1932

Abstract

Low-resolution coarse-grained (CG) models provide remarkable computational and conceptual advantages for simulating soft materials. In principle, bottom-up CG models can reproduce all structural and thermodynamic properties of atomically detailed models that can be observed at the resolution of the CG model. This review discusses recent progress in developing theory and computational methods for achieving this promise. We first briefly review variational approaches for parameterizing interaction potentials and their relationship to machine learning methods. We then discuss recent approaches for simultaneously improving both the transferability and thermodynamic properties of bottom-up models by rigorously addressing the density and temperature dependence of these potentials. We also briefly discuss exciting progress in modeling high-resolution observables with low-resolution CG models. More generally, we highlight the essential role of the bottom-up framework not only for fundamentally understanding the limitations of prior CG models but also for developing robust computational methods that resolve these limitations in practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062123-010821
2024-06-28
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-062123-010821.html?itemId=/content/journals/10.1146/annurev-physchem-062123-010821&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Guenza M, Dinpajooh M, McCarty J, Lyubimov I. 2018.. Accuracy, transferability, and efficiency of coarse-grained models of molecular liquids. . J. Phys. Chem. B 122:(45):1025778
    [Crossref] [Google Scholar]
  2. 2.
    Gartner TE, Jayaraman A. 2019.. Modeling and simulations of polymers: a roadmap. . Macromolecules 52:(3):75586
    [Crossref] [Google Scholar]
  3. 3.
    Muller M, Katsov K, Schick M. 2006.. Biological and synthetic membranes: What can be learned from a coarse-grained description?. Phys. Rep. 434:(5–6):11376
    [Crossref] [Google Scholar]
  4. 4.
    Deserno M. 2009.. Mesoscopic membrane physics: concepts, simulations, and selected applications. . Macromol. Rapid Comm. 30:(9–10):75271
    [Crossref] [Google Scholar]
  5. 5.
    Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. 2022.. Two decades of Martini: better beads, broader scope. . WIREs Comput. Mol. Sci. 13::e1620
    [Crossref] [Google Scholar]
  6. 6.
    Noid WG. 2013.. Perspective: coarse-grained models for biomolecular systems. . J. Chem. Phys. 139:(9):090901
    [Crossref] [Google Scholar]
  7. 7.
    Rudzinski JF. 2019.. Recent progress towards chemically-specific coarse-grained simulation models with consistent dynamical properties. . Computer 7:(3):42
    [Google Scholar]
  8. 8.
    Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, et al. 2021.. From system modeling to system analysis: the impact of resolution level and resolution distribution in the computer-aided investigation of biomolecules. . Front. Mol. Biosci. 8::676976
    [Crossref] [Google Scholar]
  9. 9.
    Dhamankar S, Webb MA. 2021.. Chemically specific coarse-graining of polymers: methods and prospects. . J. Polymer Sci. 59:(22):261343
    [Crossref] [Google Scholar]
  10. 10.
    Kidder KM, Szukalo RJ, Noid WG. 2021.. Energetic and entropic considerations for coarse-graining. . Eur. Phys. J. B 94::153
    [Crossref] [Google Scholar]
  11. 11.
    Sun T, Minhas V, Korolev N, Mirzoev A, Lyubartsev AP, Nordenskiöld L. 2021.. Bottom-up coarse-grained modeling of DNA. . Front. Mol. Biosci. 8::645527
    [Crossref] [Google Scholar]
  12. 12.
    Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. 2022.. Bottom-up coarse-graining: principles and perspectives. . J. Chem. Theory Comput. 18:(10):575991
    [Crossref] [Google Scholar]
  13. 13.
    Schilling T. 2022.. Coarse-grained modelling out of equilibrium. . Phys. Rep. 972::145
    [Crossref] [Google Scholar]
  14. 14.
    Durumeric AE, Charron NE, Templeton C, Musil F, Bonneau K, et al. 2023.. Machine learned coarse-grained protein force-fields: Are we there yet?. Curr. Opin. Struct. Biol. 79::102533
    [Crossref] [Google Scholar]
  15. 15.
