1932

Abstract

Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050622
2017-05-05
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/68/1/annurev-physchem-052516-050622.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050622&mimeType=html&fmt=ahah

Literature Cited

  1. Reinhardt WP. 1.  1982. Complex coordinates in the theory of atomic and molecular structure and dynamics. Annu. Rev. Phys. Chem. 33:223–55 [Google Scholar]
  2. Moiseyev N. 2.  1998. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302:212–93Provides an extensive overview of the theory of complex scaling. [Google Scholar]
  3. Moiseyev N. 3.  2011. Non-Hermitian Quantum Mechanics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  4. Thomas RD. 4.  2008. When electrons meet molecular ions and what happens next: dissociative recombination from interstellar molecular clouds to internal combustion engines. Mass Spectrom. Rev. 27:485–530 [Google Scholar]
  5. Boudaïffa B, Cloutier P, Hunting D, Huels MA, Sanche L. 5.  2000. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–60 [Google Scholar]
  6. Simons J. 6.  2006. How do low-energy (0.1–2 eV) electrons cause DNA-strand breaks?. Acc. Chem. Res. 39:772–79 [Google Scholar]
  7. Zhou Y, Ernzerhof M. 7.  2012. Open-system Kohn–Sham density functional theory. J. Chem. Phys. 136:094105 [Google Scholar]
  8. Christopher P, Xin H, Marimuthu A, Linic S. 8.  2012. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11:1044–50 [Google Scholar]
  9. Mukherjee S, Libisch F, Large N, Neumann O, Brown LV. 9.  et al. 2013. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13:240–47 [Google Scholar]
  10. Corkum PB, Krausz F. 10.  2007. Attosecond science. Nat. Phys. 3:381–87 [Google Scholar]
  11. Strelkov V. 11.  2010. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production. Phys. Rev. Lett. 104:123901 [Google Scholar]
  12. Bressler C, Chergui M. 12.  2004. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104:1781–812 [Google Scholar]
  13. Ullrich J, Rudenko A, Moshammer R. 13.  2012. Free-electron lasers: new avenues in molecular physics and photochemistry. Annu. Rev. Phys. Chem. 63:635–60 [Google Scholar]
  14. Zuev D, Bravaya KB, Crawford TD, Lindh R, Krylov AI. 14.  2011. Electronic structure of the two isomers of the anionic form of p-coumaric acid chromophore. J. Chem. Phys. 134:034310 [Google Scholar]
  15. Bravaya KB, Zuev D, Epifanovsky E, Krylov AI. 15.  2013. Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: theory, implementation, and examples. J. Chem. Phys. 138:124106 [Google Scholar]
  16. Simons J. 16.  2008. Molecular anions. J. Phys. Chem. A 112:6401–511 [Google Scholar]
  17. Kunitsa AA, Bravaya KB. 17.  2015. First-principles calculations of the energy and width of the 2Au shape resonance in p-benzoquinone: a gateway state for electron transfer. J. Phys. Chem. Lett. 6:1053–58 [Google Scholar]
  18. Sommerfeld T, Cederbaum LS. 18.  1998. Long-lived states of N2. Phys. Rev. Lett. 80:3723–26 [Google Scholar]
  19. Neuhauser D. 19.  1991. Time-dependent reactive scattering in the presence of narrow resonances: avoiding long propagation times. J. Chem. Phys. 95:4927–32 [Google Scholar]
  20. Grossmann F. 20.  1996. Time-dependent semiclassical calculation of resonance lifetimes. Chem. Phys. Lett. 262:470–76 [Google Scholar]
  21. Klaiman S, Gilary I. 21.  2012. On resonance: a first glance into the behavior of unstable states. Adv. Quantum Chem. 63:1–31 [Google Scholar]
  22. Meyer HD, Walter O. 22.  1982. On the calculation of S-matrix poles using the Siegert method. J. Phys. B 15:3647–68 [Google Scholar]
