1932

Abstract

Photoredox catalysis has emerged as a powerful platform for chemical synthesis, utilizing chromophore excited states as selective energy stores to surmount chemical activation barriers toward making desirable products. Developments in this field have pushed synthetic chemists to design and discover new photocatalysts with novel and impactful photoreactivity but also with uncharacterized excited states and only an approximate mechanistic understanding. This review highlights specific instances in which ultrafast spectroscopies dissected the photophysical and photochemical dynamics of new classes of photoredox catalysts and their photochemical reactions. After briefly introducing the photophysical processes and ultrafast spectroscopic methods central to this topic, the review describes selected recent examples that evoke distinct classes of photoredox catalysts with demonstrated synthetic utility and ultrafast spectroscopic characterization. This review cements the significant role of ultrafast spectroscopy in modern photocatalyzed organic transformations and institutionalizes the developing intersection of synthetic organic chemistry and physical chemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-013952
2025-04-21
2025-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-013952.html?itemId=/content/journals/10.1146/annurev-physchem-082423-013952&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shaw MH, Twilton J, MacMillan DWC. 2016.. Photoredox catalysis in organic chemistry. . J. Org. Chem. 81:(16):6898926
    [Crossref] [Google Scholar]
  2. 2.
    Prier CK, Rankic DA, MacMillan DWC. 2013.. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. . Chem. Rev. 113:(7):532263
    [Crossref] [Google Scholar]
  3. 3.
    Romero NA, Nicewicz DA. 2016.. Organic photoredox catalysis. . Chem. Rev. 116:(17):10075166
    [Crossref] [Google Scholar]
  4. 4.
    Narayanam JMR, Stephenson CRJ. 2010.. Visible light photoredox catalysis: applications in organic synthesis. . Chem. Soc. Rev. 40:(1):10213
    [Crossref] [Google Scholar]
  5. 5.
    Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, et al. 2022.. Metallaphotoredox: the merger of photoredox and transition metal catalysis. . Chem. Rev. 122:(2):1485542
    [Crossref] [Google Scholar]
  6. 6.
    Goddard J-P, Ollivier C, Fensterbank L. 2016.. Photoredox catalysis for the generation of carbon centered radicals. . Acc. Chem. Res. 49:(9):192436
    [Crossref] [Google Scholar]
  7. 7.
    Staveness D, Bosque I, Stephenson CRJ. 2016.. Free radical chemistry enabled by visible light-induced electron transfer. . Acc. Chem. Res. 49:(10):2295306
    [Crossref] [Google Scholar]
  8. 8.
    Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. 2016.. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3–sp2 cross-coupling. . Acc. Chem. Res. 49:(7):142939
    [Crossref] [Google Scholar]
  9. 9.
    Ghosh I, Marzo L, Das A, Shaikh R, König B. 2016.. Visible light mediated photoredox catalytic arylation reactions. . Acc. Chem. Res. 49:(8):156677
    [Crossref] [Google Scholar]
  10. 10.
    Fabry DC, Rueping M. 2016.. Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. . Acc. Chem. Res. 49:(9):196979
    [Crossref] [Google Scholar]
  11. 11.
    Yoon TP. 2016.. Photochemical stereocontrol using tandem photoredox–chiral Lewis acid catalysis. . Acc. Chem. Res. 49:(10):230715
    [Crossref] [Google Scholar]
  12. 12.
    Hopkinson MN, Tlahuext-Aca A, Glorius F. 2016.. Merging visible light photoredox and gold catalysis. . Acc. Chem. Res. 49:(10):226172
    [Crossref] [Google Scholar]
  13. 13.
    Talbott ED, Burnett NL, Swierk JR. 2023.. Mechanistic and kinetic studies of visible light photoredox reactions. . Chem. Phys. Rev. 4::031312
    [Crossref] [Google Scholar]
  14. 14.
    Pitre SP, McTiernan CD, Scaiano JC. 2016.. Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free alternatives. . Acc. Chem. Res. 49:(6):132030
    [Crossref] [Google Scholar]
  15. 15.
    Swierk JR. 2023.. The cost of quantum yield. . Org. Process Res. Dev. 27:(7):141119
    [Crossref] [Google Scholar]
  16. 16.
    Moschetta EG, Cook GC, Edwards LJ, Ischay MA, Lei Z, et al. 2024.. Photochemistry in pharmaceutical development: a survey of strategies and approaches to industry-wide implementation. . Org. Process Res. Dev. 28:(4):83146
    [Crossref] [Google Scholar]
  17. 17.
    Arias-Rotondo DM, McCusker JK. 2016.. The photophysics of photoredox catalysis: a roadmap for catalyst design. . Chem. Soc. Rev. 45:(21):580320
    [Crossref] [Google Scholar]
  18. 18.