    Schmid F. 2023.. Understanding and modeling polymers: the challenge of multiple scales. . ACS Polymers Au 3:(1):2858
    [Crossref] [Google Scholar]
  16. 16.
    Tuckerman ME. 2013.. Statistical Mechanics: Theory and Molecular Simulation. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  17. 17.
    Kullback S, Leibler RA. 1951.. On information and sufficiency. . Ann. Math. Stat. 22:(1):7986
    [Crossref] [Google Scholar]
  18. 18.
    Hansen JP, McDonald IR. 1990.. Theory of Simple Liquids. San Diego, CA:: Academic. , 2nd ed..
    [Google Scholar]
  19. 19.
    Shell MS. 2008.. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. . J. Chem. Phys. 129::144108
    [Crossref] [Google Scholar]
  20. 20.
    Cover TM, Thomas JA. 2006.. Elements of Information Theory. New York:: Wiley. , 2nd ed..
    [Google Scholar]
  21. 21.
    Touchette H. 2009.. The large deviation approach to statistical mechanics. . Phys. Rep. 478:(1–3):169
    [Crossref] [Google Scholar]
  22. 22.
    Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, et al. 2008.. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. . J. Chem. Phys. 128::244114
    [Crossref] [Google Scholar]
  23. 23.
    Noid WG. 2023.. Perspective: advances, challenges, and insight for predictive coarse-grained models. . J. Phys. Chem. B 127::4174207
    [Crossref] [Google Scholar]
  24. 24.
    Kirkwood JG. 1935.. Statistical mechanics of fluid mixtures. . J. Chem. Phys. 3:(5):30013
    [Crossref] [Google Scholar]
  25. 25.
    Liwo A, Czaplewski C, Pillardy J, Scheraga HA. 2001.. Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. . J. Chem. Phys. 115::232347
    [Crossref] [Google Scholar]
  26. 26.
    Akkermans RLC, Briels WJ. 2001.. A structure-based coarse-grained model for polymer melts. . J. Chem. Phys. 114:(2):102031
    [Crossref] [Google Scholar]
  27. 27.
    Likos CN. 2001.. Effective interactions in soft condensed matter physics. . Phys. Rep. 348:(4–5):267439
    [Crossref] [Google Scholar]
  28. 28.
    Foley TT, Shell MS, Noid WG. 2015.. The impact of resolution upon entropy and information in coarse-grained models. . J. Chem. Phys. 143::243104
    [Crossref] [Google Scholar]
  29. 29.
    Dunn NJH, Foley TT, Noid WG. 2016.. Van der Waals perspective on coarse-graining: progress toward solving representability and transferability problems. . Acc. Chem. Res. 49:(12):283240
    [Crossref] [Google Scholar]
  30. 30.
    Kalligiannaki E, Harmandaris V, Katsoulakis MA, Plechac P. 2015.. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems. . J. Chem. Phys. 143:(8):084105
    [Crossref] [Google Scholar]
  31. 31.
    Ciccotti G, Kapral R, Vanden-Eijnden E. 2005.. Blue moon sampling, vectorial reaction coordinates, and unbiased constained dynamics. . ChemPhysChem 6::180914
    [Crossref] [Google Scholar]
  32. 32.
    Chaimovich A, Shell MS. 2011.. Coarse-graining errors and numerical optimization using a relative entropy framework. . J. Chem. Phys. 134:(9):094112
    [Crossref] [Google Scholar]
  33. 33.
    Shell MS. 2016.. Coarse-graining with the relative entropy. . Adv. Chem. Phys. 161395441
    [Google Scholar]
  34. 34.
    Lyubartsev AP, Laaksonen A. 1995.. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. . Phys. Rev. E 52::373037
    [Crossref] [Google Scholar]
  35. 35.
    Noid WG. 2013.. Systematic methods for structurally consistent coarse-grained models. . Methods Mol. Biol. 924::487531
    [Crossref] [Google Scholar]
  36. 36.
