Chiroptical spectroscopy techniques for the differentiation of enantiomers in the condensed phase are based on an established paradigm that relies on symmetry breaking using circularly polarized light. We review a novel approach for the study of chiral molecules in the gas phase using broadband rotational spectroscopy, namely microwave three-wave mixing, which is a coherent, nonlinear, and resonant process. This technique can be used to generate a coherent molecular rotational signal that can be detected in a manner similar to that in conventional Fourier transform microwave spectroscopy. The structure (and thermal distribution of conformations), handedness, and enantiomeric excess of gas-phase samples can be determined unambiguously by employing tailored microwave fields. We discuss the theoretical and experimental aspects of the method, the significance of the first demonstrations of the technique for enantiomer differentiation, and the method's rapid advance into a robust choice to study molecular chirality in the gas phase. Very recently, the microwave three-wave mixing approach was extended to enantiomer-selective population transfer, an important step toward spatial enantiomer separation on the fly.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. 1.  2017. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res 124:527–42 [Google Scholar]
  2. Pasteur L. 2.  1948. Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Ann. Chim. Phys. 24:442–59 [Google Scholar]
  3. Berova N, Nakanishi K. 3.  2000. Circular Dichroism: Principles and Applications New York: Wiley [Google Scholar]
  4. Nafie LA. 4.  2011. Vibrational Optical Activity: Principles and Applications Chichester, UK: Wiley [Google Scholar]
  5. Nafie LA, Keiderling TA, Stephens PJ. 5.  1976. Vibrational circular dichroism. J. Am. Chem. Soc. 98:2715–23 [Google Scholar]
  6. Barron LD. 6.  2004. Molecular Light Scattering and Optical Activity Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  7. Patterson D, Schnell M, Doyle JM. 7.  2013. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497:475–77This work is a proof-of-concept experiment of chiral-sensitive microwave spectroscopy in a cooled buffer gas using a single-resonance scheme. [Google Scholar]
  8. Patterson D, Doyle JM. 8.  2013. Sensitive chiral analysis via microwave three-wave mixing. Phys. Rev. Lett. 111:023008This work is the first experimental demonstration of M3WM in a cooled buffer gas using a double-resonance scheme. [Google Scholar]
  9. Grabow J-U. 9.  2013. Fourier transform microwave spectroscopy: handedness caught by rotational coherence. Angew. Chem. Int. Ed. 52:11698–700 [Google Scholar]
  10. Shubert VA, Schmitz D, Patterson D, Doyle JM, Schnell M. 10.  2014. Identifying enantiomers in mixtures of chiral molecules with broadband microwave spectroscopy. Angew. Chem. Int. Ed. 4:1152–55This work describes the first measurement of M3WM in a supersonic jet experiment. [Google Scholar]
  11. Shubert VA, Schmitz D, Schnell M. 11.  2014. Enantiomer-sensitive spectroscopy and mixture analysis of chiral molecules containing two stereogenic centers—microwave three-wave mixing of menthone. J. Mol. Spec. 300:31–36 [Google Scholar]
  12. Patterson D, Schnell M. 12.  2014. New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess. Phys. Chem. Chem. Phys. 16:11114–23 [Google Scholar]
  13. Lobsiger S, Pérez C, Evangelisti L, Lehman KK, Pate BH. 13.  2015. Molecular structure and chirality detection by Fourier transform microwave spectroscopy. J. Phys. Chem. Lett. 6:196–200 [Google Scholar]
  14. Shubert VA, Schmitz D, Medcraft C, Krin A, Patterson D. 14.  et al. 2015. Rotational spectroscopy and three-wave mixing of 4-carvomenthenol: a technical guide to measuring chirality in the microwave regime. J. Chem. Phys. 142:214201A practical guide to measuring M3WM is provided. [Google Scholar]
  15. Shubert VA, Schmitz D, Pérez C, Medcraft C, Krin A. 15.  et al. 2016. Chiral analysis using broadband rotational spectroscopy. J. Phys. Chem. Lett. 7:341–50 [Google Scholar]
  16. Horsch P, Urbasch G, Weitzel KM. 16.  2012. Analysis of chirality by femtosecond laser ionization mass spectrometry. Chirality 24:684–90 [Google Scholar]
