1932

Abstract

Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071119-040222
2020-04-20
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071119-040222.html?itemId=/content/journals/10.1146/annurev-physchem-071119-040222&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bloch F. 1946. Nuclear induction. Phys. Rev. 70:460–74
    [Google Scholar]
  2. 2. 
    Purcell EM, Torrey HC, Pound RV 1946. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69:37–38
    [Google Scholar]
  3. 3. 
    Pines A, Gibby MG, Waugh JS 1972. Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56:1776–77
    [Google Scholar]
  4. 4. 
    Pines A, Gibby MG, Waugh JS 1973. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59:569–90
    [Google Scholar]
  5. 5. 
    Andrew ER, Bradbury A, Eades RG 1958. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659
    [Google Scholar]
  6. 6. 
    Andrew ER, Bradbury A, Eades RG 1959. Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature 183:1802–3
    [Google Scholar]
  7. 7. 
    Lowe IJ. 1959. Free induction decays of rotating solids. Phys. Rev. Lett. 2:285–87
    [Google Scholar]
  8. 8. 
    Bloch F. 1958. Theory of line narrowing by double-frequency irradiation. Phys. Rev. 111:841–53
    [Google Scholar]
  9. 9. 
    Sarles LR, Cotts RM. 1958. Double nuclear magnetic resonance and the dipole interaction in solids. Phys. Rev. 111:853–59
    [Google Scholar]
  10. 10. 
    Vasa SK, Rovó P, Linser R 2018. Protons as versatile reporters in solid-state NMR spectroscopy. Acc. Chem. Res. 51:1386–95
    [Google Scholar]
  11. 11. 
    Samoson A, Tuherm T, Gan Z 2001. High-field high-speed MAS resolution enhancement in 1H NMR spectroscopy of solids. Solid State Nucl. Magn. Reson. 20:130–36
    [Google Scholar]
  12. 12. 
    Sternberg U, Witter R, Kuprov I, Lamley JM, Oss A et al. 2018. 1H line width dependence on MAS speed in solid state NMR—comparison of experiment and simulation. J. Magn. Reson. 291:32–39
    [Google Scholar]
  13. 13. 
    Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B 2017. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102/103:120–95Comprehensively reviews all aspects of DNP-enhanced MAS NMR, including biomolecular and materials science applications.
    [Google Scholar]
  14. 14. 
    Lee M, Wanke MC. 2007. Searching for a solid-state terahertz technology. Science 316:64–65
    [Google Scholar]
  15. 15. 
    Overhauser AW. 1953. Polarization of nuclei in metals. Phys. Rev. 92:411–15
    [Google Scholar]
  16. 16. 
    Slichter CP. 2010. The discovery and demonstration of dynamic nuclear polarization—a personal and historical account. Phys. Chem. Chem. Phys. 12:5741–51
    [Google Scholar]
  17. 17. 
    Carver TR, Slichter CP. 1953. Polarization of nuclear spins in metals. Phys. Rev. 92:212–13
    [Google Scholar]
  18. 18. 
    Ardenkjaer-Larsen JH. 2016. On the present and future of dissolution DNP. J. Magn. Reson. 264:3–12
    [Google Scholar]
  19. 19. 
    Bornet A, Jannin S. 2016. Optimizing dissolution dynamic nuclear polarization. J. Magn. Reson. 264:13–21
    [Google Scholar]
  20. 20. 
    Jähnig F, Kwiatkowski G, Ernst M 2016. Conceptual and instrumental progress in dissolution DNP. J. Magn. Reson. 264:22–29
    [Google Scholar]
  21. 21. 
    Comment A. 2016. Dissolution DNP for in vivo preclinical studies. J. Magn. Reson. 264:39–48
    [Google Scholar]
  22. 22. 
    van Bentum J, van Meerten B, Sharma M, Kentgens A 2016. Perspectives on DNP-enhanced NMR spectroscopy in solutions. J. Magn. Reson. 264:59–67
    [Google Scholar]
  23. 23. 
    Lingwood MD, Han S. 2011. Solution-state dynamic nuclear polarization. Annu. Rep. NMR Spectrosc. 73:83–126
    [Google Scholar]
  24. 24. 
    Ravera E, Luchinat C, Parigi G 2016. Basic facts and perspectives of Overhauser DNP NMR. J. Magn. Reson. 264:78–87
    [Google Scholar]
  25. 25. 
    Prisner T, Denysenkov V, Sezer D 2016. Liquid state DNP at high magnetic fields: instrumentation, experimental results and atomistic modelling by molecular dynamics simulations. J. Magn. Reson. 264:68–77
    [Google Scholar]
  26. 26. 
    Ardenkjaer-Larsen J-H, Boebinger GS, Comment A, Duckett S, Edison AS et al. 2015. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. 54:9162–85
    [Google Scholar]
  27. 27. 
    Duckett SB, Mewis RE. 2012. Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Acc. Chem. Res. 45:1247–57
    [Google Scholar]
  28. 28. 
    Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin SF, Kurzbach D et al. 2018. Hyperpolarized NMR spectroscopy: d-DNP, PHIP, and SABRE techniques. Chem. Asian J. 13:1857–71
    [Google Scholar]
  29. 29. 
    Zhang G, Hilty C. 2018. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. Magn. Reson. Chem. 56:566–82
    [Google Scholar]
  30. 30. 
    Rankin A, Trébosc J, Pourpoint F, Amoureux J-P, Lafon O 2019. Recent developments in MAS DNP-NMR of materials. Solid State Nucl. Magn. Reson. 101:116–43
    [Google Scholar]
  31. 31. 
    Duijvestijn MJ, van der Lugt C, Smidt J, Wind RA, Zilm KW, Staplin DC 1983. 13C NMR spectroscopy in diamonds using dynamic nuclear polarization. Chem. Phys. Lett. 102:25–28
    [Google Scholar]
  32. 32. 
    Wind RA, Duijvestijn MJ, van der Lugt C, Manenschijn A, Vriend J 1985. Applications of dynamic nuclear polarization in 13C NMR in solids. Prog. Nucl. Magn. Reson. Spectrosc. 17:33–67
    [Google Scholar]
  33. 33. 
    Afeworki M, Vega S, Schaefer J 1992. Direct electron-to-carbon polarization transfer in homogeneously doped polycarbonates. Macromolecules 25:4100–5
    [Google Scholar]
  34. 34. 
    Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG 1993. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys. Rev. Lett. 71:3561–64
    [Google Scholar]
  35. 35. 
    Wisser D, Karthikeyan G, Lund A, Casano G, Karoui H et al. 2018. BDPA-nitroxide biradicals tailored for efficient dynamic nuclear polarization enhanced solid-state NMR at magnetic fields up to 21.1 T. J. Am. Chem. Soc. 140:13340–49
    [Google Scholar]
  36. 36. 
    Casano G, Karoui H, Ouari O 2018. Polarizing agents: evolution and outlook in free radical development for DNP. eMagRes 7:195–208
    [Google Scholar]
  37. 37. 
    Blank M, Felch KL. 2018. Millimeter-wave sources for DNP-NMR. eMagRes 7:155–66
    [Google Scholar]
  38. 38. 
    Jeffries CD. 1957. Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys. Rev. 106:164–65
    [Google Scholar]
  39. 39. 
    Abraham M, Kedzie RW, Jeffries CD 1957. γ-Ray anisotropy of Co60 nuclei polarized by paramagnetic resonance saturation. Phys. Rev. 106:165–66
    [Google Scholar]
  40. 40. 
    Abragam A, Proctor WG. 1958. Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides. C. R. Hebd. Séances Acad. Sci. 246:2253–56
    [Google Scholar]
  41. 41. 
    Erb E, Motchane JL, Uebersfeld J 1958. Effet de polarisation nucléaire dans les liquides et les gaz adsorbés sur les charbons. C. R. Hebd. Séances Acad. Sci. 246:2121–23
    [Google Scholar]
  42. 42. 
    Kessenikh AV, Lushchikov VI, Manenkov AA, Taran YV 1963. Proton polarization in irradiated polyethylenes. Sov. Phys. Solid State 5:321–29
    [Google Scholar]
  43. 43. 
    Kessenikh AV, Manenkov AA, Pyatnitskii GI 1964. On explanation of experimental data on dynamic polarization of protons in irradiated polyethylenes. Sov. Phys. Solid State 6:641–43
    [Google Scholar]
  44. 44. 
    Hwang CF, Hill DA. 1967. Phenomenological model for new effect in dynamic polarization. Phys. Rev. Lett. 19:1011–14
    [Google Scholar]
  45. 45. 
    Hwang CF, Hill DA. 1967. New effect in dynamic polarization. Phys. Rev. Lett. 18:110–12
    [Google Scholar]
  46. 46. 
    Carver TR, Slichter CP. 1956. Experimental verification of the Overhauser nuclear polarization effect. Phys. Rev. 102:975–80
    [Google Scholar]
  47. 47. 
    Beljers HG, van der Kint L, van Wieringen JS 1954. Overhauser effect in a free radical. Phys. Rev. 95:1683
    [Google Scholar]
  48. 48. 
    Solomon I. 1955. Relaxation processes in a system of two spins. Phys. Rev. 99:559–65
    [Google Scholar]
  49. 49. 
    Neugebauer P, Krummenacker JG, Denysenkov VP, Parigi G, Luchinat C, Prisner TF 2013. Liquid state DNP of water at 9.2 T: an experimental access to saturation. Phys. Chem. Chem. Phys. 15:6049–56
    [Google Scholar]
  50. 50. 
    Hausser KH, Stehlik D. 1968. Dynamic nuclear polarisation in liquids. Adv. Magn. Reson. 3:79–139
    [Google Scholar]
  51. 51. 
    Kaminker I, Barnes R, Han SI 2015. Overhauser dynamic nuclear polarization studies on local water dynamics. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions PZ Qin, K Warncke 457–83 San Diego: Academic
    [Google Scholar]
  52. 52. 
