1932

Abstract

The ease with which the pH is routinely determined for aqueous solutions masks the fact that the cationic product of Arrhenius acid dissolution, the hydrated proton, or H+(aq), is a remarkably complex species. Here, we review how results obtained over the past 30 years in the study of H+⋅(HO) cluster ions isolated in the gas phase shed light on the chemical nature of H+(aq). This effort has also revealed molecular-level aspects of the Grotthuss relay mechanism for positive-charge translocation in water. Recently developed methods involving cryogenic cooling in radiofrequency ion traps and the application of two-color, infrared–infrared (IR–IR) double-resonance spectroscopy have established a clear picture of how local hydrogen-bond topology drives the diverse spectral signatures of the excess proton. This information now enables a new generation of cluster studies designed to unravel the microscopic mechanics underlying the ultrafast relaxation dynamics displayed by H+(aq).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053456
2021-04-20
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-061020-053456.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053456&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Oxtoby DW, Gillis HP, Nachtrieb NH. 2002. Principles of Modern Chemistry Toronto: Thomson Brooks/Cole. , 5th ed..
    [Google Scholar]
  2. 2. 
    Eigen M, Maeyer LD. 1958. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. Lond. 247:505–33
    [Google Scholar]
  3. 3. 
    Wolke CT, Fournier JA, Dzugan LC, Fagiani MR, Odbadrakh TT et al. 2016. Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354:1131–35
    [Google Scholar]
  4. 4. 
    de Grotthuss CJT 1806. Mémoire sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique [Dissertation on the decomposition of water and the bodies that it holds in solution with the help of galvanic electricity. ]. Ann. Chim. 58:54–74
    [Google Scholar]
  5. 5. 
    Everts S. 2010. When science went international. Chem. Eng. News 88:60–62
    [Google Scholar]
  6. 6. 
    Garczarek F, Gerwert K. 2006. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–12
    [Google Scholar]
  7. 7. 
    Freier E, Wolf S, Gerwert K 2011. Proton transfer via a transient linear water-molecule chain in a membrane protein. PNAS 108:11435–39
    [Google Scholar]
  8. 8. 
    Moilanen DE, Piletic IR, Fayer MD. 2007. Water dynamics in Nafion fuel cell membranes: the effects of confinement and structural changes on the hydrogen bond network. J. Phys. Chem. C 111:8884–91
    [Google Scholar]
  9. 9. 
    Thomaz JE, Lawler CM, Fayer MD. 2017. Proton transfer in perfluorosulfonic acid fuel cell membranes with differing pendant chains and equivalent weights. J. Phys. Chem. B 121:4544–53
    [Google Scholar]
  10. 10. 
    Gruebele M, Polak M, Saykally RJ. 1987. A study of the structure and dynamics of the hydronium ion by high-resolution infrared laser spectroscopy. II. The ν4 perpendicular bending mode of H316O+. J. Chem. Phys. 87:3347–51
    [Google Scholar]
  11. 11. 
    Kim J, Schmitt UW, Gruetzmacher JA, Voth GA, Scherer NE. 2002. The vibrational spectrum of the hydrated proton: comparison of experiment, simulation, and normal mode analysis. J. Chem. Phys. 116:737–46
    [Google Scholar]
  12. 12. 
    Biswas R, Carpenter W, Fournier JA, Voth GA, Tokmakoff A. 2017. IR spectral assignments for the hydrated excess proton in liquid water. J. Chem. Phys. 146:154507
    [Google Scholar]
  13. 13. 
    Duong CH, Gorlova O, Yang N, Kelleher PJ, Johnson MA et al. 2017. Disentangling the complex vibrational spectrum of the protonated water trimer, H+(H2O)3, with two-color IR-IR photodissociation of the bare ion and anharmonic VSCF/VCI theory. J. Phys. Chem. Lett. 8:3782–89
    [Google Scholar]
  14. 14. 
    Duong CH, Yang N, Johnson MA, DiRisio RJ, McCoy AB et al. 2019. Disentangling the complex vibrational mechanics of the protonated water trimer by rational control of its hydrogen bonds. J. Phys. Chem. A 123:7965–72
    [Google Scholar]
  15. 15. 
