt H, Keller U 1999. Femtosecond pump-probe near-field optical microscopy. Rev. Sci. Instrum. 70:2758–64
    [Google Scholar]
  56. 56.
    Imura K, Nagahara T, Okamoto H 2004. Imaging of surface plasmon and ultrafast dynamics in gold nanorods by near-field microscopy. J. Phys. Chem. B 108:16344–47
    [Google Scholar]
  57. 57.
    Karki K, Namboodiri M, Zeb Khan T, Materny A 2012. Pump-probe scanning near field optical microscopy: sub-wavelength resolution chemical imaging and ultrafast local dynamics. Appl. Phys. Lett. 100:153103
    [Google Scholar]
  58. 58.
    Wagner M, Fei Z, McLeod AS, Rodin AS, Bao W et al. 2014. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett 14:894–900
    [Google Scholar]
  59. 59.
    Gilburd L, Xu XG, Bando Y, Golberg D, Walker GC 2016. Near-field infrared pump–probe imaging of surface phonon coupling in boron nitride nanotubes. J. Phys. Chem. Lett. 7:289–94
    [Google Scholar]
  60. 60.
    Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P et al. 2011. Coherent two-dimensional nanoscopy. Science 333:1723–26
    [Google Scholar]
  61. 61.
    Dąbrowski M, Dai Y, Petek H 2017. Ultrafast microscopy: imaging light with photoelectrons on the nano–femto scale. J. Phys. Chem. Lett. 8:4446–55
    [Google Scholar]
  62. 62.
    Guo Z, Manser JS, Wan Y, Kamat PV, Huang L 2015. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6:7471
    [Google Scholar]
  63. 63.
    Akselrod GM, Deotare PB, Thompson NJ, Lee J, Tisdale WA et al. 2014. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5:3646
    [Google Scholar]
  64. 64.
    Wan Y, Stradomska A, Knoester J, Huang L 2017. Direct imaging of exciton transport in tubular porphyrin aggregates by ultrafast microscopy. J. Am. Chem. Soc. 139:7287–93
    [Google Scholar]
  65. 65.
    Wan Y, Guo Z, Zhu T, Yan S, Johnson J, Huang L 2015. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 7:785
    [Google Scholar]
  66. 66.
    Delor M, Weaver HL, Yu Q, Ginsberg NS 2018. Three-dimensional imaging of material functionality through nanoscale tracking of energy flow. arXiv:1805.09982 [physics.app-ph].
  67. 67.
    Guo Z, Zhou N, Williams OF, Hu J, You W, Moran AM 2018. Imaging carrier diffusion in perovskites with a diffractive optic-based transient absorption microscope. J. Phys. Chem. C 122:10650–56
    [Google Scholar]
  68. 68.
    Hartland GV 2010. Ultrafast studies of single semiconductor and metal nanostructures through transient absorption microscopy. Chem. Sci. 1:303–9
    [Google Scholar]
  69. 69.
    Lo SS, Devadas MS, Major TA, Hartland GV 2013. Optical detection of single nano-objects by transient absorption microscopy. Analyst 138:25–31
    [Google Scholar]
  70. 70.
    Huang L, Cheng J-X 2013. Nonlinear optical microscopy of single nanostructures. Annu. Rev. Mater. Res. 43:213–36
    [Google Scholar]
  71. 71.
    Devadas MS, Devkota T, Johns P, Li Z, Lo SS et al. 2015. Imaging nano-objects by linear and nonlinear optical absorption microscopies. Nanotechnology 26:354001
    [Google Scholar]
  72. 72.
    Muskens OL, Del Fatti N, Vallée F 2006. Femtosecond response of a single metal nanoparticle. Nano Lett 6:552–56
    [Google Scholar]
  73. 73.
    Johns P, Yu K, Devadas MS, Hartland GV 2016. Role of resonances in the transmission of surface plasmon polaritons between nanostructures. ACS Nano 10:3375–81
    [Google Scholar]
  74. 74.
    Johns P, Yu K, Devadas MS, Li Z, Major TA, Hartland GV 2014. Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars. Nanoscale 6:14289–96
    [Google Scholar]
  75. 75.
    Mehl BP, Kirschbrown JR, House RL, Papanikolas JM 2011. The end is different than the middle: spatially dependent dynamics in ZnO rods observed by femtosecond pump–probe microscopy. J. Phys. Chem. Lett. 2:1777–81
    [Google Scholar]
  76. 76.
    Lo SS, Major TA, Petchsang N, Huang L, Kuno MK, Hartland GV 2012. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires. ACS Nano 6:5274–82
    [Google Scholar]
  77. 77.
    Grumstrup EM, Gabriel MM, Cating EM, Pinion CW, Christesen JD et al. 2014. Ultrafast carrier dynamics in individual silicon nanowires: characterization of diameter-dependent carrier lifetime and surface recombination with pump–probe microscopy. J. Phys. Chem. C 118:8634–40
    [Google Scholar]
  78. 78.