  23. Hazi AU, Taylor HS. 23.  1970. Stabilization method of calculating resonance energies: model problem. Phys. Rev. A 1:1109–20 [Google Scholar]
  24. Mandelshtam VA, Taylor HS. 24.  1995. Spectral projection approach to the quantum scattering calculations. J. Chem. Phys. 102:7390–99 [Google Scholar]
  25. Langhoff PW. 25.  1979. Stieltjes–Tchebycheff moment-theory approach to molecular photoionization studies. Electron Molecule and Photon Molecule Collisions T Rescigno, V McKoy, B Schneider 183–224 New York: Plenum [Google Scholar]
  26. Jagau TC, Krylov AI. 26.  2016. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments. J. Chem. Phys. 144:054113Introduced Dyson orbitals for resonance states. [Google Scholar]
  27. Siegert AJF. 27.  1939. On the derivation of dispersion formula for nuclear reactions. Phys. Rev. 56:750 [Google Scholar]
  28. Moiseyev N, Hirschfelder JO. 28.  1988. Representation of several complex coordinate methods by similarity transformation operators. J. Chem. Phys. 88:1063–65 [Google Scholar]
  29. Domcke W. 29.  1991. Theory of resonance and threshold effects in electron–molecule collisions: the projection-operator approach. Phys. Rep. 208:97–188 [Google Scholar]
  30. Feshbach H. 30.  1962. A unified theory of nuclear reactions. II. Ann. Phys. 19:287–313 [Google Scholar]
  31. Aguilar J, Combes JM. 31.  1971. A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22:269–79 [Google Scholar]
  32. Balslev E, Combes JM. 32.  1971. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun. Math. Phys. 22:280–94 [Google Scholar]
  33. Simon B. 33.  1972. Quadratic form techniques and the Balslev–Combes theorem. Commun. Math. Phys. 27:1–9 [Google Scholar]
  34. Jolicard G, Austin EJ. 34.  1985. Optical potential stabilisation method for predicting resonance levels. Chem. Phys. Lett. 121:106–10 [Google Scholar]
  35. Riss UV, Meyer HD. 35.  1993. Calculation of resonance energies and widths using the complex absorbing potential method. J. Phys. B 26:4503–36Provides the mathematical foundations for using CAPs in the calculation of resonance energies and widths. [Google Scholar]
  36. Riss UV, Meyer HD. 36.  1995. Reflection-free complex absorbing potentials. J. Phys. B 28:1475–93 [Google Scholar]
  37. Riss UV, Meyer HD. 37.  1998. The transformative complex absorbing potential method: a bridge between complex absorbing potentials and smooth exterior scaling. J. Phys. B 31:2279–304 [Google Scholar]
  38. Moiseyev N. 38.  1998. Derivations of universal exact complex absorption potentials by the generalized complex coordinate method. J. Phys. B 31:1431–41 [Google Scholar]
  39. Lipkin N, Moiseyev N, Brändas E. 39.  1989. Resonances by the exterior-scaling method within the framework of the finite-basis-set approximation. Phys. Rev. A 40:549–53 [Google Scholar]
  40. Honigmann M, Buenker RJ, Liebermann HP. 40.  2006. Complex self-consistent field and multireference single- and double-excitation configuration interaction calculations for the 2Πg resonance state of N2. J. Chem. Phys. 125:234304 [Google Scholar]
  41. Bartlett RJ. 41.  2002. To multireference or not to multireference: That is the question. Int. J. Mol. Sci. 3:579–603 [Google Scholar]
  42. Krylov AI. 42.  2008. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the hitchhiker's guide to Fock space. Annu. Rev. Phys. Chem. 59:433–62Discusses different variants of EOM-CC and their usefulness for treating systems with difficult electronic structures. [Google Scholar]
  43. Sneskov K, Christiansen O. 43.  2012. Excited state coupled cluster methods. WIREs Comput. Mol. Sci. 2:566–84 [Google Scholar]