    Day TJF, Schmitt UW, Voth GA. 2000. The mechanism of hydrated proton transport in water. J. Am. Chem. Soc. 122:12027–28
    [Google Scholar]
  16. 16. 
    Brewer ML, Schmitt UW, Voth GA. 2001. The formation and dynamics of proton wires in channel environments. Biophys. J. 80:1691–702
    [Google Scholar]
  17. 17. 
    Chen HN, Voth GA, Agmon N. 2010. Kinetics of proton migration in liquid water. J. Phys. Chem. B 114:333–39
    [Google Scholar]
  18. 18. 
    Xu JQ, Zhang Y, Voth GA. 2011. Infrared spectrum of the hydrated proton in water. J. Phys. Chem. Lett. 2:81–86
    [Google Scholar]
  19. 19. 
    Knight C, Voth GA. 2012. The curious case of the hydrated proton. Acc. Chem. Res. 45:101–9
    [Google Scholar]
  20. 20. 
    Schran C, Marsalek O, Markland TE. 2017. Unravelling the influence of quantum proton delocalization on electronic charge transfer through the hydrogen bond. Chem. Phys. Lett. 678:289–95
    [Google Scholar]
  21. 21. 
    Napoli JA, Marsalek O, Markland TE. 2018. Decoding the spectroscopic features and time scales of aqueous proton defects. J. Chem. Phys. 148:222833
    [Google Scholar]
  22. 22. 
    Marx D, Tuckerman ME, Parrinello M. 2000. Solvated excess protons in water: quantum effects on the hydration structure. J. Phys. Condens. Matter 12:A153–59
    [Google Scholar]
  23. 23. 
    Dahms F, Fingerhut BP, Nibbering ETJ, Pines E, Elsaesser T. 2017. Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy. Science 357:491–94
    [Google Scholar]
  24. 24. 
    Fournier JA, Carpenter WB, Lewis NHC, Tokmakoff A. 2018. Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10:932–37
    [Google Scholar]
  25. 25. 
    Wicke E, Eigen M, Ackermann T. 1954. Über den Zustand des Protons (Hydroniumions) in wäßriger Lösung [About the state of the proton (hydronium ion) in aqueous solution. ]. Z. Phys. Chem. 1:340–64
    [Google Scholar]
  26. 26. 
    Eigen M. 1964. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. 3:1–19
    [Google Scholar]
  27. 27. 
    Heine N, Fagiani MR, Rossi M, Wende T, Berden G et al. 2013. Isomer-selective detection of hydrogen-bond vibrations in the protonated water hexamer. J. Am. Chem. Soc. 135:8266–73
    [Google Scholar]
  28. 28. 
    Heine N, Fagiani MR, Asmis KR. 2015. Disentangling the contribution of multiple isomers to the infrared spectrum of the protonated water heptamer. J. Phys. Chem. Lett. 6:2298–304
    [Google Scholar]
  29. 29. 
    Fournier JA, Wolke CT, Johnson MA, Odbadrakh TT, Jordan KD et al. 2015. Snapshots of proton accommodation at a microscopic water surface: understanding the vibrational spectral signatures of the charge defect in cryogenically cooled H+(H2O)n = 2–28 clusters. J. Phys. Chem. A 119:9425–40
    [Google Scholar]
  30. 30. 
    Zundel G, Metzger H. 1968. Energy bands of excess tunneling protons in fluid acids. IR spectroscopy of H5O2+ groups. Z. Phys. Chem. Neue Fol. 58:225–45
    [Google Scholar]
  31. 31. 
    Zundel G. 1969. Hydration and Intermolecular Interaction New York: Academic Press
    [Google Scholar]
  32. 32. 
    Janoschek R, Weidemann EG, Pfeiffer H, Zundel G. 1972. Extremely high polarizability of hydrogen bonds. J. Am. Chem. Soc. 94:2387–96
    [Google Scholar]
  33. 33. 
    Yukhnevich GV, Tarakanova EG, Mayorov VD, Librovich NB. 1992. Nature of continuous absorption in IR spectra of charged complexes with a symmetric hydrogen bond. J. Mol. Struct. 265:237–67
    [Google Scholar]
  34. 34. 