    Grumstrup EM, Gabriel MM, Pinion CW, Parker JK, Cahoon JF, Papanikolas JM 2014. Reversible strain-induced electron–hole recombination in silicon nanowires observed with femtosecond pump–probe microscopy. Nano Lett 14:6287–92
    [Google Scholar]
  79. 79.
    Jung Y, Slipchenko MN, Liu C-H, Ribbe AE, Zhong Z et al. 2010. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. Phys. Rev. Lett. 105:217401
    [Google Scholar]
  80. 80.
    Gao B, Hartland GV, Huang L 2012. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes. ACS Nano 6:5083–90
    [Google Scholar]
  81. 81.
    Gao B, Hartland GV, Huang L 2013. Transient absorption spectroscopy of excitons in an individual suspended metallic carbon nanotube. J. Phys. Chem. Lett. 4:3050–55
    [Google Scholar]
  82. 82.
    Ruzicka BA, Wang S, Werake LK, Weintrub B, Loh KP, Zhao H 2010. Hot carrier diffusion in graphene. Phys. Rev. B 82:195414
    [Google Scholar]
  83. 83.
    Gao B, Hartland G, Fang T, Kelly M, Jena D et al. 2011. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. Nano Lett 11:3184–89
    [Google Scholar]
  84. 84.
    Shi H, Yan R, Bertolazzi S, Brivio J, Gao B et al. 2013. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7:1072–80
    [Google Scholar]
  85. 85.
    Ceballos F, Cui Q, Bellus MZ, Zhao H 2016. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale 8:11681–88
    [Google Scholar]
  86. 86.
    Staleva H, Hartland GV 2008. Transient absorption studies of single silver nanocubes. J. Phys. Chem. C 112:7535–39
    [Google Scholar]
  87. 87.
    Saito R, Dresselhaus G, Dresselhaus MS 1998. Physical Properties of Carbon Nanotubes Singapore: World Scientific
    [Google Scholar]
  88. 88.
    Grancini G, Biasiucci M, Mastria R, Scotognella F, Tassone F et al. 2012. Dynamic microscopy study of ultrafast charge transfer in a hybrid P3HT/hyperbranched CdSe nanoparticle blend for photovoltaics. J. Phys. Chem. Lett. 3:517–23
    [Google Scholar]
  89. 89.
    Wong CTO, Lo SS, Huang L 2012. Ultrafast spatial imaging of charge dynamics in heterogeneous polymer blends. J. Phys. Chem. Lett. 3:879–84
    [Google Scholar]
  90. 90.
    Wong CY, Cotts BL, Wu H, Ginsberg NS 2015. Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting films. Nat. Commun. 6:5946
    [Google Scholar]
  91. 91.
    Simpson MJ, Doughty B, Yang B, Xiao K, Ma Y-Z 2016. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy. J. Phys. Chem. Lett. 7:1725–31
    [Google Scholar]
  92. 92.
    Simpson MJ, Doughty B, Yang B, Xiao K, Ma Y-Z 2016. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy. ACS Photonics 3:434–42
    [Google Scholar]
  93. 93.
    Nah S, Spokoyny B, Jiang X, Stoumpos C, Soe CMM et al. 2018. Transient sub-bandgap states in halide perovskite thin films. Nano Lett 18:827–31
    [Google Scholar]
  94. 94.
    Snaider JM, Guo Z, Wang T, Yang M, Yuan L et al. 2018. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett 3:1402–8
    [Google Scholar]
  95. 95.
    He J, Kumar N, Bellus MZ, Chiu H-Y, He D et al. 2014. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat. Commun. 5:5622
    [Google Scholar]
  96. 96.
    Yuan L, Chung T-F, Kuc A, Wan Y, Xu Y et al. 2018. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4:e1700324
    [Google Scholar]
  97. 97.
    Deeb C, Guo Z, Yang A, Huang L, Odom TW 2018. Correlating nanoscopic energy transfer and far-field emission to unravel lasing dynamics in plasmonic nanocavity arrays. Nano Lett 18:1454–59
    [Google Scholar]
  98. 98.
    Saliba M, Matsui T, Domanski K, Seo J-Y, Ummadisingu A et al. 2016. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354:206–9
    [Google Scholar]
  99. 99.
    Geim AK, Grigorieva IV 2013. Van der Waals heterostructures. Nature 499:419–25
    [Google Scholar]
  100. 100.
    Neamen D 2012. Semiconductor Physics and Devices New York: McGraw-Hill
    [Google Scholar]
  101. 101.
    Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M 2011. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83:543–86
    [Google Scholar]
  102. 102.
    Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM 2014. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26:1584–89
    [Google Scholar]
  103. 103.