    Denysenkov V, Prisner T. 2012. Liquid state dynamic nuclear polarization probe with Fabry-Pérot resonator at 9.2 T. J. Magn. Reson. 217:1–5
    [Google Scholar]
  53. 53. 
    Yoon D, Dimitriadis AI, Soundararajan M, Caspers C, Genoud J et al. 2018. High-field liquid-state dynamic nuclear polarization in microliter samples. Anal. Chem. 90:5620–26
    [Google Scholar]
  54. 54. 
    Orlando T, Dervişoğlu R, Levien M, Tkach I, Prisner TF et al. 2019. Dynamic nuclear polarization of 13C nuclei in the liquid state over a 10Tesla field range. Angew. Chem. Int. Ed. 58:1402–6Presents a groundbreaking development in OE DNP for solution NMR at high magnetic field.
    [Google Scholar]
  55. 55. 
    Dubroca T, Wi S, van Tol J, Frydman L, Hill S 2019. Large volume liquid state scalar Overhauser dynamic nuclear polarization at high magnetic field. Phys. Chem. Chem. Phys. 21:21200–4
    [Google Scholar]
  56. 56. 
    Jakdetchai O, Denysenkov V, Becker-Baldus J, Dutagaci B, Prisner TF, Glaubitz C 2014. Dynamic nuclear polarization–enhanced NMR on aligned lipid bilayers at ambient temperature. J. Am. Chem. Soc. 136:15533–36
    [Google Scholar]
  57. 57. 
    Dubroca T, Smith AN, Pike KJ, Froud S, Wylde R et al. 2018. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers. J. Magn. Reson. 289:35–44
    [Google Scholar]
  58. 58. 
    Bennati M, Orlando T. 2019. Overhauser DNP in liquids on 13C nuclei. eMagRes 8:11–18
    [Google Scholar]
  59. 59. 
    Liu GQ, Levien M, Karschin N, Parigi G, Luchinat C, Bennati M 2017. One-thousand-fold enhancement of high field liquid nuclear magnetic resonance signals at room temperature. Nat. Chem. 9:676–80
    [Google Scholar]
  60. 60. 
    Haze O, Corzilius B, Smith AA, Griffin RG, Swager TM 2012. Water-soluble organic radicals as polarizing agents for high field dynamic nuclear polarization. J. Am. Chem. Soc. 134:14287–90
    [Google Scholar]
  61. 61. 
    Can TV, Caporini MA, Mentink-Vigier F, Corzilius B, Walish JJ et al. 2014. Overhauser effects in insulating solids. J. Chem. Phys. 141:064202
    [Google Scholar]
  62. 62. 
    Lelli M, Chaudhari SR, Gajan D, Casano G, Rossini AJ et al. 2015. Solid-state dynamic nuclear polarization at 9.4 and 18.8 T from 100 K to room temperature. J. Am. Chem. Soc. 137:14558–61
    [Google Scholar]
  63. 63. 
    Pylaeva S, Ivanov KL, Baldus M, Sebastiani D, Elgabarty H 2017. Molecular mechanism of Overhauser dynamic nuclear polarization in insulating solids. J. Phys. Chem. Lett. 8:2137–42
    [Google Scholar]
  64. 64. 
    Ji X, Can TV, Mentink-Vigier F, Bornet A, Milani J et al. 2018. Overhauser effects in non-conducting solids at 1.2 K. J. Magn. Reson. 286:138–42
    [Google Scholar]
  65. 65. 
    Equbal A, Li Y, Leavesley A, Huang S, Rajca S et al. 2018. Truncated cross effect dynamic nuclear polarization: an Overhauser effect doppelgänger. J. Phys. Chem. Lett. 9:2175–80
    [Google Scholar]
  66. 66. 
    Maly T, Cui D, Griffin RG, Miller A-F 2012. 1H dynamic nuclear polarization based on an endogenous radical. J. Phys. Chem. B 116:7055–65
    [Google Scholar]
  67. 67. 
    Wenk P, Kaushik M, Richter D, Vogel M, Suess B, Corzilius B 2015. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J. Biomol. NMR 63:97–109
    [Google Scholar]
  68. 68. 
    Kaushik M, Bahrenberg T, Can TV, Caporini MA, Silvers R et al. 2016. Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins. Phys. Chem. Chem. Phys. 18:27205–18
    [Google Scholar]
  69. 69. 
    Chakrabarty T, Goldin N, Feintuch A, Houben L, Leskes M 2018. Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. Chem. Phys. Chem. 19:2139–42
    [Google Scholar]
  70. 70. 
    Wolf T, Kumar S, Singh H, Chakrabarty T, Aussenac F et al. 2019. Endogenous dynamic nuclear polarization for natural abundance 17O and lithium NMR in the bulk of inorganic solids. J. Am. Chem. Soc. 141:451–62Uses endogenous metal ions as PAs for the investigation of bulk electrode materials.
    [Google Scholar]
  71. 71. 
    Daube D, Vogel M, Suess B, Corzilius B 2019. Dynamic nuclear polarization on a hybridized hammerhead ribozyme: an explorative study of RNA folding and direct DNP with a paramagnetic metal ion cofactor. Solid State Nucl. Magn. Reson. 101:21–30
    [Google Scholar]
  72. 72. 