    Vener MV, Librovich NB. 2009. The structure and vibrational spectra of proton hydrates: H5O2+ as a simplest stable ion. Int. Rev. Phys. Chem. 28:407–34
    [Google Scholar]
  35. 35. 
    Zundel G 1999. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Advances in Chemical Physics, Vol. 111 I Prigogine, SA Rice 1–217 New York: Wiley
    [Google Scholar]
  36. 36. 
    Vendrell O, Gatti F, Meyer HD. 2007. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. J. Chem. Phys. 127:184303
    [Google Scholar]
  37. 37. 
    Vendrell O, Gatti F, Meyer HD. 2007. Dynamics and infrared spectroscopy of the protonated water dimer. Angew. Chem. Int. Ed. 46:6918–21
    [Google Scholar]
  38. 38. 
    Huang X, Braams BJ, Bowman JM. 2005. Ab initio potential energy and dipole moment surfaces for H5O2+. J. Chem. Phys. 122:044308
    [Google Scholar]
  39. 39. 
    Weideman EG, Zundel G. 1970. Field-dependent mechanism of anomalous proton conductivity and polarizability of hydrogen bonds with tunneling protons. Z. Naturforsch. A 25:627–34
    [Google Scholar]
  40. 40. 
    Zundel G 1976. Easily polarizable hydrogen bonds—their interactions with the environment-IR continuum and anomalous large proton conductivity. The Hydrogen Bond: Recent Developments in Theory and Experimental. Volume II. Structure and Spectroscopy P Schuster, G Zundel, C Sandorfy 683–766 Amsterdam: North-Holland
    [Google Scholar]
  41. 41. 
    Hermansson K. 1993. Electric-field effects on the OH vibrational frequency and infrared-absorption intensity for water. J. Chem. Phys. 99:861–68
    [Google Scholar]
  42. 42. 
    Badger RM. 1934. A relation between internuclear distances and bond force constants. J. Chem. Phys. 2:128–31
    [Google Scholar]
  43. 43. 
    Ceriotti M, Cuny J, Parrinello M, Manolopoulos DE 2013. Nuclear quantum effects and hydrogen bond fluctuations in water. PNAS 110:15591–96
    [Google Scholar]
  44. 44. 
    Thamer M, De Marco L, Ramasesha K, Mandal A, Tokmakoff A. 2015. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350:78–82
    [Google Scholar]
  45. 45. 
    Yeh LI, Okumura M, Myers JD, Price JM, Lee YT. 1989. Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n = 1, 2, 3). J. Chem. Phys. 91:7319–30
    [Google Scholar]
  46. 46. 
    Wolk AB, Leavitt CM, Garand E, Johnson MA. 2014. Cryogenic ion chemistry and spectroscopy. Acc. Chem. Res. 47:202–10
    [Google Scholar]
  47. 47. 
    McCunn LR, Roscioli JR, Johnson MA, McCoy AB. 2008. An H/D isotopic substitution study of the H5O2+·Ar vibrational predissociation spectra: exploring the putative role of Fermi resonances in the bridging proton fundamentals. J. Phys. Chem. B 112:321–27
    [Google Scholar]
  48. 48. 
    McCoy AB. 2014. The role of electrical anharmonicity in the association band in the water spectrum. J. Phys. Chem. B 118:8286–94
    [Google Scholar]
  49. 49. 
    Miyazaki M, Fujii A, Ebata T, Mikami N. 2004. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304:1134–37
    [Google Scholar]
  50. 50. 
    Shin J-W, Hammer NI, Diken EG, Johnson MA, Walters RS et al. 2004. Infrared signature of structures associated with the H+·(H2O)n (n = 6 to 27) clusters. Science 304:1137–40
    [Google Scholar]
  51. 51. 
    Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA et al. 2005. Spectral signatures of hydrated proton vibrations in water clusters. Science 308:1765–69
    [Google Scholar]
  52. 52. 
    Yang N, Duong CH, Kelleher PJ, Johnson MA. 2020. Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks. Nat. Chem. 12:159–64
    [Google Scholar]
  53. 53. 