    Müller-Plathe F. 2002.. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. . ChemPhysChem 3::75469
    [Crossref] [Google Scholar]
  37. 37.
    Murtola T, Karttunen M, Vattulainen I. 2009.. Systematic coarse graining from structure using internal states: application to phospholipid/cholesterol bilayer. . J. Chem. Phys. 131::055101
    [Crossref] [Google Scholar]
  38. 38.
    Carmichael SP, Shell MS. 2012.. A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly. . J. Phys. Chem. B 116:(29):838393
    [Crossref] [Google Scholar]
  39. 39.
    Izvekov S, Voth GA. 2005.. A multiscale coarse-graining method for biomolecular systems. . J. Phys. Chem. B 109::246973
    [Crossref] [Google Scholar]
  40. 40.
    Izvekov S, Voth GA. 2005.. Multiscale coarse graining of liquid-state systems. . J. Chem. Phys. 123::134105
    [Crossref] [Google Scholar]
  41. 41.
    Lu L, Voth GA. 2012.. The multiscale coarse-graining method. . Adv. Chem. Phys. 149::4781
    [Google Scholar]
  42. 42.
    Chorin AJ. 2003.. Conditional expectations and renormalization. . Multiscale Model. Simul. 1::10518
    [Crossref] [Google Scholar]
  43. 43.
    Mullinax JW, Noid WG. 2009.. A generalized Yvon-Born-Green theory for molecular systems. . Phys. Rev. Lett. 103::198104
    [Crossref] [Google Scholar]
  44. 44.
    Mullinax JW, Noid WG. 2010.. A generalized Yvon-Born-Green theory for determining coarse-grained interaction potentials. . J. Phys. Chem. C 114::566174
    [Crossref] [Google Scholar]
  45. 45.
    Rudzinski JF, Noid WG. 2015.. A generalized-Yvon-Born-Green method for coarse-grained modeling. . Eur. Phys. J. Spec. Top. 224::2193216
    [Crossref] [Google Scholar]
  46. 46.
    Noid WG, Liu P, Wang YT, Chu JW, Ayton GS, et al. 2008.. The multiscale coarse-graining method. II. Numerical implementation for molecular coarse-grained models. . J. Chem. Phys. 128::244115
    [Crossref] [Google Scholar]
  47. 47.
    Noid WG, Chu JW, Ayton GS, Voth GA. 2007.. Multiscale coarse-graining and structural correlations: connections to liquid state theory. . J. Phys. Chem. B 111::411627
    [Crossref] [Google Scholar]
  48. 48.
    Rudzinski JF, Noid WG. 2012.. The role of many-body correlations in determining potentials for coarse-grained models of equilibrium structure. . J. Phys. Chem. B 116:(29):862135
    [Crossref] [Google Scholar]
  49. 49.
    Rühle V, Junghans C, Lukyanov A, Kremer K, Andrienko D. 2009.. Versatile object-oriented toolkit for coarse-graining applications. . J. Chem. Theory Comput. 5:(12):321123
    [Crossref] [Google Scholar]
  50. 50.
    Das A, Lu L, Andersen HC, Voth GA. 2012.. The multiscale coarse-graining method. X. Improved algorithms for constructing coarse-grained potentials for molecular systems. . J. Chem. Phys. 136:(19):194115
    [Crossref] [Google Scholar]
  51. 51.
    Pak AJ, Dannenhoffer-Lafage T, Madsen JJ, Voth GA. 2019.. Systematic coarse-grained lipid force fields with semiexplicit solvation via virtual sites. . J. Chem. Theory Comput. 15:(3):2087100
    [Crossref] [Google Scholar]
  52. 52.
    Jin J, Han Y, Voth GA. 2019.. Coarse-graining involving virtual sites: centers of symmetry coarse-graining. . J. Chem. Phys. 150:(15):154103
    [Crossref] [Google Scholar]
  53. 53.
    Sahrmann PG, Loose TD, Durumeric AEP, Voth GA. 2023.. Utilizing machine learning to greatly expand the range and accuracy of bottom-up coarse-grained models through virtual particles. . J. Chem. Theory Comput. 19:(14):440213
    [Crossref] [Google Scholar]
  54. 54.