  17. Lux C, Wollenhaupt M, Bolze T, Liang Q, Kohler J. 17.  et al. 2012. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 20:5001–5 [Google Scholar]
  18. Garcia GA, Nahon L, Daly S, Powis I. 18.  2013. Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light. Nat. Commun. 4:2132 [Google Scholar]
  19. Janssen MHM, Powis I. 19.  2014. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16:856–71 [Google Scholar]
  20. Pitzer M, Kunitski M, Johnson AS, Jahnke T, Sann H. 20.  et al. 2013. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341:1096–100 [Google Scholar]
  21. Herwig P, Zawatzky K, Grieser M, Heber O, Jordon-Thaden B. 21.  et al. 2013. Imaging the absolute configuration of a chiral epoxide in the gas phase. Science 342:1084–86 [Google Scholar]
  22. Hansen N, Wullenkord J, Obenchain DA. Kohse-Höinghaus K, Grabow J-U. 22. , Graf I, 2016. Microwave spectroscopy detection of flame-sampled combustion intermediates. RSC Adv 7:37867–72 [Google Scholar]
  23. Park BG, Field R. 23.  2016. Perspective: The first ten years of broadband chirped pulse Fourier transform microwave spectroscopy. J. Chem. Phys. 144:200901 [Google Scholar]
  24. Brown GG, Dian BC, Douglass KO, Geyer SM, Shipman ST, Pate BH. 24.  2008. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 79:053103This work marks the beginning of CP-FTMW spectroscopy. [Google Scholar]
  25. Domingos SR, Pérez C, Medcraft C, Pinacho P, Schnell M. 25.  2016. Flexibility unleashed in acyclic monoterpenes: conformational space of citronellal revealed by broadband rotational spectroscopy. Phys. Chem. Chem. Phys. 18:16682–89 [Google Scholar]
  26. Seifert NA, Finneran IA, Pérez C, Zaleski DP, Neill JL. 26.  et al. 2015. AUTOFIT, an automated fitting tool for broadband rotational spectra, and applications to 1-hexanal. J. Mol. Spectrosc. 312:13–21 [Google Scholar]
  27. Pérez C, Muckle MT, Zaleski DP, Seifert NA, Temelso B. 27.  et al. 2012. Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 336:897–901 [Google Scholar]
  28. Pérez C, Zaleski DP, Seifert NA, Temelso B, Shields GC. 28.  et al. 2014. Hydrogen bond cooperativity and the three-dimensional structures of water nonamers and decamers. Angew. Chem. Int. Ed. 53:14368–72 [Google Scholar]
  29. Steber AL, Harris BJ, Neill JL, Pate BH. 29.  2012. An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295 GHz. J. Mol. Spectrosc. 280:3–10 [Google Scholar]
  30. Zaleski DP, Seifert NA, Steber AL, Muckle MT, Loomis RA. 30.  et al. 2013. Detection of E-cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS survey. Astrophys. J. Lett. 765:L10 [Google Scholar]
  31. Medcraft C, Wolf R, Schnell M. 31.  2014. High-resolution spectroscopy of the chiral metal complex [CpRe(CH3)(CO)(NO)]: a potential candidate for probing parity violation. Angew. Chem. Int. Ed. 53:11656–59 [Google Scholar]
  32. Bittner DM, Zaleski DP, Tew DP, Walker NR, Legon AC. 32.  2016. Highly unsaturated platinum and palladium carbenes PtC3 and PdC3 isolated and characterized in the gas phase. Angew. Chem. Int. Ed. 55:3768–71 [Google Scholar]
  33. Zaleski DP, Stephens SL, Walker NR. 33.  2014. A perspective on chemistry in transient plasma from broadband rotational spectroscopy. Phys. Chem. Chem. Phys. 16:25221–28 [Google Scholar]
  34. Kidwell NM, Vaquero-Vara V, Ormond TK, Buckingham GT, Zhang D. 34.  et al. 2014. Chirped-pulse Fourier transform microwave spectroscopy coupled with a flash pyrolysis microreactor: structural determination of the reactive intermediate cyclopentadienone. J. Phys. Chem. Lett. 5:2201–7 [Google Scholar]
  35. Prozument K, Colombo AP, Zhou Y, Park GB, Petrović VS. 35.  et al. 2011. Chirped-pulse millimeter-wave spectroscopy of Rydberg–Rydberg transitions. Phys. Rev. Lett. 107:143001 [Google Scholar]
  36. Schmitz D, Shubert VA, Betz T, Schnell M. 36.  2012. Multi-resonance effects within a single chirp in broadband rotational spectroscopy: the rapid adiabatic passage regime for benzonitrile. J. Mol. Spec. 280:77–84A technical report of the COMPACT spectrometer is provided. [Google Scholar]
  37. Hirota E. 37.  2012. Triple resonance for a three-level system of a chiral molecule. Proc. Jpn. Acad. B 88:120–28A theoretical formulation of 3WM in chiral molecules is presented. [Google Scholar]