    Schwarz HA. 1977. Gas phase infrared spectra of oxonium hydrate ions from 2 to 5 μ. J. Chem. Phys. 67:5525–34
    [Google Scholar]
  54. 54. 
    Begemann MH, Saykally RJ. 1985. A study of the structure and dynamics of the hydronium ion by high-resolution infrared laser spectroscopy. I. The ν3 band of H316O+. J. Chem. Phys. 82:3570–79
    [Google Scholar]
  55. 55. 
    Okumura M, Yeh LI, Myers JD, Lee YT. 1986. Infrared spectra of the cluster ions H7O3+·H2 and H9O4+·H2. J. Chem. Phys. 85:2328–29
    [Google Scholar]
  56. 56. 
    Jiang J-C, Wang Y-S, Chang H-C, Lin SH, Lee YT et al. 2000. Infrared spectra of H+·(H2O)5–8 clusters: evidence for symmetric proton hydration. J. Am. Chem. Soc. 122:1398–410
    [Google Scholar]
  57. 57. 
    Duong CH, Yang N, Kelleher PJ, Johnson MA, DiRisio RJ et al. 2018. Tag-free and isotopomer-selective vibrational spectroscopy of the cryogenically cooled H9O4+ cation with two-color, IR-IR double-resonance photoexcitation: isolating the spectral signature of a single OH group in the hydronium ion core. J. Phys. Chem. A 122:9275–84
    [Google Scholar]
  58. 58. 
    Yang N, Duong CH, Kelleher PJ, Johnson MA, McCoy AB. 2017. Isolation of site-specific anharmonicities of individual water molecules in the I⋅(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance. Chem. Phys. Lett. 690:159–71
    [Google Scholar]
  59. 59. 
    Yacovitch TI, Heine N, Brieger C, Wende T, Hock C et al. 2013. Vibrational spectroscopy of bisulfate/sulfuric acid/water clusters: structure, stability, and infrared multiple-photon dissociation intensities. J. Phys. Chem. A 117:7081–90
    [Google Scholar]
  60. 60. 
    McCoy AB, Guasco TL, Leavitt CM, Olesen SG, Johnson MA. 2012. Vibrational manifestations of strong non-Condon effects in the H3O+·X3 (X = Ar, N2, CH4, H2O) complexes: a possible explanation for the intensity in the “association band” in the vibrational spectrum of water. Phys. Chem. Chem. Phys. 14:7205–14
    [Google Scholar]
  61. 61. 
    Fournier JA, Johnson CJ, Wolke CT, Weddle GH, Wolk AB, Johnson MA. 2014. Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. Science 344:1009–12
    [Google Scholar]
  62. 62. 
    Roscioli JR, McCunn LR, Johnson MA. 2007. Quantum structure of the intermolecular proton bond. Science 316:249–54
    [Google Scholar]
  63. 63. 
    Tainter CJ, Skinner JL. 2012. The water hexamer: three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature. J. Chem. Phys. 137:104304
    [Google Scholar]
  64. 64. 
    Auer B, Kumar R, Schmidt JR, Skinner JL 2007. Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. PNAS 104:14215–20
    [Google Scholar]
  65. 65. 
    Tainter CJ, Ni Y, Shi L, Skinner JL. 2013. Hydrogen bonding and OH-stretch spectroscopy in water: hexamer (cage), liquid surface, liquid, and ice. J. Phys. Chem. Lett. 4:12–17
    [Google Scholar]
  66. 66. 
    Tainter CJ, Pieniazek PA, Lin YS, Skinner JL. 2011. Robust three-body water simulation model. J. Chem. Phys. 134:184501
    [Google Scholar]
  67. 67. 
    NIST (Natl. Inst. Stand. Technol.) Hunter EP, Lias SG. 2005. Proton affinity evaluation NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 20899 Gaithersburg, MD: updated 2018, retrieved Jan. 3, 2021. https://webbook.nist.gov/chemistry
    [Google Scholar]
  68. 68. 