    Dama JF, Sinitskiy AV, McCullagh M, Weare J, Roux B, et al. 2013.. The theory of ultra-coarse-graining. 1. General principles. . J. Chem. Theory Comput. 9::246680
    [Crossref] [Google Scholar]
  55. 55.
    Dama JF, Jin J, Voth GA. 2017.. The theory of ultra-coarse-graining. 3. Coarse-grained sites with rapid local equilibrium of internal states. . J. Chem. Theory Comput. 13:(3):101022
    [Crossref] [Google Scholar]
  56. 56.
    Jin J, Han Y, Voth GA. 2018.. Ultra-coarse-grained liquid state models with implicit hydrogen bonding. . J. Chem. Theory Comput. 14:(12):615974
    [Crossref] [Google Scholar]
  57. 57.
    Nguyen H, Huang D. 2022.. Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles. . J. Chem. Phys. 156::184118
    [Crossref] [Google Scholar]
  58. 58.
    Dequidt A, Solano Canchaya JG. 2015.. Bayesian parametrization of coarse-grain dissipative dynamics models. . J. Chem. Phys. 143:(8):084122
    [Crossref] [Google Scholar]
  59. 59.
    Nkepsu Mbitou RL, Goujon F, Dequidt A, Latour B, Devémy J, et al. 2022.. Consistent and transferable force fields for statistical copolymer systems at the mesoscale. . J. Chem. Theory Comput. 18:(11):694051
    [Crossref] [Google Scholar]
  60. 60.
    Lemke T, Peter C. 2017.. Neural network based prediction of conformational free energies—a new route toward coarse-grained simulation models. . J. Chem. Theory Comput. 13:(12):621321
    [Crossref] [Google Scholar]
  61. 61.
    Zhang L, Han J, Wang H, Car R, E W. 2018.. DeePCG: constructing coarse-grained models via deep neural networks. . J. Chem. Phys. 149::034101
    [Crossref] [Google Scholar]
  62. 62.
    Wang W, Gómez-Bombarelli R. 2019.. Coarse-graining auto-encoders for molecular dynamics. . NPJ Comput. Mat. 5:(1):125
    [Crossref] [Google Scholar]
  63. 63.
    Wang J, Olsson S, Wehmeyer C, Pérez A, Charron NE, et al. 2019.. Machine learning of coarse-grained molecular dynamics force fields. . ACS Cent. Sci. 5:(5):75567
    [Crossref] [Google Scholar]
  64. 64.
    Chennakesavalu S, Toomer DJ, Rotskoff GM. 2023.. Ensuring thermodynamic consistency with invertible coarse-graining. . J. Chem. Phys. 158:(12):124126
    [Crossref] [Google Scholar]
  65. 65.
    John ST, Csányi G. 2017.. Many-body coarse-grained interactions using Gaussian approximation potentials. . J. Phys. Chem. B 121:(48):1093449
    [Crossref] [Google Scholar]
  66. 66.
    Scherer C, Scheid R, Andrienko D, Bereau T. 2020.. Kernel-based machine learning for efficient simulations of molecular liquids. . J. Chem. Theory Comput. 16:(5):3194204
    [Crossref] [Google Scholar]
  67. 67.
    Wang J, Chmiela S, Müller KR, Noé F, Clementi C. 2020.. Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach. . J. Chem. Phys. 152:(19):194106
    [Crossref] [Google Scholar]
  68. 68.
    Durumeric AEP, Voth GA. 2019.. Adversarial-residual-coarse-graining: applying machine learning theory to systematic molecular coarse-graining. . J. Chem. Phys. 151:(12):124110
    [Crossref] [Google Scholar]
  69. 69.
    Song Y, Kingma DP. 2021.. How to train your energy-based models. . arXiv:2101.03288 [cs.LG]
  70. 70.
    Rudzinski JF, Noid WG. 2011.. Coarse-graining entropy, forces, and structures. . J. Chem. Phys. 135:(21):214101
    [Crossref] [Google Scholar]
  71. 71.