    Hovav Y, Feintuch A, Vega S 2010. Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect. J. Magn. Reson. 207:176–89
    [Google Scholar]
  73. 73. 
    Hu KN, Debelouchina GT, Smith AA, Griffin RG 2011. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J. Chem. Phys. 134:125105Presents an excellent quantum mechanical treatment of SE and CE theory.
    [Google Scholar]
  74. 74. 
    Corzilius B, Smith AA, Griffin RG 2012. Solid effect in magic angle spinning dynamic nuclear polarization. J. Chem. Phys. 137:054201
    [Google Scholar]
  75. 75. 
    Abraham M, McCausland MAH, Robinson FNH 1959. Dynamic nuclear polarization. Phys. Rev. Lett. 2:449–51
    [Google Scholar]
  76. 76. 
    Henstra A, Dirksen P, Wenckebach WT 1988. Enhanced dynamic nuclear-polarization by the integrated solid effect. Phys. Lett. A 134:134–36
    [Google Scholar]
  77. 77. 
    Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG 2017. Frequency-swept integrated solid effect. Angew. Chem. Int. Ed. 56:6744–48
    [Google Scholar]
  78. 78. 
    Can TV, McKay JE, Weber RT, Yang C, Dubroca T et al. 2018. Frequency-swept integrated and stretched solid effect dynamic nuclear polarization. J. Phys. Chem. Lett. 9:3187–92
    [Google Scholar]
  79. 79. 
    Smith AA, Corzilius B, Barnes AB, Maly T, Griffin RG 2012. Solid effect dynamic nuclear polarization and polarization pathways. J. Chem. Phys. 136:015101
    [Google Scholar]
  80. 80. 
    Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini I, Griffin RG 2011. High-field dynamic nuclear polarization with high-spin transition metal ions. J. Am. Chem. Soc. 133:5648–51
    [Google Scholar]
  81. 81. 
    Corzilius B. 2018. Paramagnetic metal ions for dynamic nuclear polarization. eMagRes 7:179–94Introduces several concepts associated with MAS DNP by paramagnetic metal ions.
    [Google Scholar]
  82. 82. 
    Kessenikh AV, Manenkov AA. 1963. Dynamic polarization of nuclei during saturation of nonuniformly broadened electron paramagnetic resonance lines. Sov. Phys. Solid State 5:835–37
    [Google Scholar]
  83. 83. 
    Borghini M. 1968. Spin-temperature model of nuclear dynamic polarization using free radicals. Phys. Rev. Lett. 20:419–21
    [Google Scholar]
  84. 84. 
    Atsarkin VA, Mefed AE, Rodak MI 1969. Connection of electron spin–spin interactions with polarization and nuclear spin relaxation in ruby. Sov. Phys. JETP 28:877–85
    [Google Scholar]
  85. 85. 
    Wollan DS. 1976. Dynamic nuclear polarization with an inhomogeneously broadened ESR line. 1. Theory. Phys. Rev. B 13:3671–85
    [Google Scholar]
  86. 86. 
    Wollan DS. 1976. Dynamic nuclear polarization with an inhomogeneously broadened ESR line. 2. Experiment. Phys. Rev. B 13:3686–96
    [Google Scholar]
  87. 87. 
    Hu KN, Yu HH, Swager TM, Griffin RG 2004. Dynamic nuclear polarization with biradicals. J. Am. Chem. Soc. 126:10844–45
    [Google Scholar]
  88. 88. 
    Song C, Hu K-N, Joo C-G, Swager TM, Griffin RG 2006. TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J. Am. Chem. Soc. 128:11385–90
    [Google Scholar]
  89. 89. 
    Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT et al. 2013. Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew. Chem. Int. Ed. 52:10858–61
    [Google Scholar]
  90. 90. 
    Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F et al. 2009. Dynamic nuclear polarization with a rigid biradical. Angew. Chem. Int. Ed. 48:4996–5000
    [Google Scholar]
  91. 91. 
    Mathies G, Caporini MA, Michaelis VK, Liu Y, Hu K-N et al. 2015. Efficient dynamic nuclear polarization at 800MHz/527GHz with trityl-nitroxide biradicals. Angew. Chem. Int. Ed. 54:11770–74
    [Google Scholar]
  92. 92. 
    Mentink-Vigier F, Marin-Montesinos I, Jagtap AP, Halbritter T, van Tol J et al. 2018. Computationally assisted design of polarizing agents for dynamic nuclear polarization enhanced NMR: the AsymPol family. J. Am. Chem. Soc. 140:11013–19
    [Google Scholar]
  93. 93. 
    Kaushik M, Qi M, Godt A, Corzilius B 2017. Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization. Angew. Chem. Int. Ed. 56:4295–99
    [Google Scholar]
  94. 94. 
    Corzilius B. 2016. Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys. 18:27190–204
    [Google Scholar]
  95. 95. 
    Thurber KR, Tycko R. 2012. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings. J. Chem. Phys. 137:084508–14
    [Google Scholar]
  96. 96. 