    Baxter JB, Schmuttenmaer CA 2006. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 110:25229–39
    [Google Scholar]
  104. 104.
    Lo SS, Shi HY, Huang L, Hartland GV 2013. Imaging the extent of plasmon excitation in Au nanowires using pump-probe microscopy. Opt. Lett. 38:1265–67
    [Google Scholar]
  105. 105.
    Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF et al. 2013. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump–probe microscopy. Nano Lett 13:1336–40
    [Google Scholar]
  106. 106.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E et al. 2015. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–22
    [Google Scholar]
  107. 107.
    Hill AH, Smyser KE, Kennedy CL, Massaro ES, Grumstrup EM 2017. Screened charge carrier transport in methylammonium lead iodide perovskite thin films. J. Phys. Chem. Lett. 8:948–53
    [Google Scholar]
  108. 108.
    Yi HT, Wu X, Zhu X, Podzorov V 2016. Intrinsic charge transport across phase transitions in hybrid organo-inorganic perovskites. Adv. Mater. 28:6509–14
    [Google Scholar]
  109. 109.
    Ross RT, Nozik AJ 1982. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53:3813
    [Google Scholar]
  110. 110.
    Nozik AJ 2001. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52:193–231
    [Google Scholar]
  111. 111.
    Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L 2017. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356:59–62
    [Google Scholar]
  112. 112.
    Koch SW, Kira M, Khitrova G, Gibbs HM 2006. Semiconductor excitons in new light. Nat. Mater. 5:523–31
    [Google Scholar]
  113. 113.
    Scholes GD, Rumbles G 2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96
    [Google Scholar]
  114. 114.
    Gregg BA 2003. Excitonic solar cells. J. Phys. Chem. B 107:4688–98
    [Google Scholar]
  115. 115.
    Menke SM, Holmes RJ 2014. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7:499–512
    [Google Scholar]
  116. 116.
    Mikhnenko OV, Blom PWM, Nguyen T-Q 2015. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8:1867–88
    [Google Scholar]
  117. 117.
    Clark KA, Krueger EL, Vanden Bout DA 2014. Direct measurement of energy migration in supramolecular carbocyanine dye nanotubes. J. Phys. Chem. Lett. 5:2274–82
    [Google Scholar]
  118. 118.
    Haedler AT, Kreger K, Issac A, Wittmann B, Kivala M et al. 2015. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523:196–99
    [Google Scholar]
  119. 119.
    Kumar N, Cui Q, Ceballos F, He D, Wang Y, Zhao H 2014. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 6:4915–19
    [Google Scholar]
  120. 120.
    Zhu T, Wan Y, Guo Z, Johnson J, Huang L 2016. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 28:7539–47
    [Google Scholar]
  121. 121.
    Yuan L, Wang T, Zhu T, Zhou M, Huang L 2017. Exciton dynamics, transport, and annihilation in atomically thin two-dimensional semiconductors. J. Phys. Chem. Lett. 8:3371–79
    [Google Scholar]
  122. 122.
    Chernikov A, Berkelbach TC, Hill HM, Rigosi A, Li Y et al. 2014. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113:076802
    [Google Scholar]
  123. 123.
    Raja A, Chaves A, Yu J, Arefe G, Hill HM et al. 2017. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8:15251
    [Google Scholar]
  124. 124.
    Smith MB, Michl J 2010. Singlet fission. Chem. Rev. 110:6891–936
    [Google Scholar]
  125. 125.
    Yoon SJ, Guo Z, dos Santos Claro PC, Shevchenko EV, Huang L 2016. Direct imaging of long-range exciton transport in quantum dot superlattices by ultrafast microscopy. ACS Nano 10:7208–15
    [Google Scholar]
  126. 126.
    Zhu X, Monahan NR, Gong Z, Zhu H, Williams KW, Nelson CA 2015. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137:8313–20
    [Google Scholar]
  127. 127.
    Deotare PB, Chang W, Hontz E, Congreve DN, Shi L et al. 2015. Nanoscale transport of charge-transfer states in organic donor–acceptor blends. Nat. Mater. 14:1130
    [Google Scholar]
  128. 128.
    Zhu T, Yuan L, Zhao Y, Zhou M, Wan Y et al. 2018. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 4:eaao310
    [Google Scholar]
  129. 129.
    Gabriel MM, Grumstrup EM, Kirschbrown JR, Pinion CW, Christesen JD et al. 2014. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy. Nano Lett 14:3079–87
    [Google Scholar]
  130. 130.
    Kravtsov V, Ulbricht R, Atkin JM, Raschke MB 2016. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11:459–64
    [Google Scholar]
  131. 131.
    Serrano AL, Ghosh A, Ostrander JS, Zanni MT 2015. Wide-field FTIR microscopy using mid-IR pulse shaping. Opt. Express 23:17815–27
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052605
Loading
/content/journals/10.1146/annurev-physchem-042018-052605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error