    Hyvarinen A. 2005.. Estimation of non-normalized statistical models by score matching. . J. Mach. Learn. Res. 6::695709
    [Google Scholar]
  72. 72.
    Stein C. 1972.. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. . In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, pp. 583602. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  73. 73.
    Liu Q, Lee J, Jordan M. 2016.. A kernelized Stein discrepancy for goodness-of-fit tests. . PMLR 48::27684
    [Google Scholar]
  74. 74.
    Thaler S, Stupp M, Zavadlav J. 2022.. Deep coarse-grained potentials via relative entropy minimization. . J. Chem. Phys. 157:(24):244103
    [Crossref] [Google Scholar]
  75. 75.
    Köhler J, Chen Y, Krämer A, Clementi C, Noé F. 2023.. Flow-matching: efficient coarse-graining of molecular dynamics without forces. . J. Chem. Theory Comput. 19:(3):94252
    [Crossref] [Google Scholar]
  76. 76.
    Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. 2021.. Normalizing flows for probabilistic modeling and inference. . J. Mach. Learn. Res. 22::261780
    [Google Scholar]
  77. 77.
    Kobyzev I, Prince SJ, Brubaker MA. 2021.. Normalizing flows: an introduction and review of current methods. . IEEE Trans. Pattern Anal. Mach. Intell. 43:(11):396479
    [Crossref] [Google Scholar]
  78. 78.
    Ding X, Zhang B. 2022.. Contrastive learning of coarse-grained force fields. . J. Chem. Theory Comput. 18:(10):633444
    [Crossref] [Google Scholar]
  79. 79.
    Durumeric AEP, Voth GA. 2023.. Using classifiers to understand coarse-grained models and their fidelity with the underlying all-atom systems. . J. Chem. Phys. 158::234101
    [Crossref] [Google Scholar]
  80. 80.
    Szukalo RJ, Noid W. 2020.. Investigation of coarse-grained models across a glass transition. . Soft Mater. 18::18599
    [Crossref] [Google Scholar]
  81. 81.
    Guenza M. 2015.. Thermodynamic consistency and other challenges in coarse-graining models. . Eur. Phys. J. Spec. Top. 224::217791
    [Crossref] [Google Scholar]
  82. 82.
    Dunn NJH, Noid WG. 2015.. Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids. . J. Chem. Phys. 143:(24):243148
    [Crossref] [Google Scholar]
  83. 83.
    Louis AA. 2002.. Beware of density dependent pair potentials. . J. Phys. Condens. Matter 14::9187206
    [Crossref] [Google Scholar]
  84. 84.
    Johnson ME, Head-Gordon T, Louis AA. 2007.. Representability problems for coarse-grained water potentials. . J. Chem. Phys. 126::144509
    [Crossref] [Google Scholar]
  85. 85.
    Chaimovich A, Shell MS. 2009.. Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy. . Phys. Chem. Chem. Phys. 11:(12):190115
    [Crossref] [Google Scholar]
  86. 86.
    Izvekov S, Chung PW, Rice BM. 2010.. The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials. . J. Chem. Phys. 133::064109
    [Crossref] [Google Scholar]
  87. 87.
    Lebold KM, Noid WG. 2019.. Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids. . J. Chem. Phys. 150:(1):014104
    [Crossref] [Google Scholar]
  88. 88.
    Stillinger FH, Sakai H, Torquato S. 2002.. Statistical mechanical models with effective potentials: definitions, applications, and thermodynamic consequences. . J. Chem. Phys. 117:(1):28896
    [Crossref] [Google Scholar]
  89. 89.
    D'Adamo G, Pelissetto A, Pierleoni C. 2013.. Predicting the thermodynamics by using state-dependent interactions. . J. Chem. Phys. 138:(23):234107
    [Crossref] [Google Scholar]
  90. 90.
    Dinpajooh M, Guenza MG. 2018.. On the density dependence of the integral equation coarse-graining effective potential. . J. Phys. Chem. B 122:(13):342640
    [Crossref] [Google Scholar]
  91. 91.
