1932

Abstract

The optical centrifuge was demonstrated in 2000 as a tool for preparing ensembles of molecules in extreme rotational states. Highly rotationally excited molecules, so-called superrotors, are observed as products of photodissociation and molecular collisions, in high-temperature environments in the atmospheres of Earth and exoplanets, and in the interstellar medium. Traditional optical excitation is limited to small changes in rotation, limiting experiments to relatively low rotational states. In this review, I discuss the use of a tunable optical centrifuge to prepare molecules in selected ranges of excited rotational states and investigations of their collisional relaxation using state-resolved polarization-sensitive transient IR probing. I examine the decay dynamics of population, alignment, and translational energy release, focusing on experimental results, and compare them with simulations that overestimate observed relaxation rates. A clear picture of near-resonant and nonresonant energy transfer pathways emerges and establishes the means to distinguish superrotor and bath collision products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-012311
2025-04-21
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-012311.html?itemId=/content/journals/10.1146/annurev-physchem-082423-012311&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yuan LW, Teitelbaum SW, Robinson A, Mullin AS. 2011.. Dynamics of molecules in extreme rotational states. . PNAS 108::687277
    [Crossref] [Google Scholar]
  2. 2.
    Yuan LW, Toro C, Bell M, Mullin AS. 2011.. Spectroscopy of molecules in very high rotational states using an optical centrifuge. . Faraday Discuss. 150::10111
    [Crossref] [Google Scholar]
  3. 3.
    Toro C, Liu QN, Echebiri GO, Mullin AS. 2013.. Inhibited rotational quenching in oriented ultra-high rotational states of CO2. . Mol. Phys. 111::1892901
    [Crossref] [Google Scholar]
  4. 4.
    Murray MJ, Ogden HM, Toro C, Liu QN, Burns DA, et al. 2015.. State-specific collision dynamics of molecular super rotors with oriented angular momentum. . J. Phys. Chem. A 119::1247179
    [Crossref] [Google Scholar]
  5. 5.
    Murray MJ, Ogden HM, Toro C, Liu QN, Mullin AS. 2016.. Impulsive collision dynamics of CO super rotors from an optical centrifuge. . ChemPhysChem 17::3692700
    [Crossref] [Google Scholar]
  6. 6.
    Murray MJ, Ogden HM, Mullin AS. 2017.. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge. . J. Chem. Phys. 147::154309
    [Crossref] [Google Scholar]
  7. 7.
    Murray MJ, Ogden HM, Mullin AS. 2018.. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He. . J. Chem. Phys. 148::084310
    [Crossref] [Google Scholar]
  8. 8.
    Ogden HM, Michael TJ, Murray MJ, Liu QN, Toro C, Mullin AS. 2019.. The effect of CO rotation from shaped pulse polarization on reactions that form C2. . Phys. Chem. Chem. Phys. 21::1410310
    [Crossref] [Google Scholar]
  9. 9.
    Ogden H, Michael T, Murray M, Mullin A. 2020.. Transient IR (0001–0000) absorption spectroscopy of optically centrifuged N2O with extreme rotation up to J = 205. . J. Quant. Spectrosc. Radiat. Transf. 246::106867
    [Crossref] [Google Scholar]
  10. 10.
    Michael TJ, Ogden HM, Mullin AS. 2021.. State-resolved rotational distributions and collision dynamics of CO molecules made in a tunable optical centrifuge. . J. Chem. Phys. 154::134307
    [Crossref] [Google Scholar]
  11. 11.
    Laskowski MR, Michael TJ, Ogden HM, Alexander MH, Mullin AS. 2022.. Rotational energy transfer kinetics of optically centrifuged CO molecules investigated through transient IR spectroscopy and master equation simulations. . Faraday Discuss. 238::87102
    [Crossref] [Google Scholar]
  12. 12.
    Ritter ME, DeSouza SA, Ogden HM, Michael TJ, Mullin AS. 2024.. Transient IR spectroscopy of optically centrifuged CO2 (R186–R282) and collision dynamics for the J = 244–282 states. . Faraday Discuss. 251::14059
    [Crossref] [Google Scholar]
  13. 13.