    Stoyanov ES. 2000. A distinctive feature in the IR spectra of proton disolvates [L2H+] and polysolvates [(L2H+nL]: unusual strong broadening of some absorption bands of ligands L bound with H+. Phys. Chem. Chem. Phys. 2:1137–45
    [Google Scholar]
  69. 69. 
    Stoyanov ES, Reed CA. 2006. IR spectrum of the H5O2+ cation in the context of proton disolvates L–H+–L. J. Phys. Chem. A 110:12992–3002
    [Google Scholar]
  70. 70. 
    Kawaguchi K, Hirota E. 1987. Diode laser spectroscopy of the ν3 and ν2 bands of FHF in 1300 cm−1 region. J. Chem. Phys. 87:6838–41
    [Google Scholar]
  71. 71. 
    Pimentel GC. 1951. The bonding of trihalide and bifluoride ions by the molecular orbital method. J. Chem. Phys. 19:446–48
    [Google Scholar]
  72. 72. 
    Asmis KR, Yang YG, Santambrogio G, Brummer M, Roscioli JR et al. 2007. Gas-phase infrared spectroscopy and multidimensional quantum calculations of the protonated ammonia dimer N2H7+. Angew. Chem. Int. Ed. 46:8691–94
    [Google Scholar]
  73. 73. 
    Yang Y, Kuhn O, Santambrogio G, Goebbert DJ, Asmis KR. 2008. Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4+·(NH3)(1–4). J. Chem. Phys. 129:224302
    [Google Scholar]
  74. 74. 
    Hammer NI, Diken EG, Roscioli JR, Johnson MA, Myshakin EM et al. 2005. The vibrational predissociation spectra of the H5O2+·RGn (RG = Ar, Ne) clusters: correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. J. Chem. Phys. 122:244301
    [Google Scholar]
  75. 75. 
    McCoy AB, Huang X, Carter S, Landeweer MY, Bowman JM. 2005. Full-dimensional vibrational calculations for H5O2+ using an ab initio potential energy surface. J. Chem. Phys. 122:061101
    [Google Scholar]
  76. 76. 
    Kaledin M, Kaledin AL, Bowman JM. 2006. Vibrational analysis of the H5O2+ infrared spectrum using molecular and driven molecular dynamics. J. Phys. Chem. A 110:2933–39
    [Google Scholar]
  77. 77. 
    Gorlova O, DePalma JW, Wolke CT, Brathwaite A, Odbadrakh TT et al. 2016. Characterization of the primary hydration shell of the hydroxide ion with H2 tagging vibrational spectroscopy of the OH·(H2O)n = 2,3 and OD·(D2O)n = 2,3 clusters. J. Chem. Phys. 145:134304
    [Google Scholar]
  78. 78. 
    Roscioli JR, Diken EG, Johnson MA, Horvath S, McCoy AB. 2006. Prying apart a water molecule with anionic H-bonding: a comparative spectroscopic study of the X·H2O (X = OH, O, F, Cl, and Br) binary complexes in the 600–3800 cm−1 region. J. Phys. Chem. A 110:4943–52
    [Google Scholar]
  79. 79. 
    Horvath S, McCoy AB, Elliott BM, Weddle GH, Roscioli JR, Johnson MA 2010. Anharmonicities and isotopic effects in the vibrational spectra of X·H2O, ·HDO, and ·D2O [X = Cl, Br, and I] binary complexes. J. Phys. Chem. A 114:1556–68
    [Google Scholar]
  80. 80. 
    Yeh LI, Lee YT, Hougen JT. 1994. Vibration-rotation spectroscopy of the hydrated hydronium ions H5O2+ and H9O4+. J. Mol. Spectrosc. 164:473–88
    [Google Scholar]
  81. 81. 
    NIST (Natl. Inst. Stand. Technol.) 2000. Intramolecular bending fundamental in isolated H2O (1595 cm−1). NIST Chemistry WebBook. NIST Standard Reference Database Number 69:20899 Gaithersburg, MD: updated 2018, retrieved Jan. 3, 2021. https://webbook.nist.gov/chemistry
    [Google Scholar]
  82. 82. 
    Guasco TL, Johnson MA, McCoy AB. 2011. Unraveling anharmonic effects in the vibrational predissociation spectra of H5O2+ and its deuterated analogues. J. Phys. Chem. A 115:5847–58
    [Google Scholar]
  83. 83. 