    Wang H, Junghans C, Kremer K. 2009.. Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?. Eur. Phys. J. E 28:(2):22129
    [Crossref] [Google Scholar]
  92. 92.
    Das A, Andersen HC. 2010.. The multiscale coarse-graining method. V. Isothermal-isobaric ensemble. . J. Chem. Phys. 132::164106
    [Crossref] [Google Scholar]
  93. 93.
    Dijkstra M, van Roij R, Evans R. 1998.. Phase behavior and structure of binary hard-sphere mixtures. . Phys. Rev. Lett. 81:(11):226871
    [Crossref] [Google Scholar]
  94. 94.
    Dunn NJH, Noid WG. 2016.. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures. . J. Chem. Phys. 144::204124
    [Crossref] [Google Scholar]
  95. 95.
    Dunn NJH, Lebold KM, DeLyser MR, Rudzinski JF, Noid WG. 2018.. BOCS: bottom-up open-source coarse-graining software. . J. Phys. Chem. B 122:(13):336377
    [Crossref] [Google Scholar]
  96. 96.
    Rosenberger D, van der Vegt NFA. 2018.. Addressing the temperature transferability of structure based coarse graining models. . Phys. Chem. Chem. Phys. 20::661728
    [Crossref] [Google Scholar]
  97. 97.
    Pagonabarraga I, Frenkel D. 2001.. Dissipative particle dynamics for interacting systems. . J. Chem. Phys. 115:(11):501526
    [Crossref] [Google Scholar]
  98. 98.
    Warren PB. 2003.. Vapor-liquid coexistence in many-body dissipative particle dynamics. . Phys. Rev. E 68:(6):066702
    [Crossref] [Google Scholar]
  99. 99.
    Ghoufi A, Malfreyt P. 2010.. Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods. . Phys. Rev. E 82:(1):016706
    [Crossref] [Google Scholar]
  100. 100.
    Español P, Warren PB. 2017.. Perspective: dissipative particle dynamics. . J. Chem. Phys. 146:(15):150901
    [Crossref] [Google Scholar]
  101. 101.
    Groot RD, Warren PB. 1997.. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. . J. Chem. Phys. 107:(11):442335
    [Crossref] [Google Scholar]
  102. 102.
    Papoian GA, Ulander J, Eastwood MP, Luthey-Schulten Z, Wolynes PG. 2004.. Water in protein structure prediction. . PNAS 101:(10):335257
    [Crossref] [Google Scholar]
  103. 103.
    Allen EC, Rutledge GC. 2008.. A novel algorithm for creating coarse-grained, density dependent implicit solvent models. . J. Chem. Phys. 128::154115
    [Crossref] [Google Scholar]
  104. 104.
    Allen EC, Rutledge GC. 2009.. Evaluating the transferability of coarse-grained, density-dependent implicit solvent models to mixtures and chains. . J. Chem. Phys. 130::034904
    [Crossref] [Google Scholar]
  105. 105.
    DeLyser MR, Noid WG. 2019.. Analysis of local density potentials. . J. Chem. Phys. 151:(22):224106
    [Crossref] [Google Scholar]
  106. 106.
    DeLyser MR, Noid WG. 2017.. Extending pressure-matching to inhomogeneous systems via local-density potentials. . J. Chem. Phys. 147::134111
    [Crossref] [Google Scholar]
  107. 107.
    DeLyser MR, Noid WG. 2020.. Bottom-up coarse-grained models for external fields and interfaces. . J. Chem. Phys. 153:(22):224103
    [Crossref] [Google Scholar]
  108. 108.
    DeLyser MR, Noid WG. 2022.. Coarse-grained models for local density gradients. . J. Chem. Phys. 156::034106
    [Crossref] [Google Scholar]
  109. 109.
    Wagner JW, Dama JF, Durumeric AEP, Voth GA. 2016.. On the representability problem and the physical meaning of coarse-grained models. . J. Chem. Phys. 145:(4):044108
    [Crossref] [Google Scholar]
  110. 110.