    Chen TY, Steinmetz SA, Patterson BD, Jasper AW, Kliewer CJ. 2023.. Direct observation of coherence transfer and rotational-to-vibrational energy exchange in optically centrifuged CO2 super-rotors. . Nat. Commun. 14::3227
    [Crossref] [Google Scholar]
  14. 14.
    Sabetydzvonik M, Cody R. 1976.. Disequilibrated rotational distributions of CN(X) produced by photolysis of ClCN. . J. Chem. Phys. 64::479496
    [Crossref] [Google Scholar]
  15. 15.
    Heaven M, Miller TA, Bondybey VE. 1981.. Production and characterization of temperature-controlled free-radicals in a free jet expansion. . Chem. Phys. Lett. 84::15
    [Crossref] [Google Scholar]
  16. 16.
    Hay S, Shokoohi F, Callister S, Wittig C. 1985.. Collisional metastability of high rotational states of CN(X2Σ+, ν′′ = 0). . Chem. Phys. Lett. 118::611
    [Crossref] [Google Scholar]
  17. 17.
    Mullin AS, Park J, Chou JZ, Flynn GW, Weston RE. 1993.. Some rotations like it hot—selective energy partitioning in the state-resolved dynamics of collisions between CO2 and highly vibrationally excited pyrazine. . Chem. Phys. 175::5370
    [Crossref] [Google Scholar]
  18. 18.
    Polanyi JC, Woodall KB. 1972.. Mechanism of rotational relaxation. . J. Chem. Phys. 56::156372
    [Crossref] [Google Scholar]
  19. 19.
    Sung JP, Setser DW. 1978.. Observation of high rotational levels of HF formed by chemical reaction in one Torr of argon buffer gas. . J. Chem. Phys. 69::386869
    [Crossref] [Google Scholar]
  20. 20.
    Sivakumar N, Hall GE, Houston PL, Hepburn JW, Burak I. 1988.. State-resolved photodissociation of OCS monomers and clusters. . J. Chem. Phys. 88::3692708
    [Crossref] [Google Scholar]
  21. 21.
    Wei W, Wallace CJ, McBane GC, North SW. 2016.. Photodissociation dynamics of OCS near 214 nm using ion imaging. . J. Chem. Phys. 145::024310
    [Crossref] [Google Scholar]
  22. 22.
    Dexheimer SL, Durand M, Brunner TA, Pritchard DE. 1982.. Dynamical constraints on the transfer of angular momentum in rotationally inelastic collisions of I2(B3Π) with He and Xe. . J. Chem. Phys. 76::49965004
    [Crossref] [Google Scholar]
  23. 23.
    Magill PD, Scott TP, Smith N, Pritchard DE. 1989.. Level-to-level vibrationally inelastic rate constants for Li2*-He, Li2*-Ne, Li2*-Ar, Li2*-Xe collisions. . J. Chem. Phys. 90::7195206
    [Crossref] [Google Scholar]
  24. 24.
    Krogh OD, Pimentel GC. 1977.. CIFx–H2 chemical lasers (x = 1,3,5): vibration-rotation emission by HF from states with high rotational excitation. . J. Chem. Phys. 67::29933001
    [Crossref] [Google Scholar]
  25. 25.
    Haugen HK, Pence WH, Leone SR. 1984.. Infrared-double-resonance spectroscopy of V-T,R relaxation of HF(v = 1): direct measurement of the high-J populations. . J. Chem. Phys. 80::183952
    [Crossref] [Google Scholar]
  26. 26.
    Bogan DJ, Setser DW, Sung JP. 1977.. HF IR chemiluminescence: vibrational and rotational energy disposal for reactions of fluorine atoms with formaldehyde, acetaldehyde, benzaldehyde, and dimethyl ether. . J. Phys. Chem. 81::88898
    [Crossref] [Google Scholar]
  27. 27.
    Chang Y, An F, Li QM, Luo ZJ, Che L, et al. 2020.. Electronically excited OH super-rotors from water photodissociation by using vacuum ultraviolet free-electron laser pulses. . J. Phys. Chem. Lett. 11::761723
    [Crossref] [Google Scholar]
  28. 28.