    Samson CCM, Klopper W. 2002. Ab initio calculation of proton barrier and binding energy of the (H2O)OH complex. J. Mol. Struc. THEOCHEM 586:201–8
    [Google Scholar]
  84. 84. 
    Denton JK, Kelleher PJ, Johnson MA, Baer MD, Kathmann SM et al. 2019. Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air-water interface. PNAS 116:14874–80
    [Google Scholar]
  85. 85. 
    Marsh BM, Zhou J, Garand E. 2014. Vibrational spectroscopy of small hydrated CuOH+ clusters. J. Phys. Chem. A 118:2063–71
    [Google Scholar]
  86. 86. 
    Johnson CJ, Dzugan LC, Wolk AB, Leavitt CM, Fournier JA et al. 2014. Microhydration of contact ion pairs in M2+OH(H2O)n = 1–5 (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J. Phys. Chem. A 118:7590–97
    [Google Scholar]
  87. 87. 
    Olesen SG, Guasco TL, Roscioli JR, Johnson MA. 2011. Tuning the intermolecular proton bond in the H5O2+ ‘Zundel ion’ scaffold. Chem. Phys. Lett. 509:89–95
    [Google Scholar]
  88. 88. 
    Boyer MA, Marsalek O, Heindel JP, Markland TE, McCoy AB, Xantheas SS. 2019. Beyond Badger's rule: the origins and generality of the structure-spectra relationship of aqueous hydrogen bonds. J. Phys. Chem. Lett. 10:918–24
    [Google Scholar]
  89. 89. 
    Craig SM, Menges FS, Duong CH, Denton JK, Madison LR et al. 2017. Hidden role of intermolecular proton transfer in the anomalously diffuse vibrational spectrum of a trapped hydronium ion. PNAS 114:E4706–13
    [Google Scholar]
  90. 90. 
    Tuckerman M, Laasonen K, Sprik M, Parrinello M. 1995. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103:150–61
    [Google Scholar]
  91. 91. 
    Tuckerman M, Laasonen K, Sprik M, Parrinello M. 1995. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH ions in water. J. Phys. Chem. 99:5749–52
    [Google Scholar]
  92. 92. 
    Markovitch O, Chen H, Izenkov S, Paesani F, Voth GA, Agmon N. 2008. Special pair dance and partner selection: elementary steps in proton transport in liquid water. J. Phys. Chem. B 112:9456–66
    [Google Scholar]
  93. 93. 
    Gorlova O. 2017. Quantifying Anharmonicity in Ionic Hydrogen Bonding: Applications to Hydrated Protons, Ionic Liquids, and Metabolomics PhD Thesis, Yale Univ. New Haven, CT:
    [Google Scholar]
  94. 94. 
    Searcy JQ, Fenn JB. 1974. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61:5282–88
    [Google Scholar]
  95. 95. 
    Shi Z, Ford JV, Wei S, Castleman AW Jr. 1993. Water clusters: contributions of binding energy and entropy to stability. J. Chem. Phys. 99:8009–15
    [Google Scholar]
  96. 96. 
    Wei S, Shi Z, Castleman AW Jr. 1991. Mixed cluster ions as a structure probe: experimental evidence for clathrate structure of (H2O)20H+ and (H2O)21H+. J. Chem. Phys. 94:3268–70
    [Google Scholar]
  97. 97. 
    Ryding MJ, Izsak R, Merlot P, Reine S, Helgaker T, Uggerud E 2015. Geometry of the magic number H+(H2O)21 water cluster by proxy. Phys. Chem. Chem. Phys. 17:5466–73
    [Google Scholar]
  98. 98. 
    Yang N, Edington SC, Choi TH, Henderson EV, Heindel JP et al. 2020. Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. PNAS 117:26047–52
    [Google Scholar]
  99. 99. 
    Mizuse K, Fujii A. 2011. Structural origin of the antimagic number in protonated water clusters H+(H2O)n: spectroscopic observation of the “missing” water molecule in the outermost hydration shell. J. Phys. Chem. Lett. 2:2130–34
    [Google Scholar]
  100. 100. 