  38. Blum K. 38.  1981. Density Matrix Theory and Applications New York: Plenum [Google Scholar]
  39. Crabtree KN, Martin-Drumel MA, Brown GG, Gaster SA, Hall TM, McCarthy MC. 39.  2016. Microwave spectral taxonomy: a semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy. J. Chem. Phys. 144:124201 [Google Scholar]
  40. Martin-Drumel MA, McCarthy MC, Patterson D, McGuire BA, Crabtree KN. 40.  2016. Automated microwave double resonance spectroscopy: a tool to identify and characterize chemical compounds. J. Chem. Phys. 144:124202 [Google Scholar]
  41. Hutzler NR, Lu HI, Doyle JM. 41.  2012. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112:94803–27 [Google Scholar]
  42. Drayna GK, Hallas C, Wang K, Domingos SR, Eibenberger S. 42.  et al. 2016. Direct time-domain observation of conformational relaxation in gas-phase cold collisions. Angew. Chem. Int. Ed. 55:4957–61 [Google Scholar]
  43. Spaun B, Changala PB, Patterson D, Bjork BJ, Heckl OH. 43.  et al. 2016. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533:517–20 [Google Scholar]
  44. Quack M, Merkt F. 44. , eds. 2011. Handbook of High Resolution Spectroscopy Chichester, UK: Wiley [Google Scholar]
  45. Schmitz D, Shubert VA, Betz T, Schnell M. 45.  2015. Exploring the conformational landscape of menthol, menthone, and isomenthone: a microwave study. Front. Chem. 3:15 [Google Scholar]
  46. Rohloff J. 46.  1999. Monoterpene composition of essential oil from peppermint (Mentha × piperita L.) with regard to leaf position using solid-phase microextraction and gas chromatography/mass spectrometry analysis. J. Agric. Food Chem. 47:3782–86 [Google Scholar]
  47. Menary RC, Garland SM. 47.  1999. Authenticating essential oil flavours and fragrances Rep. 99/125, Rural Ind. Res. Dev. Corp., Barton, Aust. [Google Scholar]
  48. Shapiro M, Frishman E, Brumer P. 48.  2000. Coherently controlled asymmetric synthesis with achiral light. Phys. Rev. Lett. 84:1669–72 [Google Scholar]
  49. Král P, Shapiro M. 49.  2001. Cyclic population transfer in quantum systems with broken symmetry. Phys. Rev. Lett. 87:183002 [Google Scholar]
  50. Eibenberger S, Doyle J, Patterson D. 50.  2017. Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett. 118:123002This work is proof of concept of state-selective population transfer in chiral molecules. [Google Scholar]
  51. Pérez C, Steber AL, Domingos SR, Krin A, Schmitz D, Schnell M. 51.  2017. Coherent enantiomer-selective population enrichment using tailored microwave fields. Angew. Chem. Int. Ed. 56:12512–17Population enrichment in a supersonic jet experiment is demonstrated. [Google Scholar]
  52. Malinovsky V, Krause J. 52.  2001. General theory of population transfer by adiabatic rapid passage with intense, chirped laser pulses. Eur. Phys. J. D 14:147–55 [Google Scholar]
  53. Filsinger F, Küpper J, Meijer G, Hansen JL, Maurer J. 53.  et al. 2009. Pure samples of individual conformers: the separation of stereoisomers of complex molecules using electric fields. Angew. Chem. Int. Ed. 48:6900–2 [Google Scholar]
  54. Chang YP, Horke DA, Trippel S, Küpper J. 54.  2015. Spatially-controlled complex molecules and their applications. Int. Rev. Phys. Chem. 34:557–90 [Google Scholar]
  55. Pate B, West C, Xu Y, Thomas J, Patterson D. 55.  et al. 2017. A chiral tagging strategy for determining absolute configuration and enantiomeric excess by molecular rotational spectroscopy Presented at Int. Symp. Mol. Spectrosc., 72nd, June 19–23 Urbana-Champaign, IL: [Google Scholar]
  56. Quack M, Stohner J, Willeke M. 56.  2008. High-resolution spectroscopic studies and theory of parity violation in chiral molecules. Annu. Rev. Phys. Chem. 59:741–69 [Google Scholar]
  57. Quack M. 57.  2002. How important is parity violation for molecular and biomolecular chirality?. Angew. Chem. Int. Ed. 41:4618–30 [Google Scholar]
  58. Darquié B, Stoeffler C, Shelkovnikov A, Daussy C, Amy-Klein A. 58.  et al. 2010. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22:870–84 [Google Scholar]
  59. Nafie LA. 59.  2013. Physical chemistry: handedness detected by microwaves. Nature 497:446–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error