    Tappe A, Lada CJ, Black JH, Muench AA. 2008.. Discovery of superthermal hydroxyl (OH) in the HH 211 outflow. . Astrophys. J. Lett. 680::L11720
    [Crossref] [Google Scholar]
  29. 29.
    Bernath PF. 2014.. Molecular opacities for exoplanets. . Philos. Trans. R. Soc. A 372::20130087
    [Crossref] [Google Scholar]
  30. 30.
    Carr JS, Najita JR. 2014.. The OH rotational population and photodissociation of H2O in DG Tauri. . Astrophys. J. 788::66
    [Crossref] [Google Scholar]
  31. 31.
    Joblin C, Bron E, Pinto C, Pilleri P, Le Petit F, et al. 2018.. Structure of photodissociation fronts in star-forming regions revealed by Herschel observations of high-J CO emission lines. . Astron. Astrophys. 615::A129
    [Crossref] [Google Scholar]
  32. 32.
    Bailly D, Camy-Peyret C, Lanquetin R. 1997.. Temperature measurement in flames through CO2 and CO emission: new highly excited levels of CO2. . J. Mol. Spectrosc. 182::1017
    [Crossref] [Google Scholar]
  33. 33.
    Herzberg G. 1939.. Molecular Spectra and Molecular Structure, Vol. 1: Spectra of Diatomic Molecules. New York:: Van Nostrand Reinhold
    [Google Scholar]
  34. 34.
    Karczmarek J, Wright J, Corkum P, Ivanov M. 1999.. Optical centrifuge for molecules. . Phys. Rev. Lett. 82::342023
    [Crossref] [Google Scholar]
  35. 35.
    Villeneuve DM, Aseyev SA, Dietrich P, Spanner M, Ivanov MY, Corkum PB. 2000.. Forced molecular rotation in an optical centrifuge. . Phys. Rev. Lett. 85::54245
    [Crossref] [Google Scholar]
  36. 36.
    Li J, Bahns JT, Stwalley WC. 2000.. Scheme for state-selective formation of highly rotationally excited diatomic molecules. . J. Chem. Phys. 112::625561
    [Crossref] [Google Scholar]
  37. 37.
    Antonov IO, Stollenwerk PR, Venkataramanababu S, Batista APD, de Oliveira AGS, Odom BC. 2021.. Precisely spun super rotors. . Nat. Commun. 12::2201
    [Crossref] [Google Scholar]
  38. 38.
    Milner AA, Korobenko A, Rezaiezadeh K, Milner V. 2015.. From gyroscopic to thermal motion: a crossover in the dynamics of molecular superrotors. . Phys. Rev. X 5::031041
    [Google Scholar]
  39. 39.
    Korobenko A, Milner AA, Milner V. 2014.. Direct observation, study, and control of molecular superrotors. . Phys. Rev. Lett. 112::113004
    [Crossref] [Google Scholar]
  40. 40.
    Milner AA, Korobenko A, Hepburn JW, Milner V. 2014.. Effects of ultrafast molecular rotation on collisional decoherence. . Phys. Rev. Lett. 113::043005
    [Crossref] [Google Scholar]
  41. 41.
    Milner AA, Korobenko A, Milner V. 2014.. Coherent spin-rotational dynamics of oxygen superrotors. . New J. Phys. 16::093038
    [Crossref] [Google Scholar]
  42. 42.
    Korobenko A, Milner AA, Hepburn JW, Milner V. 2014.. Rotational spectroscopy with an optical centrifuge. . Phys. Chem. Chem. Phys. 16::407176
    [Crossref] [Google Scholar]
  43. 43.
    Milner AA, Korobenko A, Hepburn JW, Milner V. 2017.. Probing molecular potentials with an optical centrifuge. . J. Chem. Phys. 147::124202
    [Crossref] [Google Scholar]
  44. 44.
    Korobenko A, Milner V. 2016.. Adiabatic field-free alignment of asymmetric top molecules with an optical centrifuge. . Phys. Rev. Lett. 116::183001
    [Crossref] [Google Scholar]
  45. 45.