  44. Bartlett RJ. 44.  2012. Coupled-cluster theory and its equation-of-motion extensions. WIREs Comput. Mol. Sci. 2:126–38 [Google Scholar]
  45. Sommerfeld T, Meyer HD. 45.  2002. Computing the energy-dependent width of temporary anions from L2 ab initio methods. J. Phys. B 35:1841–63Discusses the connection between the resonance width in the Feshbach picture and in the Siegert picture. [Google Scholar]
  46. Santra R, Cederbaum LS. 46.  2002. Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 368:1–117 [Google Scholar]
  47. Muga JG, Palao JP, Navarro B, Egusquiza IL. 47.  2004. Complex absorbing potentials. Phys. Rep. 395:357–426 [Google Scholar]
  48. Rescigno TN, Orel AE, McCurdy CW. 48.  1980. Application of complex coordinate SCF techniques to a molecular shape resonance: the 2Πg state of N2. J. Chem. Phys. 73:6347–48 [Google Scholar]
  49. McCurdy CW, Mowrey RC. 49.  1982. Complex potential-energy function for the 2Σ+u shape resonance state of H2 at the self-consistent-field level. Phys. Rev. A 25:2529–38 [Google Scholar]
  50. Zdanska PR, Moiseyev N. 50.  2005. Hartree–Fock orbitals for complex-scaled configuration interaction calculation of highly excited Feshbach resonances. J. Chem. Phys. 123:194105 [Google Scholar]
  51. Yeager DL, Mishra MK. 51.  2005. Algebraic modifications to second quantization for non-Hermitian complex scaled Hamiltonians with application to a quadratically convergent multiconfigurational self-consistent field method. Int. J. Quantum Chem. 104:871–79 [Google Scholar]
  52. White AF, Head-Gordon M, McCurdy CW. 52.  2015. Complex basis functions revisited: implementation with applications to carbon tetrafluoride and aromatic N-containing heterocycles within the static-exchange approximation. J. Chem. Phys. 142:054103Provided the first efficient implementation of the complex basis functions method. [Google Scholar]
  53. White AF, McCurdy CW, Head-Gordon M. 53.  2015. Restricted and unrestricted non-Hermitian Hartree–Fock: theory, practical considerations, and applications to metastable molecular anions. J. Chem. Phys. 143:074103 [Google Scholar]
  54. Sommerfeld T, Santra R. 54.  2001. Efficient method to perform CAP/CI calculations for temporary anions. Int. J. Quantum Chem. 82:218–26 [Google Scholar]
  55. Santra R, Cederbaum LS. 55.  2002. Complex absorbing potentials in the framework of electron propagator theory. I. General formalism. J. Chem. Phys. 117:5511–21 [Google Scholar]
  56. Sajeev Y, Santra R, Pal S. 56.  2005. Analytically continued Fock-space multireference coupled-cluster theory: application to the 2Πg shape resonance in e-N2 scattering. J. Chem. Phys. 122:234320 [Google Scholar]
  57. Honigmann M, Hirsch G, Buenker RJ, Petsalakis ID, Theodorakopoulos G. 57.  1999. Complex coordinate calculations on autoionizing states of HeH and H2. Chem. Phys. Lett. 305:465–73 [Google Scholar]
  58. Ghosh A, Vaval N, Pal S. 58.  2012. Equation-of-motion coupled-cluster method for the study of shape resonances. J. Chem. Phys. 136:234110 [Google Scholar]
  59. Zuev D, Jagau TC, Bravaya KB, Epifanovsky E, Shao Y. 59.  et al. 2014. Complex absorbing potentials within EOM-CC family of methods: theory, implementation, and benchmarks. J. Chem. Phys. 141:024102 [Google Scholar]
  60. Jagau TC, Zuev D, Bravaya KB, Epifanovsky E, Krylov AI. 60.  2014. A fresh look at resonances and complex absorbing potentials: density matrix based approach. J. Phys. Chem. Lett. 5:310–15 [Google Scholar]
  61. Jagau TC, Krylov AI. 61.  2014. Complex absorbing potential equation-of-motion coupled-cluster method yields smooth and internally consistent potential energy surfaces and lifetimes for molecular resonances. J. Phys. Chem. Lett. 5:3078–85 [Google Scholar]