    Mentink-Vigier F, Akbey Ü, Hovav Y, Vega S, Oschkinat H, Feintuch A 2012. Fast passage dynamic nuclear polarization on rotating solids. J. Magn. Reson. 224:13–21
    [Google Scholar]
  97. 97. 
    Hovav Y, Shimon D, Kaminker I, Feintuch A, Goldfarb D, Vega S 2015. Effects of the electron polarization on dynamic nuclear polarization in solids. Phys. Chem. Chem. Phys. 17:6053–65
    [Google Scholar]
  98. 98. 
    Hovav Y, Feintuch A, Vega S 2013. Theoretical aspects of dynamic nuclear polarization in the solid state—spin temperature and thermal mixing. Phys. Chem. Chem. Phys. 15:188–203
    [Google Scholar]
  99. 99. 
    Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L et al. 2003. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. PNAS 100:10158–63
    [Google Scholar]
  100. 100. 
    Hovav Y, Feintuch A, Vega S 2012. Theoretical aspects of dynamic nuclear polarization in the solid state—the cross effect. J. Magn. Reson. 214:29–41
    [Google Scholar]
  101. 101. 
    Mance D, Gast P, Huber M, Baldus M, Ivanov KL 2015. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J. Chem. Phys. 142:234201
    [Google Scholar]
  102. 102. 
    Hediger S, Lee D, Mentink-Vigier F, De Paëpe G 2018. MAS-DNP enhancements: hyperpolarization, depolarization, and absolute sensitivity. eMagRes 7:105–16Presents an excellent overview of LACs, depolarization, and practical sensitivity gains under MAS CE.
    [Google Scholar]
  103. 103. 
    Mentink-Vigier F, Vega S, De Paepe G 2017. Fast and accurate MAS-DNP simulations of large spin ensembles. Phys. Chem. Chem. Phys. 19:3506–22
    [Google Scholar]
  104. 104. 
    Thurber KR, Tycko R. 2014. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves. J. Chem. Phys. 140:184201
    [Google Scholar]
  105. 105. 
    Mentink-Vigier F, Paul S, Lee D, Feintuch A, Hediger S et al. 2015. Nuclear depolarization and absolute sensitivity in magic-angle spinning cross effect dynamic nuclear polarization. Phys. Chem. Chem. Phys. 17:21824–36
    [Google Scholar]
  106. 106. 
    Mentink-Vigier F, Mathies G, Liu Y, Barra A-L, Caporini M et al. 2017. Efficient cross-effect dynamic nuclear polarization without depolarization in high-resolution MAS NMR. Chem. Sci. 8:8150–63
    [Google Scholar]
  107. 107. 
    Hovav Y, Feintuch A, Vega S, Goldfarb D 2014. Dynamic nuclear polarization using frequency modulation at 3.34 T. J. Magn. Reson. 238:94–105
    [Google Scholar]
  108. 108. 
    Bornet A, Milani J, Vuichoud B, Perez Linde AJ, Bodenhausen G, Jannin S 2014. Microwave frequency modulation to enhance dissolution dynamic nuclear polarization. Chem. Phys. Lett. 602:63–67
    [Google Scholar]
  109. 109. 
    Idehara T, Tatematsu Y, Yamaguchi Y, Khutoryan EM, Kuleshov AN et al. 2015. The development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy. J. Infrared Millim. Terahertz Waves 36:613–27
    [Google Scholar]
  110. 110. 
    Yoon D, Soundararajan M, Cuanillon P, Braunmueller F, Alberti S, Ansermet J-P 2016. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz. J. Magn. Reson. 262:62–67
    [Google Scholar]
  111. 111. 
    Scott FJ, Saliba EP, Albert BJ, Alaniva N, Sesti EL et al. 2018. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. J. Magn. Reson. 289:45–54
    [Google Scholar]
  112. 112. 
    Thurber KR, Yau WM, Tycko R 2010. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source. J. Magn. Reson. 204:303–13
    [Google Scholar]
  113. 113. 
    Saliba EP, Sesti EL, Scott FJ, Albert BJ, Choi EJ et al. 2017. Electron decoupling with dynamic nuclear polarization in rotating solids. J. Am. Chem. Soc. 139:6310–13
    [Google Scholar]
  114. 114. 
    Nanni EA, Barnes AB, Matsuki Y, Woskov PP, Corzilius B et al. 2011. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe. J. Magn. Reson. 210:16–23
    [Google Scholar]
  115. 115. 
    Alaniva N, Saliba EP, Sesti EL, Judge PT, Barnes AB 2019. Electron decoupling with chirped microwave pulses for rapid signal acquisition and electron saturation recovery. Angew. Chem. Int. Ed. 58:7259–62Decouples DNP-enhanced nuclear spins close to the electron spin with a frequency-agile gyrotron.
    [Google Scholar]
  116. 116. 
    Feintuch A, Shimon D, Hovav Y, Banerjee D, Kaminker I et al. 2011. A dynamic nuclear polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities. J. Magn. Reson. 209:136–41
    [Google Scholar]
  117. 117. 