    Tutunnikov I, Floss J, Gershnabel E, Brumer P, Averbukh IS, et al. 2020.. Observation of persistent orientation of chiral molecules by a laser field with twisted polarization. . Phys. Rev. A 101::021403(R)
    [Crossref] [Google Scholar]
  46. 46.
    Milner AA, Fordyce JAM, MacPhail-Bartley I, Wasserman W, Milner V, et al. 2019.. Controlled enantioselective orientation of chiral molecules with an optical centrifuge. . Phys. Rev. Lett. 122::223201
    [Crossref] [Google Scholar]
  47. 47.
    Korobenko A, Milner V. 2015.. Dynamics of molecular superrotors in an external magnetic field. . J. Phys. B 48::164004
    [Crossref] [Google Scholar]
  48. 48.
    Milner AA, Korobenko A, Floss J, Averbukh IS, Milner V. 2015.. Magneto-optical properties of paramagnetic superrotors. . Phys. Rev. Lett. 115::033005
    [Crossref] [Google Scholar]
  49. 49.
    Milner AA, Korobenko A, Milner V. 2017.. Ultrafast magnetization of a dense molecular gas with an optical centrifuge. . Phys. Rev. Lett. 118::243201
    [Crossref] [Google Scholar]
  50. 50.
    Milner AA, Steinitz U, Averbukh IS, Milner V. 2021.. Observation of mechanical Faraday effect in gaseous media. . Phys. Rev. Lett. 127::073901
    [Crossref] [Google Scholar]
  51. 51.
    Milner AA, Milner V. 2021.. Controlling the degree of rotational directionality in laser-induced molecular dynamics. . Phys. Rev. A 103::041103
    [Crossref] [Google Scholar]
  52. 52.
    Tutunnikov I, Steinitz U, Gershnabel E, Hartmann JM, Milner AA, et al. 2022.. Rotation of the polarization of light as a tool for investigating the collisional transfer of angular momentum from rotating molecules to macroscopic gas flows. . Phys. Rev. Res. 4::013212
    [Crossref] [Google Scholar]
  53. 53.
    Steinitz U, Prior Y, Averbukh IS. 2012.. Laser-induced gas vortices. . Phys. Rev. Lett. 109::033001
    [Crossref] [Google Scholar]
  54. 54.
    Venkataramanababu S, Li AY, Antonov IO, Dragan JB, Stollenwerk PR, et al. 2023.. Enhancing reactivity of SiO+ ions by controlled excitation to extreme rotational states. . Nat. Commun. 14::4446
    [Crossref] [Google Scholar]
  55. 55.
    Tashkun SA, Perevalov VI. 2011.. CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank. . J. Quant. Spectrosc. Radiat. Transf. 112::140310
    [Crossref] [Google Scholar]
  56. 56.
    Yardley JT. 1980.. Molecular Energy Transfer. New York:: Academic
    [Google Scholar]
  57. 57.
    McCaffery AJ, Proctor MJ, Whitaker BJ. 1986.. Rotational energy transfer: polarization and scaling. . Annu. Rev. Phys. Chem. 37::22344
    [Crossref] [Google Scholar]
  58. 58.
    Schiffman A, Chandler DW. 1995.. Experimental measurements of state-resolved, rotationally inelastic energy transfer. . Int. Rev. Phys. Chem. 14::371420
    [Crossref] [Google Scholar]
  59. 59.
    Cohen JB, Wilson EB. 1973.. Rotational energy transfer in pure HCN and in HCN–rare gas mixtures by microwave double resonance and pressure broadening. . J. Chem. Phys. 58::44255
    [Crossref] [Google Scholar]
  60. 60.
    Cohen JB, Wilson EB. 1973.. Microwave double-resonance studies of rotational relaxation in polar gases. . J. Chem. Phys. 58::45667
    [Crossref] [Google Scholar]
  61. 61.
    Brunner TA, Driver RD, Smith N, Pritchard DE. 1979.. Rotational energy transfer in Na2*-Xe collisions—level to level dynamics. . J. Chem. Phys. 70::415567
    [Crossref] [Google Scholar]
  62. 62.