  62. Pople JA. 62.  1973. Theoretical models for chemistry. Energy, Structure and Reactivity: Proc. 1972 Boulder Summer Res. Conf. Theor. Chem. D Smith, W McRae 51–61 New York: WileyIntroduced the concept of theoretical model chemistry and outlined the requirements for practical electronic structure methodology. [Google Scholar]
  63. Stanton JF, Gauss J. 63.  1995. Perturbative treatment of the similarity transformed Hamiltonian in equation-of-motion coupled-cluster approximations. J. Chem. Phys. 103:1064–76 [Google Scholar]
  64. Davidson ER. 64.  1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17:87–94 [Google Scholar]
  65. Hirao K, Nakatsuji H. 65.  1982. A generalization of the Davidson's method to large nonsymmetric eigenvalue problems. J. Comput. Phys. 45:246–54 [Google Scholar]
  66. Rettrup S. 66.  1982. An iterative method for calculating several of the extreme eigensolutions of large real non-symmetric matrices. J. Comput. Phys. 45:100–7 [Google Scholar]
  67. Zuev D, Vecharynski E, Yang C, Orms N, Krylov AI. 67.  2015. New algorithms for iterative matrix-free eigensolvers in quantum chemistry. J. Comput. Chem. 36:273–84 [Google Scholar]
  68. Stanton JF. 68.  1993. Many-body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation-of-motion coupled-cluster method. J. Chem. Phys. 99:8840–47 [Google Scholar]
  69. Stanton JF, Bartlett RJ. 69.  1993. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98:7029–39Discusses the theory of EOM-CCSD and derives the working equations. [Google Scholar]
  70. Nanda K, Krylov AI. 70.  2015. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: theory, implementation, and benchmarks. J. Chem. Phys. 142:064118 [Google Scholar]
  71. Epifanovsky E, Klein K, Stopkowicz S, Gauss J, Krylov AI. 71.  2015. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: theory, implementation, and benchmark calculations. J. Chem. Phys. 143:064102 [Google Scholar]
  72. Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. 72.  2012. Recent advances in wave function-based methods of molecular-property calculations. Chem. Rev. 112:543–631 [Google Scholar]
  73. Plasser F, Wormit M, Dreuw A. 73.  2014. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 141:024106 [Google Scholar]
  74. Matsika S, Feng X, Luzanov AV, Krylov AI. 74.  2014. What we can learn from the norms of one-particle density matrices, and what we can't: some results for interstate properties in model singlet fission systems. J. Phys. Chem. A 118:11943–55 [Google Scholar]
  75. Oana CM, Krylov AI. 75.  2009. Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals. J. Chem. Phys. 131:124114 [Google Scholar]
  76. Gozem S, Gunina AO, Ichino T, Osborn DL, Stanton JF, Krylov AI. 76.  2015. Photoelectron wave function in photoionization: plane wave or Coulomb wave. J. Phys. Chem. Lett. 6:4532–40 [Google Scholar]
  77. Linderberg J, Öhrn Y. 77.  1973. Propagators in Quantum Chemistry London: Academic [Google Scholar]
  78. Ortiz JV. 78.  1999. Toward an exact one-electron picture of chemical bonding. Adv. Quantum Chem. 35:33–52 [Google Scholar]
  79. Oana CM, Krylov AI. 79.  2007. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples. J. Chem. Phys. 127:234106 [Google Scholar]
  80. Epifanovsky E, Wormit M, Kuś T, Landau A, Zuev D. 80.  et al. 2013. New implementation of high-level correlated methods using a general block-tensor library for high-performance electronic structure calculations. J. Comput. Chem. 34:2293–309 [Google Scholar]