    Smith AA, Corzilius B, Bryant JA, DeRocher R, Woskov PP et al. 2012. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies. J. Magn. Reson. 223:170–79
    [Google Scholar]
  118. 118. 
    Leavesley A, Kaminker I, Han S 2018. Versatile dynamic nuclear polarization hardware with integrated electron paramagnetic resonance capabilities. eMagRes 7:133–54
    [Google Scholar]
  119. 119. 
    Brunner H, Fritsch RH, Hausser KH 1987. Cross polarization in electron nuclear double resonance by satisfying the Hartmann-Hahn condition. Z. Naturforsch. A 42:1456–57
    [Google Scholar]
  120. 120. 
    Henstra A, Dirksen P, Schmidt J, Wenckebach WT 1988. Nuclear-spin orientation via electron-spin locking (NOVEL). J. Magn. Reson. 77:389–93
    [Google Scholar]
  121. 121. 
    Hartmann SR, Hahn EL. 1962. Nuclear double resonance in the rotating frame. Phys. Rev. 128:2042–53
    [Google Scholar]
  122. 122. 
    Can TV, Walish JJ, Swager TM, Griffin RG 2015. Time domain DNP with the NOVEL sequence. J. Chem. Phys. 143:054201
    [Google Scholar]
  123. 123. 
    Mathies G, Jain S, Reese M, Griffin RG 2016. Pulsed dynamic nuclear polarization with trityl radicals. J. Phys. Chem. Lett. 7:111–16
    [Google Scholar]
  124. 124. 
    Can TV, Weber RT, Walish JJ, Swager TM, Griffin RG 2017. Ramped-amplitude NOVEL. J. Chem. Phys. 146:154204
    [Google Scholar]
  125. 125. 
    Jain SK, Mathies G, Griffin RG 2017. Off-resonance NOVEL. J. Chem. Phys. 147:164201
    [Google Scholar]
  126. 126. 
    Wind RA, Li L, Lock H, Maciel GE 1988. Dynamic nuclear polarization in the nuclear rotating frame. J. Magn. Reson. 1969:79577–82
    [Google Scholar]
  127. 127. 
    Farrar CT, Hall DA, Gerfen GJ, Rosay M, Ardenkjær-Larsen JH, Griffin RG 2000. High-frequency dynamic nuclear polarization in the nuclear rotating frame. J. Magn. Reson. 144:134–41
    [Google Scholar]
  128. 128. 
    Weis V, Bennati M, Rosay M, Griffin RG 2000. Solid effect in the electron spin dressed state: a new approach for dynamic nuclear polarization. J. Chem. Phys. 113:6795–802
    [Google Scholar]
  129. 129. 
    Tan KO, Yang C, Weber RT, Mathies G, Griffin RG 2019. Time-optimized pulsed dynamic nuclear polarization. Sci. Adv. 5:eaav6909
    [Google Scholar]
  130. 130. 
    Corzilius B, Michaelis VK, Penzel SA, Ravera E, Smith AA et al. 2014. Dynamic nuclear polarization of 1H, 13C, and 59Co in a tris(ethylenediamine)cobalt(III) crystalline lattice doped with Cr(III). J. Am. Chem. Soc. 136:11716–27
    [Google Scholar]
  131. 131. 
    Ni QZ, Markhasin E, Can TV, Corzilius B, Tan KO et al. 2017. Peptide and protein dynamics and low-temperature/DNP magic angle spinning NMR. J. Phys. Chem. B 121:4997–5006
    [Google Scholar]
  132. 132. 
    Daube D, Aladin V, Heiliger J, Wittmann JJ, Barthelmes D et al. 2016. Heteronuclear cross-relaxation under solid-state dynamic nuclear polarization. J. Am. Chem. Soc. 138:16572–75Demonstrates and explains signal inversion under direct DNP (i.e., SCREAM-DNP).
    [Google Scholar]
  133. 133. 
    Hoffmann MM, Bothe S, Gutmann T, Hartmann F-F, Reggelin M, Buntkowsky G 2017. Directly versus indirectly enhanced 13C in dynamic nuclear polarization magic angle spinning NMR experiments of nonionic surfactant systems. J. Phys. Chem. C 121:2418–27
    [Google Scholar]
  134. 134. 
    Hoffmann MM, Bothe S, Gutmann T, Buntkowsky G 2017. Unusual local molecular motions in the solid state detected by dynamic nuclear polarization enhanced NMR spectroscopy. J. Phys. Chem. C 121:22948–57
    [Google Scholar]
  135. 135. 
    Aladin V, Vogel M, Binder R, Burghardt I, Suess B, Corzilius B 2019. Complex formation of the tetracycline-binding aptamer investigated by specific cross-relaxation under DNP. Angew. Chem. Int. Ed. 58:4863–68
    [Google Scholar]
  136. 136. 
    Mao J, Aladin V, Jin X, Leeder AJ, Brown LJ et al. 2019. Exploring protein structures by DNP-enhanced methyl solid-state NMR spectroscopy. J. Am. Chem. Soc. 141:19888–901
    [Google Scholar]
  137. 137. 