    Kandoth N, Pérez Hernández J, Palomares E, Lloret-Fillol J. 2021.. Mechanisms of photoredox catalysts: the role of optical spectroscopy. . Sustain. Energy Fuels 5:(3):63865
    [Crossref] [Google Scholar]
  19. 19.
    Juneau A, Hope TO, Malenfant J, Mesko M, McNeill J, Frenette M. 2022.. Methods to predict potential reagents in iridium-based photoredox catalysis calibrated with Stern–Volmer quenching rate constants. . ACS Catal. 12:(4):234856
    [Crossref] [Google Scholar]
  20. 20.
    Soto XL, Swierk JR. 2022.. Using lifetime and quenching rate constant to determine optimal quencher concentration. . ACS Omega 7:(29):2553236
    [Crossref] [Google Scholar]
  21. 21.
    Cismesia MA, Yoon TP. 2015.. Characterizing chain processes in visible light photoredox catalysis. . Chem. Sci. 6:(10):542634
    [Crossref] [Google Scholar]
  22. 22.
    Romero NA, Nicewicz DA. 2014.. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions. . J. Am. Chem. Soc. 136:(49):1702435
    [Crossref] [Google Scholar]
  23. 23.
    Stevenson BG, Spielvogel EH, Loiaconi EA, Wambua VM, Nakhamiyayev RV, Swierk JR. 2021.. Mechanistic investigations of an α-aminoarylation photoredox reaction. . J. Am. Chem. Soc. 143:(23):887885
    [Crossref] [Google Scholar]
  24. 24.
    Ruccolo S, Qin Y, Schnedermann C, Nocera DG. 2018.. General strategy for improving the quantum efficiency of photoredox hydroamidation catalysis. . J. Am. Chem. Soc. 140:(44):1492637
    [Crossref] [Google Scholar]
  25. 25.
    Qin Y, Zhu Q, Sun R, Ganley JM, Knowles RR, Nocera DG. 2021.. Mechanistic investigation and optimization of photoredox anti-Markovnikov hydroamination. . J. Am. Chem. Soc. 143:(27):1023242
    [Crossref] [Google Scholar]
  26. 26.
    Sun R, Qin Y, Ruccolo S, Schnedermann C, Costentin C, Nocera DG. 2019.. Elucidation of a redox-mediated reaction cycle for nickel-catalyzed cross coupling. . J. Am. Chem. Soc. 141:(1):8993
    [Crossref] [Google Scholar]
  27. 27.
    Bhattacherjee A, Sneha M, Lewis-Borrell L, Tau O, Clark IP, Orr-Ewing AJ. 2019.. Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. . Nat. Commun. 10::5152
    [Crossref] [Google Scholar]
  28. 28.
    Abderrazak Y, Bhattacharyya A, Reiser O. 2021.. Visible-light-induced homolysis of earth-abundant metal–substrate complexes: a complementary activation strategy in photoredox catalysis. . Angew. Chem. Int. Ed. 60:(39):2110015
    [Crossref] [Google Scholar]
  29. 29.
    Juliá F. 2022.. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d–metal complexes: an emerging tool for sustainable organic synthesis. . ChemCatChem 14:(19):e202200916
    [Crossref] [Google Scholar]
  30. 30.
    Wenger OS. 2018.. Photoactive complexes with Earth-abundant metals. . J. Am. Chem. Soc. 140:(42):1352233
    [Crossref] [Google Scholar]
  31. 31.
    Huang H, Steiniger KA, Lambert TH. 2022.. Electrophotocatalysis: combining light and electricity to catalyze reactions. . J. Am. Chem. Soc. 144:(28):1256783
    [Crossref] [Google Scholar]
  32. 32.
    Fu H, Hyster TK. 2024.. From ground-state to excited-state activation modes: Flavin-dependent “ene” reductases catalyzed non-natural radical reactions. . Acc. Chem. Res. 57:(9):144657
    [Crossref] [Google Scholar]
  33. 33.
    Glaser F, Kerzig C, Wenger OS. 2020.. Multi-photon excitation in photoredox catalysis: concepts, applications, methods. . Angew. Chem. Int. Ed. 59:(26):1026684
    [Crossref] [Google Scholar]
  34. 34.
    Marian CM. 2012.. Spin-orbit coupling and intersystem crossing in molecules. . Wiley Interdiscip. Rev. Comput. Mol. Sci. 2:(2):187203
    [Crossref] [Google Scholar]
  35. 35.
    Noda H, Chen X-K, Nakanotani H, Hosokai T, Miyajima M, et al. 2019.. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. . Nat. Mater. 18:(10):108490
    [Crossref] [Google Scholar]
  36. 36.