    Wainger M, Alagil I, Brunner TA, Karp AW, Smith N, Pritchard DE. 1979.. Power law scaling of rotational energy transfer in Na2*(AΣ) + He, H2, CH4, and N2. . J. Chem. Phys. 71::197778
    [Crossref] [Google Scholar]
  63. 63.
    Brunner TA, Durand M, Smith N, Pritchard DE. 1980.. Rotational energy transfer in I2 (B3Π)-Xe. . Bull. Am. Phys. Soc. 25::288
    [Google Scholar]
  64. 64.
    Brunner TA, Smith N, Karp AW, Pritchard DE. 1981.. Rotational energy transfer in Na2* (AΣ) colliding with Xe, Kr, Ar, Ne, He, H2, CH4, and N2: experimental and fitting laws. . J. Chem. Phys. 74::332441
    [Crossref] [Google Scholar]
  65. 65.
    Barnes JA, Keil M, Kutina RE, Polanyi JC. 1980.. Energy transfer as a function of collision energy. 3. State-to-state cross sections for rotational-to-translation energy transfer in HF+Ar. . J. Chem. Phys. 72::63068
    [Crossref] [Google Scholar]
  66. 66.
    Tobiason JD, Utz AL, Crim FF. 1992.. State-to-state rotational energy transfer in highly vibrationally excited acetylene. . J. Chem. Phys. 97::743747
    [Crossref] [Google Scholar]
  67. 67.
    Utz AL, Tobiason JD, Carrasquillo E, Fritz MD, Crim FF. 1992.. Energy transfer in highly vibrationally excited acetylene: relaxation for vibrational energies from 6500 to 13000 cm−1. . J. Chem. Phys. 97::38996
    [Crossref] [Google Scholar]
  68. 68.
    Perram GP, Massman DA, Davis SJ. 1993.. Quantum resolved rotational energy transfer in the B3Π (0+u) state of Br2. . J. Chem. Phys. 99::663441
    [Crossref] [Google Scholar]
  69. 69.
    Taatjes CA, Leone SR. 1988.. Laser double-resonance measurements of rotational relaxation rates of HF(J = 13) with rare gases, H2 and D2. . J. Chem. Phys. 89::3028
    [Crossref] [Google Scholar]
  70. 70.
    Liu Q, Yang DZ, Xie DQ. 2021.. Quantum dynamics of rotational energy transfer processes for N2-HF and N2-DF systems. . J. Phys. Chem. A 125::34955
    [Crossref] [Google Scholar]
  71. 71.
    Rudich Y, Gordon RJ, Nikitin EE, Naaman R. 1992.. Rotational relaxation in a free expansion of HCl. . J. Chem. Phys. 96::442328
    [Crossref] [Google Scholar]
  72. 72.
    James PL, Sims IR, Smith IWM, Alexander MH, Yang MB. 1998.. A combined experimental and theoretical study of rotational energy transfer in collisions between NO(X2Π1/2, v = 3, J) and He, Ar and N2 at temperatures down to 7 K. . J. Chem. Phys. 109::388297
    [Crossref] [Google Scholar]
  73. 73.
    Phipps SP, Smith TC, Hager GD, Heaven MC, McIver JK, Rudolph WG. 2002.. Investigation of the state-to-state rotational relaxation rate constants for carbon monoxide (CO) using infrared double resonance. . J. Chem. Phys. 116::928192
    [Crossref] [Google Scholar]
  74. 74.
    Chapman WB, Kulcke A, Blackmon BW, Nesbitt DJ. 1999.. Rotationally inelastic scattering of jet cooled H2O with Ar: state-to-state cross sections and rotational alignment effects. . J. Chem. Phys. 110::854354
    [Crossref] [Google Scholar]
  75. 75.
    Carty D, Goddard A, Sims IR, Smith IWM. 2004.. Rotational energy transfer in collisions between CO(X1Σ+, v = 2, J = 0, 1, 4, and 6) and He at temperatures from 294 to 15 K. . J. Chem. Phys. 121::467183
    [Crossref] [Google Scholar]
  76. 76.