    Sanyal T, Shell MS. 2016.. Coarse-grained models using local-density potentials optimized with the relative entropy: application to implicit solvation. . J. Chem. Phys. 145:(3):034109
    [Crossref] [Google Scholar]
  111. 111.
    Sanyal T, Shell MS. 2018.. Transferable coarse-grained models of liquid–liquid equilibrium using local density potentials optimized with the relative entropy. . J. Phys. Chem. B 122:(21):567893
    [Crossref] [Google Scholar]
  112. 112.
    Agrawal V, Peralta P, Li Y, Oswald J. 2016.. A pressure-transferable coarse-grained potential for modeling the shock Hugoniot of polyethylene. . J. Chem. Phys. 145:(10):104903
    [Crossref] [Google Scholar]
  113. 113.
    Shahidi N, Chazirakis A, Harmandaris V, Doxastakis M. 2020.. Coarse-graining of polyisoprene melts using inverse Monte Carlo and local density potentials. . J. Chem. Phys. 152:(12):124902
    [Crossref] [Google Scholar]
  114. 114.
    Berressem F, Scherer C, Andrienko D, Nikoubashman A. 2021.. Ultra-coarse-graining of homopolymers in inhomogeneous systems. . J. Phys. Condens. Matter 33:(25):254002
    [Crossref] [Google Scholar]
  115. 115.
    Español P, Serrano M, Pagonabarraga I, Zúñiga I. 2016.. Energy-conserving coarse-graining of complex molecules. . Soft Matter 12:(21):482137
    [Crossref] [Google Scholar]
  116. 116.
    Avalos JB, Lísal M, Larentzos JP, Mackie AD, Brennan JK. 2019.. Generalised dissipative particle dynamics with energy conservation: density- and temperature-dependent potentials. . Phys. Chem. Chem. Phys. 21:(45):24891911
    [Crossref] [Google Scholar]
  117. 117.
    Lísal M, Larentzos JP, Avalos JB, Mackie AD, Brennan JK. 2022.. Generalized energy-conserving dissipative particle dynamics with reactions. . J. Chem. Theory Comput. 18:(4):250312
    [Crossref] [Google Scholar]
  118. 118.
    McCarty J, Clark AJ, Copperman J, Guenza MG. 2014.. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale. . J. Chem. Phys. 140:(20):204913
    [Crossref] [Google Scholar]
  119. 119.
    Riniker S, Allison JR, van Gunsteren WF. 2012.. On developing coarse-grained models for biomolecular simulation: a review. . Phys. Chem. Chem. Phys. 14:(36):1242330
    [Crossref] [Google Scholar]
  120. 120.
    Baron R, Trzesniak D, de Vries AH, Elsener A, Marrink SJ, van Gunsteren WF. 2007.. Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. . ChemPhysChem 8:(3):45261
    [Crossref] [Google Scholar]
  121. 121.
    Wu Z, Cui Q, Yethiraj A. 2011.. Driving force for the association of hydrophobic peptides: the importance of electrostatic interactions in coarse-grained water models. . J. Phys. Chem. Lett. 2:(14):179498
    [Crossref] [Google Scholar]
  122. 122.
    Jarin Z, Newhouse J, Voth GA. 2020.. Coarse-grained force fields from the perspective of statistical mechanics: better understanding the origins of a MARTINI hangover. . J. Chem. Theory Comput. 17:(2):117080
    [Crossref] [Google Scholar]
  123. 123.
    Szukalo RJ, Noid WG. 2021.. Investigating the energetic and entropic components of effective potentials across a glass transition. . J. Phys. Condens. Matter 33:(15):154004
    [Crossref] [Google Scholar]
  124. 124.
    Izvekov S. 2011.. Towards an understanding of many-particle effects in hydrophobic association in methane solutions. . J. Chem. Phys. 134:(3):034104
    [Crossref] [Google Scholar]
  125. 125.