    Bixon M, Jortner J. 1968.. Intramolecular radiationless transitions. . J. Chem. Phys. 48:(2):71526
    [Crossref] [Google Scholar]
  37. 37.
    Schuurman MS, Stolow A. 2018.. Dynamics at conical intersections. . Annu. Rev. Phys. Chem. 69::42750
    [Crossref] [Google Scholar]
  38. 38.
    Wagenknecht PS, Ford PC. 2011.. Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. . Coord. Chem. Rev. 255:(5/6):591616
    [Crossref] [Google Scholar]
  39. 39.
    Juban EA, Smeigh AL, Monat JE, McCusker JK. 2006.. Ultrafast dynamics of ligand-field excited states. . Coord. Chem. Rev. 250:(13/14):178391
    [Crossref] [Google Scholar]
  40. 40.
    Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, et al. 2020.. 3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. . J. Am. Chem. Soc. 142:(12):580010
    [Crossref] [Google Scholar]
  41. 41.
    Gould IR, Farid S. 1996.. Dynamics of bimolecular photoinduced electron-transfer reactions. . Acc. Chem. Res. 29:(11):52228
    [Crossref] [Google Scholar]
  42. 42.
    Rather SR, Scholes GD. 2019.. From fundamental theories to quantum coherences in electron transfer. . J. Am. Chem. Soc. 141:(2):70822
    [Crossref] [Google Scholar]
  43. 43.
    Ward MD. 1997.. Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. . Chem. Soc. Rev. 26:(5):36575
    [Crossref] [Google Scholar]
  44. 44.
    Wasielewski MR. 1992.. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. . Chem. Rev. 92:(3):43561
    [Crossref] [Google Scholar]
  45. 45.
    El-Khouly ME, Ito O, Smith PM, D'Souza F. 2004.. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. . J. Photochem. Photobiol. C 5:(1):79104
    [Crossref] [Google Scholar]
  46. 46.
    Angulo G, Rosspeintner A. 2020.. Bimolecular photo-induced electron transfer enlightened by diffusion. . J. Chem. Phys. 153::040902
    [Crossref] [Google Scholar]
  47. 47.
    Kaim W, Fiedler J. 2009.. Spectroelectrochemistry: the best of two worlds. . Chem. Soc. Rev. 38:(12):337382
    [Crossref] [Google Scholar]
  48. 48.
    Grills DC, Polyansky DE, Fujita E. 2017.. Application of pulse radiolysis to mechanistic investigations of catalysis relevant to artificial photosynthesis. . ChemSusChem 10:(22):435973
    [Crossref] [Google Scholar]
  49. 49.
    Olaya-Castro A, Scholes GD. 2011.. Energy transfer from Förster–Dexter theory to quantum coherent light-harvesting. . Int. Rev. Phys. Chem. 30:(1):4977
    [Crossref] [Google Scholar]
  50. 50.
    Mirkovic T, Ostroumov EE, Anna JM, Van Grondelle R, Govindjee Scholes GD. 2017.. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. . Chem. Rev. 117:(2):24993
    [Crossref] [Google Scholar]
  51. 51.
    Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. 2018.. Energy transfer catalysis mediated by visible light: principles, applications, directions. . Chem. Soc. Rev. 47:(19):7190202
    [Crossref] [Google Scholar]
  52. 52.
    Harris AL, Brown JK, Harris CB. 1988.. The nature of simple photodissociation reactions in liquids on ultrafast time scales. . Annu. Rev. Phys. Chem. 39::34166
    [Crossref] [Google Scholar]
  53. 53.
    Sato H. 2001.. Photodissociation of simple molecules in the gas phase. . Chem. Rev. 101:(9):2687726
    [Crossref] [Google Scholar]
  54. 54.
    Khundkar LR, Zewail AH. 1990.. Ultrafast molecular reaction dynamics in real-time: progress over a decade. . Annu. Rev. Phys. Chem. 41::1560
    [Crossref] [Google Scholar]
  55. 55.
    Han K, He G. 2007.. Photochemistry of aryl halides: photodissociation dynamics. . J. Photochem. Photobiol. C 8:(2):5566
    [Crossref] [Google Scholar]
  56. 56.
    Regan PM, Langford SR, Orr-Ewing AJ, Ashfold MNR. 1999.. The ultraviolet photodissociation dynamics of hydrogen bromide. . J. Chem. Phys. 110:(1):28188
    [Crossref] [Google Scholar]
  57. 57.