    Aladin V, Corzilius B. 2019. Methyl dynamics in amino acids modulate heteronuclear cross relaxation in the solid state under MAS DNP. Solid State Nucl. Magn. Reson. 99:27–35
    [Google Scholar]
  138. 138. 
    Linden AH, Franks WT, Akbey U, Lange S, van Rossum BJ, Oschkinat H 2011. Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J. Biomol. NMR 51:283–92
    [Google Scholar]
  139. 139. 
    Barnes AB, De Paëpe G, van der Wel PCA, Hu KN, Joo CG et al. 2008. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Reson. 34:237–63
    [Google Scholar]
  140. 140. 
    Zagdoun A, Rossini AJ, Gajan D, Bourdolle A, Ouari O et al. 2012. Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. Chem. Commun. 48:654–56
    [Google Scholar]
  141. 141. 
    van der Wel PCA, Hu KN, Lewandowski J, Griffin RG 2006. Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J. Am. Chem. Soc. 128:10840–46
    [Google Scholar]
  142. 142. 
    Rossini AJ, Zagdoun A, Hegner F, Schwarzwälder M, Gajan D et al. 2012. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J. Am. Chem. Soc. 134:16899–908
    [Google Scholar]
  143. 143. 
    Lange S, Linden AH, Akbey Ü, Franks WT, Loening NM et al. 2012. The effect of biradical concentration on the performance of DNP-MAS-NMR. J. Magn. Reson. 216:209–12
    [Google Scholar]
  144. 144. 
    Rossini AJ, Zagdoun A, Lelli M, Gajan D, Rascon F et al. 2012. One hundred fold overall sensitivity enhancements for silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chem. Sci. 3:108–15
    [Google Scholar]
  145. 145. 
    Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG 2014. Paramagnet-induced signal quenching in MAS-DNP experiments on frozen homogeneous solutions. J. Magn. Reson. 240:113–23
    [Google Scholar]
  146. 146. 
    Andreas LB, Barnes AB, Corzilius B, Chou JJ, Miller EA et al. 2013. Dynamic nuclear polarization study of inhibitor binding to the M218–60 proton transporter from influenza A. Biochemistry 52:2774–82
    [Google Scholar]
  147. 147. 
    Nagaraj M, Franks TW, Saeidpour S, Schubeis T, Oschkinat H et al. 2016. Surface binding of TOTAPOL assists structural investigations of amyloid fibrils by dynamic nuclear polarization NMR spectroscopy. ChemBioChem 17:1308–11
    [Google Scholar]
  148. 148. 
    Perras FA, Wang L-L, Manzano JS, Chaudhary U, Opembe NN et al. 2018. Optimal sample formulations for DNP SENS: the importance of radical-surface interactions. Curr. Opin. Colloid Interface Sci. 33:9–18
    [Google Scholar]
  149. 149. 
    Su Y, Andreas L, Griffin RG 2015. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and 1H detection. Annu. Rev. Biochem. 84:465–97
    [Google Scholar]
  150. 150. 
    Smith AN, Long JR. 2016. Dynamic nuclear polarization as an enabling technology for solid state nuclear magnetic resonance spectroscopy. Anal. Chem. 88:122–32
    [Google Scholar]
  151. 151. 
    Akbey U, Oschkinat H. 2016. Structural biology applications of solid state MAS DNP NMR. J. Magn. Reson. 269:213–24
    [Google Scholar]
  152. 152. 
    Lange S, Franks WT, Rajagopalan N, Döring K, Geiger MA et al. 2016. Structural analysis of a signal peptide inside the ribosome tunnel by DNP MAS NMR. Sci. Adv. 2:e1600379
    [Google Scholar]
  153. 153. 
    Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC et al. 2015. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163:620–28
    [Google Scholar]
  154. 154. 
    Liao W-C, Ghaffari B, Gordon CP, Xu J, Copéret C 2018. Dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS): principles, protocols, and practice. Curr. Opin. Colloid Interface Sci. 33:63–71
    [Google Scholar]
  155. 155. 
    Zhao L, Pinon AC, Emsley L, Rossini AJ 2018. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. Magn. Reson. Chem. 56:583–609
    [Google Scholar]
  156. 156. 
    Lesage A, Lelli M, Gajan D, Caporini MA, Vitzthum V et al. 2010. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 132:15459–61Introduces surface-enhanced NMR spectroscopy by dynamic nuclear polarization (DNP-SENS).
    [Google Scholar]
  157. 157. 
    Mollica G, Dekhil M, Ziarelli F, Thureau P, Viel S 2015. Quantitative structural constraints for organic powders at natural isotopic abundance using dynamic nuclear polarization solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 54:6028–31
    [Google Scholar]
  158. 158. 
    Märker K, Pingret M, Mouesca JM, Gasparutto D, Hediger S, De Paëpe G 2015. A new tool for NMR crystallography: complete 13C/15N assignment of organic molecules at natural isotopic abundance using DNP-enhanced solid-state NMR. J. Am. Chem. Soc. 137:13796–99
    [Google Scholar]
  159. 159. 