    Mertens LA, Labiad H, Denis-Alpizar O, Fournier M, Carty D, et al. 2017.. Rotational energy transfer in collisions between CO and Ar at temperatures from 293 to 30 K. . Chem. Phys. Lett. 683::52128
    [Crossref] [Google Scholar]
  77. 77.
    Labiad H, Fournier M, Mertens LA, Faure A, Carty D, et al. 2022.. Absolute measurements of state-to-state rotational energy transfer between CO and H2 at interstellar temperatures. . Phys. Rev. A 105::020802
    [Crossref] [Google Scholar]
  78. 78.
    Yang BH, Stancil PC, Balakrishnan N, Forrey RC. 2006.. Quenching of rotationally excited CO by collisions with H2. . J. Chem. Phys. 124::104304
    [Crossref] [Google Scholar]
  79. 79.
    Bohr A, Paolini S, Forrey RC, Balakrishnan N, Stancil PC. 2014.. A full-dimensional quantum dynamical study of H2+H2 collisions: coupled states versus close-coupling formulation. . J. Chem. Phys. 140::064308
    [Crossref] [Google Scholar]
  80. 80.
    Forthomme D, Hause ML, Yu HG, Dagdigian PJ, Sears TJ, Hall GE. 2015.. Doppler-resolved kinetics of saturation recovery. . J. Phys. Chem. A 119::743950
    [Crossref] [Google Scholar]
  81. 81.
    Brunner TA, Driver RD, Smith N, Pritchard DE. 1978.. Simple scaling law for rotational energy transfer in Na2*-Xe collisions. . Phys. Rev. Lett. 41::85659
    [Crossref] [Google Scholar]
  82. 82.
    Pritchard DE, Smith N, Driver RD, Brunner TA. 1979.. Power law scaling for rotational energy transfer. . J. Chem. Phys. 70::211520
    [Crossref] [Google Scholar]
  83. 83.
    Brunner TA, Pritchard D. 1982.. Fitting laws for rotationally inelastic collisions. . Adv. Chem. Phys. 50::589641
    [Google Scholar]
  84. 84.
    Millot G. 1990.. Rotationally inelastic rates over a wide temperature range based on an energy corrected sudden–exponential-power theoretical analysis of Raman line broadening coefficients and Q branch collapse. . J. Chem. Phys. 93::800110
    [Crossref] [Google Scholar]
  85. 85.
    Depristo AE, Alexander MH. 1977.. Rotationally inelastic scattering of 2 HF molecules. . J. Chem. Phys. 66::133442
    [Crossref] [Google Scholar]
  86. 86.
    Depristo AE, Rabitz H. 1977.. Quantum number and energy scaling of rotationally inelastic scattering cross sections. . Chem. Phys. 24::20110
    [Crossref] [Google Scholar]
  87. 87.
    Depristo AE, Augustin SD, Ramaswamy R, Rabitz H. 1979.. Quantum number and energy scaling for nonreactive collisions. . J. Chem. Phys. 71::85065
    [Crossref] [Google Scholar]
  88. 88.
    Alexander MH, Hall GE, Dagdigian PJ. 2011.. The approach to equilibrium: detailed balance and the master equation. . J. Chem. Educ. 88::153843
    [Crossref] [Google Scholar]
  89. 89.
    Sanctuary BC. 1979.. Energy-dependence of rotational cross section. . Chem. Phys. Lett. 62::37883
    [Crossref] [Google Scholar]
  90. 90.
    Koszykowski ML, Rahn LA, Palmer RE, Coltrin ME. 1987.. Theoretical and experimental studies of high-resolution inverse Raman spectra of N2 at 1–10 atm. . J. Phys. Chem. 91::4146
    [Crossref] [Google Scholar]
  91. 91.
    Looney JP, Rosasco GJ, Rahn LA, Hurst WS, Hahn JW. 1989.. Comparison of rotational relaxation rate laws to characterize the Raman Q-branch spectrum of CO at 295 K. . Chem. Phys. Lett. 161::23238
    [Crossref] [Google Scholar]
  92. 92.