    Farah K, Fogarty AC, Böhm MC, Müller-Plathe F. 2011.. Temperature dependence of coarse-grained potentials for liquid hexane. . Phys. Chem. Chem. Phys. 13:(7):2894902
    [Crossref] [Google Scholar]
  126. 126.
    Mukherjee B, Delle Site L, Kremer K, Peter C. 2012.. Derivation of coarse grained models for multiscale simulation of liquid crystalline phase transitions. . J. Phys. Chem. B 116:(29):847484
    [Crossref] [Google Scholar]
  127. 127.
    Jin J, Pak AJ, Voth GA. 2019.. Understanding missing entropy in coarse-grained systems: addressing issues of representability and transferability. . J. Phys. Chem. Lett. 10::454957
    [Crossref] [Google Scholar]
  128. 128.
    Jin J, Yu A, Voth GA. 2020.. Temperature and phase transferable bottom-up coarse-grained models. . J. Chem. Theory Comput. 16:(11):682342
    [Crossref] [Google Scholar]
  129. 129.
    Lu L, Voth GA. 2011.. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials. . J. Chem. Phys. 134:(22):224107
    [Crossref] [Google Scholar]
  130. 130.
    Lebold KM, Noid WG. 2019.. Dual approach for effective potentials that accurately model structure and energetics. . J. Chem. Phys. 150:(23):234107
    [Crossref] [Google Scholar]
  131. 131.
    Tóth G. 2007.. Effective potentials from complex simulations: a potential-matching algorithm and remarks on coarse-grained potentials. . J. Phys. Condens. Matter 19:(33):335222
    [Crossref] [Google Scholar]
  132. 132.
    Lebold KM, Noid WG. 2019.. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. . J. Chem. Phys. 151:(16):164113
    [Crossref] [Google Scholar]
  133. 133.
    Wagner JW, Dannenhoffer-Lafage T, Jin J, Voth GA. 2017.. Extending the range and physical accuracy of coarse-grained models: order parameter dependent interactions. . J. Chem. Phys. 147:(4):044113
    [Crossref] [Google Scholar]
  134. 134.
    Dannenhoffer-Lafage T, Wagner JW, Durumeric AEP, Voth GA. 2019.. Compatible observable decompositions for coarse-grained representations of real molecular systems. . J. Chem. Phys. 151:(13):134115
    [Crossref] [Google Scholar]
  135. 135.
    Pretti E, Shell MS. 2021.. A microcanonical approach to temperature-transferable coarse-grained models using the relative entropy. . J. Chem. Phys. 155::094102
    [Crossref] [Google Scholar]
  136. 136.
    Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP. 2014.. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. . J. Chem. Theory Comput. 10:(2):67690
    [Crossref] [Google Scholar]
  137. 137.
    Stieffenhofer M, Wand M, Bereau T. 2020.. Adversarial reverse mapping of equilibrated condensed-phase molecular structures. . Mach. Learn. Sci. Technol. 1::045014
    [Crossref] [Google Scholar]
  138. 138.
    Wang W, Xu M, Cai C, Miller BK, Smidt T, et al. 2022.. Generative coarse-graining of molecular conformations. . arXiv:2201.12176 [cs.LG]
  139. 139.
    Maier JC, Jackson NE. 2022.. Bypassing backmapping: coarse-grained electronic property distributions using heteroscedastic Gaussian processes. . J. Chem. Phys. 157:(17):174102
    [Crossref] [Google Scholar]
  140. 140.
    Sivaraman G, Jackson NE. 2022.. Coarse-grained density functional theory predictions via deep kernel learning. . J. Chem. Theory Comput. 18:(2):112941
    [Crossref] [Google Scholar]
  141. 141.
    Schöberl M, Zabaras N, Koutsourelakis PS. 2017.. Predictive coarse-graining. . J. Comp. Phys. 333::4977
    [Crossref] [Google Scholar]
  142. 142.
    Humphrey W, Dalke A, Schulten K. 1996.. VMD: visual molecular dynamics. . J. Mol. Graph. 14::3338
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-062123-010821
Loading
/content/journals/10.1146/annurev-physchem-062123-010821
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error