    Märker K, Paul S, Fernández-de-Alba C, Lee D, Mouesca J-M et al. 2017. Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP. Chem. Sci. 8:974–87
    [Google Scholar]
  160. 160. 
    De Paëpe G. 2012. Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63:661–84
    [Google Scholar]
  161. 161. 
    Penzel S, Oss A, Org M-L, Samoson A, Böckmann A et al. 2019. Spinning faster: protein NMR at MAS frequencies up to 126 kHz. J. Biomol. NMR 73:19–29
    [Google Scholar]
  162. 162. 
    Fernandez-Leiro R, Scheres SHW. 2016. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–46
    [Google Scholar]
  163. 163. 
    Viennet T, Viegas A, Kuepper A, Arens S, Gelev V et al. 2016. Selective protein hyperpolarization in cell lysates using targeted dynamic nuclear polarization. Angew. Chem. Int. Ed. 55:10746–50
    [Google Scholar]
  164. 164. 
    Rogawski R, Sergeyev IV, Li Y, Ottaviani MF, Cornish V, McDermott AE 2017. Dynamic nuclear polarization signal enhancement with high-affinity biradical tags. J. Phys. Chem. B 121:1169–75
    [Google Scholar]
  165. 165. 
    Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE 2017. Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. PNAS 114:5171–76
    [Google Scholar]
  166. 166. 
    Uluca B, Viennet T, Petrović D, Shaykhalishahi H, Weirich F et al. 2018. DNP-enhanced MAS NMR: a tool to snapshot conformational ensembles of α-synuclein in different states. Biophys. J. 114:1614–23
    [Google Scholar]
  167. 167. 
    Kubicki DJ, Casano G, Schwarzwalder M, Abel S, Sauvee C et al. 2016. Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci. 7:550–58
    [Google Scholar]
  168. 168. 
    Geiger M-A, Orwick-Rydmark M, Märker K, Franks WT, Akhmetzyanov D et al. 2016. Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures. Phys. Chem. Chem. Phys. 18:30696–704
    [Google Scholar]
  169. 169. 
    Geiger MA, Jagtap AP, Kaushik M, Sun H, Stoppler D et al. 2018. Efficiency of water-soluble nitroxide biradicals for dynamic nuclear polarization in rotating solids at 9.4 T: bcTol-M and cyolyl-TOTAPOL as new polarizing agents. Chem. Eur. J. 24:13485–94
    [Google Scholar]
  170. 170. 
    Soetbeer J, Gast P, Walish JJ, Zhao Y, George C et al. 2018. Conformation of bis-nitroxide polarizing agents by multi-frequency EPR spectroscopy. Phys. Chem. Chem. Phys. 20:25506–17
    [Google Scholar]
  171. 171. 
    Mentink-Vigier F, Barra A-L, van Tol J, Hediger S, Lee D, De Paëpe G 2019. De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization. Phys. Chem. Chem. Phys. 21:2166–76
    [Google Scholar]
  172. 172. 
    Berruyer P, Emsley L, Lesage A 2018. DNP in materials science: touching the surface. eMagRes 7:93–104
    [Google Scholar]
  173. 173. 
    Nanni EA, Lewis SM, Shapiro MA, Griffin RG, Temkin RJ 2013. Photonic-band-gap traveling-wave gyrotron amplifier. Phys. Rev. Lett. 111:235101
    [Google Scholar]
  174. 174. 
    Judge PT, Sesti EL, Saliba EP, Alaniva N, Halbritter T et al. 2019. Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6 K. J. Magn. Reson. 305:51–57
    [Google Scholar]
  175. 175. 
    Lee D, Bouleau E, Saint-Bonnet P, Hediger S, De Paëpe G 2016. Ultra-low temperature MAS-DNP. J. Magn. Reson. 264:116–24Describes a closed-loop helium MAS for DNP at ultralow temperatures.
    [Google Scholar]
  176. 176. 
    Chen P, Albert BJ, Gao C, Alaniva N, Price LE et al. 2018. Magic angle spinning spheres. Sci. Adv. 4:eaau1540
    [Google Scholar]
  177. 177. 
    Syed ZH, Kaphan DM, Perras FA, Pruski M, Ferrandon MS et al. 2019. Electrophilic organoiridium(III) pincer complexes on sulfated zirconia for hydrocarbon activation and functionalization. J. Am. Chem. Soc. 141:6325–37
    [Google Scholar]
  178. 178. 
    Kaur J, Kriebel CN, Eberhardt P, Jakdetchai O, Leeder AJ et al. 2019. Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its H30A mutant. J. Struct. Biol. 206:55–65
    [Google Scholar]
  179. 179. 
    Vowinkel S, Boehm A, Schäfer T, Gutmann T, Ionescu E, Gallei M 2018. Preceramic core-shell particles for the preparation of hybrid colloidal crystal films by melt-shear organization and conversion into porous ceramics. Mater. Des. 160:926–35
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-071119-040222
Loading
/content/journals/10.1146/annurev-physchem-071119-040222
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error