  81. Solomonik E, Matthews D, Hammond J, Demmel J. 81.  2013. Cyclops tensor framework: reducing communication and eliminating load imbalance in massively parallel contractions. Proc. IEEE Int. Parallel Distrib. Process. Symp., 27th, Boston, May 20–24813–24 [Google Scholar]
  82. McCurdy CW, Rescigno TN, Davidson ER, Lauderdale JG. 82.  1980. Applicability of self-consistent field techniques based on the complex coordinate method to metastable electronic states. J. Chem. Phys. 73:3268–73 [Google Scholar]
  83. Reisler H, Krylov AI. 83.  2009. Interacting Rydberg and valence states in radicals and molecules: experimental and theoretical studies. Int. Rev. Phys. Chem. 28:267–308 [Google Scholar]
  84. Löwdin PO. 84.  1988. On the change of spectra associated with unbounded similarity transformations of a many-particle Hamiltonian and the occurrence of resonance states in the method of complex scaling. Part I. General theory. Adv. Quantum Chem. 19:87–138Mathematical analysis of the spectral changes associated with the complex scaling transformation. [Google Scholar]
  85. Moiseyev N, Certain PR, Weinhold F. 85.  1978. Resonance properties of complex-rotated Hamiltonians. Mol. Phys. 36:1613–30 [Google Scholar]
  86. Brändas E, Froelich P. 86.  1977. Continuum orbitals, complex scaling problem, and the extended virial theorem. Phys. Rev. A 16:2207–10 [Google Scholar]
  87. Moiseyev N. 87.  1982. Resonance states by the generalized complex variational method. Mol. Phys. 47:585–98 [Google Scholar]
  88. Ho YK. 88.  1981. Complex-coordinate calculations for doubly excited states of two-electron atoms. Phys. Rev. A 23:2137–49 [Google Scholar]
  89. Venkatnathan A, Mishra MK, Jensen HJA. 89.  2000. An investigation of basis set effects in the characterization of electron–atom scattering resonances using the dilated electron propagator method. Theor. Chim. Acta 104:445–54 [Google Scholar]
  90. Kapralova-Zdanska PR, Smydke J. 90.  2013. Gaussian basis sets for highly excited and resonance states of helium. J. Chem. Phys. 138:024105 [Google Scholar]
  91. Rescigno TN, McCurdy CW, Orel AE. 91.  1978. Extensions of the complex-coordinate method to the study of resonances in many-electron systems. Phys. Rev. A 17:1931–38 [Google Scholar]
  92. McCurdy CW, Rescigno TN. 92.  1978. Extension of the method of complex basis functions to molecular resonances. Phys. Rev. Lett. 41:1364–68 [Google Scholar]
  93. Balanarayan P, Sajeev Y, Moiseyev N. 93.  2012. Ab initio complex molecular potential energy surfaces by back-rotation transformation method. Chem. Phys. Lett. 524:84–89 [Google Scholar]
  94. Simon B. 94.  1979. The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. A 71:211–14 [Google Scholar]
  95. Rom N, Engdahl E, Moiseyev N. 95.  1990. Tunneling rates in bound systems using smooth exterior complex scaling within framework of the finite basis set approximation. J. Chem. Phys. 93:3413–19 [Google Scholar]
  96. Moiseyev N, Corcoran C. 96.  1979. Autoionizing states of H2 and H2 using the complex-scaling method. Phys. Rev. A 20:814–17 [Google Scholar]
  97. Morgan JD, Simon B. 97.  1981. The calculation of molecular resonances by complex scaling. J. Phys. B 14:L167–71 [Google Scholar]
  98. Lauderdale JG, McCurdy CW, Hazi AU. 98.  1983. Conversion of bound states to resonances with changing internuclear distance in molecular anions. J. Chem. Phys. 79:2200–5 [Google Scholar]
  99. Ehara M, Sommerfeld T. 99.  2012. CAP/SAC-CI method for calculating resonance states of metastable anions. Chem. Phys. Lett. 537:107–12 [Google Scholar]