    Whitaker BJ, Brechignac P. 1983.. A new fitting law for rotential energy transfer. . Chem. Phys. Lett. 95::40712
    [Crossref] [Google Scholar]
  93. 93.
    Yurgenson S, Hu CC, Kim C, Northby JA. 1999.. Detachment of metastable helium molecules from helium nanodroplets. . Eur. Phys. J. D 9::15357
    [Crossref] [Google Scholar]
  94. 94.
    Hirschfelder JO, Curtiss CF, Bird RB. 1954.. Molecular Theory of Gases and Liquids. New York:: Wiley
    [Google Scholar]
  95. 95.
    Neufeld PD, Aziz RA, Janzen AR. 1972.. Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12–6) potential. . J. Chem. Phys. 57::11002
    [Crossref] [Google Scholar]
  96. 96.
    Orr-Ewing AJ, Zare RN. 1994.. Orientation and alignment of reaction products. . Annu. Rev. Phys. Chem. 45::31566
    [Crossref] [Google Scholar]
  97. 97.
    Zare RN. 1988.. Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics. New York:: Wiley
    [Google Scholar]
  98. 98.
    McGurk SJ, McKendrick KG, Costen ML, Bennett DIG, Klos J, et al. 2012.. Depolarization of rotational angular momentum in CN(A2Π, v = 4) + Ar collisions. . J. Chem. Phys. 136::164306
    [Crossref] [Google Scholar]
  99. 99.
    Fenstermaker RW, Curtiss CF, Bernstein RB. 1969.. Molecular collisions. X. Restricted-distorted-wave–Born and first-order sudden approximations for rotational excitation of diatomic molecules. . J. Chem. Phys. 51::243948
    [Crossref] [Google Scholar]
  100. 100.
    Levine RD. 1969.. Opacity analysis of inelastic molecular collisions. I. The quantum mechanical sudden approximation. . Chem. Phys. Lett. 4::21113
    [Crossref] [Google Scholar]
  101. 101.
    Goldflam R, Green S, Kouri DJ. 1977.. Infinite-order sudden approximation for rotational energy transfer in gaseous mixtures. . J. Chem. Phys. 67::414961
    [Crossref] [Google Scholar]
  102. 102.
    Green S. 1978.. Computational test of infinite-order sudden approximation for excitation of linear rigid rotors by collisions with atoms. . Chem. Phys. 31::42531
    [Crossref] [Google Scholar]
  103. 103.
    Jellinek J, Baer M. 1982.. Infinite-order sudden approximation for reactive scattering within classical mechanics. 1. Theory. . J. Chem. Phys. 76::488392
    [Crossref] [Google Scholar]
  104. 104.
    Corey GC, Alexander MH. 1986.. The infinite-order sudden approximation for collisions involving in Π-electronic states—a new derivation and calculations of rotationally inelastic cross sections for NO(X2Π) + He and Ar. . J. Chem. Phys. 85::565259
    [Crossref] [Google Scholar]
  105. 105.
    Cross RJ. 1986.. Classical limits to the sudden approximation. . J. Chem. Phys. 85::326876
    [Crossref] [Google Scholar]
  106. 106.
    Heijmen TGA, Moszynski R, Wormer PES, van der Avoird A, Rudert AD, et al. 1999.. Rotational state-to-state rate constants and pressure broadening coefficients for He-C2H2 collisions: theory and experiment. . J. Chem. Phys. 111::251931
    [Crossref] [Google Scholar]
  107. 107.
    Bostan D, Mandal B, Joy C, Zoltowski M, Lique F, et al. 2024.. Mixed quantum/classical calculations of rotationally inelastic scattering in the CO plus CO system: a comparison with fully quantum results. . Phys. Chem. Chem. Phys. 26::662737
    [Crossref] [Google Scholar]
  108. 108.
    Joy C, Mandal B, Bostan D, Dubernet ML, Babikov D. 2024.. Mixed quantum/classical theory (MQCT) approach to the dynamics of molecule-molecule collisions in complex systems. . Faraday Discuss. 251::22548
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-012311
Loading
/content/journals/10.1146/annurev-physchem-082423-012311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error