    Mizuse K, Fujii A. 2013. Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment. Chem. Phys. 419:2–7
    [Google Scholar]
  101. 101. 
    Wang Y-S, Tsai C-H, Lee YT, Chang H-C, Jiang JC et al. 2003. Investigations of protonated and deprotonated water clusters using a low-temperature 22-pole ion trap. J. Phys. Chem. A 107:4217–25
    [Google Scholar]
  102. 102. 
    Gerlich D, Kaefer G. 1989. Ion trap studies of association processes in collisions of CH3+ and CD3+ with n-H2, p-H2, D2, and He at 80 K. Astrophys. J. 347:849–54
    [Google Scholar]
  103. 103. 
    Paul W, Lucke B, Schlemmer S, Gerlich D. 1995. On the dynamics of the reaction of positive hydrogen cluster ions (H5+ to H23+) with para and normal hydrogen at 10 K. Int. J. Mass Spectrom.149–150373–87
    [Google Scholar]
  104. 104. 
    Asmis KR, Brummer M, Kaposta C, Santambrogio G, von Helden G et al. 2002. Mass-selected infrared photodissociation spectroscopy of V4O10+. Phys. Chem. Chem. Phys. 4:1101–4
    [Google Scholar]
  105. 105. 
    Dzhonson A, Gerlich D, Bieske EJ, Maier JP. 2006. Apparatus for the study of electronic spectra of collisionally cooled cations: para-dichlorobenzene. J. Mol. Struct. 795:93–97
    [Google Scholar]
  106. 106. 
    Gunther A, Nieto P, Muller D, Sheldrick A, Gerlich D, Dopfer O. 2017. BerlinTrap: a new cryogenic 22-pole ion trap spectrometer. J. Mol. Spectrosc. 332:8–15
    [Google Scholar]
  107. 107. 
    Stearns JA, Seaiby C, Boyarkin OV, Rizzo TR. 2009. Spectroscopy and conformational preferences of gas-phase helices. Phys. Chem. Chem. Phys. 11:125–32
    [Google Scholar]
  108. 108. 
    Fournier JA, Wolke CT, Johnson CJ, Johnson MA, Heine N et al. 2014. Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters. PNAS 111:18132–37
    [Google Scholar]
  109. 109. 
    Esser TK, Knorke H, Asmis KR, Schollkopf W, Yu Q et al. 2018. Deconstructing prominent bands in the terahertz spectra of H7O3+ and H9O4+: intermolecular modes in Eigen clusters. J. Phys. Chem. Lett. 9:798–803
    [Google Scholar]
  110. 110. 
    Torrent-Sucarrat M, Anglada JM. 2011. Anharmonicity and the Eigen-Zundel dilemma in the IR spectrum of the protonated 21 water cluster. J. Chem. Theory Comput. 7:467–72
    [Google Scholar]
  111. 111. 
    Henkelman G, Arnaldsson A, Jonsson H. 2006. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36:354–60
    [Google Scholar]
  112. 112. 
    Park S, Kwak K, Fayer MD. 2007. Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics. Laser Phys. Lett. 4:704–18
    [Google Scholar]
  113. 113. 
    Girod M, Moyano E, Campbell DI, Cooks RG. 2011. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2:501–10
    [Google Scholar]
  114. 114. 
    Lee JK, Banerjee S, Nam HG, Zare RN. 2015. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48:437–44
    [Google Scholar]
  115. 115. 
    Yan X, Bain RM, Cooks RG. 2016. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55:12960–72
    [Google Scholar]
  116. 116. 
    Yan X, Cheng HY, Zare RN. 2017. Two-phase reactions in microdroplets without the use of phase-transfer catalysts. Angew. Chem. Int. Ed. 56:3562–65
    [Google Scholar]
  117. 117. 
    Bain RM, Sathyamoorthi S, Zare RN. 2017. “On-droplet” chemistry: the cycloaddition of diethyl azodicarboxylate and quadricyclane. Angew. Chem. Int. Ed. 56:15083–87
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053456
Loading
/content/journals/10.1146/annurev-physchem-061020-053456
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error