  100. Zhou Y, Ernzerhof M. 100.  2012. Calculating the lifetimes of metastable states with complex density functional theory. J. Phys. Chem. Lett. 3:1916–20 [Google Scholar]
  101. Santra R, Cederbaum LS. 101.  2001. An efficient combination of computational techniques for investigating electronic resonance states in molecules. J. Chem. Phys. 115:6853–61 [Google Scholar]
  102. Sommerfeld T, Ehara M. 102.  2015. Complex absorbing potentials with Voronoi isosurfaces wrapping perfectly around molecules. J. Chem. Theory Comput. 11:4627–33 [Google Scholar]
  103. Sommerfeld T, Riss UV, Meyer HD, Cederbaum LS, Engels B, Suter HU. 103.  1998. Temporary anions—calculation of energy and lifetime by absorbing potentials: the N22Πg resonance. J. Phys. B 31:4107–22 [Google Scholar]
  104. Sajeev Y, Sindelka M, Moiseyev N. 104.  2006. Reflection-free complex absorbing potential for electronic structure calculations: Feshbach type autoionization of helium. Chem. Phys. 329:307–12 [Google Scholar]
  105. Rom N, Lipkin N, Moiseyev N. 105.  1991. Optical potentials by the complex coordinate method. Chem. Phys. 151:199–204 [Google Scholar]
  106. Santra R. 106.  2006. Why complex absorbing potentials work: a discrete variable-representation perspective. Phys. Rev. A 74:034701Demonstrates how the shifted quadratic CAP is related to exterior complex scaling. [Google Scholar]
  107. Lefebvre R, Sindelka M, Moiseyev N. 107.  2005. Resonance positions and lifetimes for flexible complex absorbing potentials. Phys. Rev. A 72:052704 [Google Scholar]
  108. Ehara M, Fukuda R, Sommerfeld T. 108.  2016. Projected CAP/SAC-CI method with smooth Voronoi potential for calculating resonance states. J. Comput. Chem. 37:242–49 [Google Scholar]
  109. Santra R, Cederbaum LS, Meyer HD. 109.  1999. Electronic decay of molecular clusters: non-stationary states computed by standard quantum chemistry methods. Chem. Phys. Lett. 303:413–19 [Google Scholar]
  110. Simons J. 110.  2011. Theoretical study of negative molecular ions. Annu. Rev. Phys. Chem. 62:107–28 [Google Scholar]
  111. Herbert JM. 111.  2015. The quantum chemistry of loosely-bound electrons. Reviews in Computational Chemistry 28 AL Parrill, KB Lipkowitz 391–517 Hoboken, NJ: Wiley [Google Scholar]
  112. Berman M, Estrada H, Cederbaum LS, Domcke W. 112.  1983. Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: the 2.3-eV shape resonance in N2. Phys. Rev. A 28:1363–81 [Google Scholar]
  113. Sommerfeld T, Meyer HD, Cederbaum LS. 113.  2003. Potential energy surface of the CO2 anion. Phys. Chem. Chem. Phys. 6:42–45 [Google Scholar]
  114. Benda Z, Jagau TC. 114.  2017. Analytic gradients for the complex absorbing potential equation-of-motion coupled-cluster method. J. Chem. Phys. 146:031101 [Google Scholar]
  115. Sanov A, Mabbs R. 115.  2008. Photoelectron imaging of negative ions. Int. Rev. Phys. Chem. 27:53–85 [Google Scholar]
  116. Jagau TC, Dao D, Holtgrewe N, Krylov A, Mabbs R. 116.  2015. Same but different: dipole-stabilized shape resonances in CuF and AgF. J. Phys. Chem. Lett. 6:2786–93 [Google Scholar]
  117. Carelli F, Gianturco FA, Wester R, Satta M. 117.  2014. Formation of cyanopolyyne anions in the interstellar medium: the possible role of permanent dipoles. J. Chem. Phys. 141:054302 [Google Scholar]
  118. Reid KL. 118.  2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54:397–424 [Google Scholar]
  119. Pratt ST. 119.  2004. Photoionization of excited states of molecules. Radiat. Phys. Chem. 70:435–52 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050622
Loading
/content/journals/10.1146/annurev-physchem-052516-050622
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error