    Mereshchenko AS, Olshin PK, Karimov AM, Skripkin MY, Burkov KA, et al. 2014.. Photochemistry of copper(II) chlorocomplexes in acetonitrile: trapping the ligand-to-metal charge transfer excited state relaxation pathways. . Chem. Phys. Lett. 615::10510
    [Crossref] [Google Scholar]
  58. 58.
    De Kreijger S, Gillard M, Elias B, Troian-Gautier L. 2024.. Spectroscopic techniques to unravel mechanistic details in light-induced transformations and photoredox catalysis. . ChemCatChem 16:(1):e202301100
    [Crossref] [Google Scholar]
  59. 59.
    Berera R, van Grondelle R, Kennis JTM. 2009.. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. . Photosynth. Res. 101:(2/3):10518
    [Crossref] [Google Scholar]
  60. 60.
    Zigmantas D, Polívka T, Persson P, Sundström V. 2022.. Ultrafast laser spectroscopy uncovers mechanisms of light energy conversion in photosynthesis and sustainable energy materials. . Chem. Phys. Rev. 3::041303
    [Crossref] [Google Scholar]
  61. 61.
    Nibbering ETJ, Fidder H, Pines E. 2005.. Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics. . Annu. Rev. Phys. Chem. 56::33767
    [Crossref] [Google Scholar]
  62. 62.
    Hamm P, Helbing J, Bredenbeck J. 2008.. Two-dimensional infrared spectroscopy of photoswitchable peptides. . Annu. Rev. Phys. Chem. 59::291317
    [Crossref] [Google Scholar]
  63. 63.
    Fang C, Tang L. 2020.. Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy. . Annu. Rev. Phys. Chem. 71::23965
    [Crossref] [Google Scholar]
  64. 64.
    Di Donato M, Groot ML. 2015.. Ultrafast infrared spectroscopy in photosynthesis. . Biochim. Biophys. Acta Bioenerg. 1847:(1):211
    [Crossref] [Google Scholar]
  65. 65.
    vanWilderen LJGW, Bredenbeck J. 2015.. From ultrafast structure determination to steering reactions: mixed IR/non-IR multidimensional vibrational spectroscopies. . Angew. Chem. Int. Ed. 54:(40):1162440
    [Crossref] [Google Scholar]
  66. 66.
    Hamaguchi H, Gustafson TL. 1994.. Ultrafast time-resolved spontaneous and coherent Raman spectroscopy: the structure and dynamics of photogenerated transient species. . Annu. Rev. Phys. Chem. 45::593622
    [Crossref] [Google Scholar]
  67. 67.
    Chen LX. 2005.. Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy. . Annu. Rev. Phys. Chem. 56::22154
    [Crossref] [Google Scholar]
  68. 68.
    Miller RJD. 2014.. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. . Science 343:(6175):110816
    [Crossref] [Google Scholar]
  69. 69.
    Chergui M, Collet E. 2017.. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. . Chem. Rev. 117:(16):1102565
    [Crossref] [Google Scholar]
  70. 70.
    Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. 2023.. Ultrafast X-ray probes of elementary molecular events. . Annu. Rev. Phys. Chem. 74::7397
    [Crossref] [Google Scholar]
  71. 71.
    Bhattacherjee A, Leone SR. 2018.. Ultrafast X-ray transient absorption spectroscopy of gas-phase photochemical reactions: a new universal probe of photoinduced molecular dynamics. . Acc. Chem. Res. 51:(12):320311
    [Crossref] [Google Scholar]
  72. 72.
    Bensasson R, Salet C, Balzani V. 1976.. Laser flash spectroscopy of tris(2,2′-bipyridine)ruthenium(II) in solution. . J. Am. Chem. Soc. 98:(12):372224
    [Crossref] [Google Scholar]
  73. 73.
    Anderson CP, Salmon DJ, Meyer TJ, Young RC. 1977.. Photochemical generation of Ru(bpy)3+ and O2. . J. Am. Chem. Soc. 99:(6):198082
    [Crossref] [Google Scholar]
  74. 74.
    Ziessel R. 1988.. Efficient homogeneous photochemical water gas shift reaction catalysed under extremely mild conditions by novel iridium(III) complexes: [(η5-Me5C5)Ir(bpy)Cl]+, [(η5-Me5C5)Ir(bpy)H]+, and [(η5-Me5C5)Ir(phen)Cl]+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline). . J. Chem. Soc. Chem. Commun. 1::1617
    [Crossref] [Google Scholar]
  75. 75.
    Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK. 1997.. Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. . Science 275:(5296):5457
    [Crossref] [Google Scholar]
  76. 76.
    Hedley GJ, Ruseckas A, Samuel IDW. 2009.. Ultrafast intersystem crossing in a red phosphorescent iridium complex. . J. Phys. Chem. A 113:(1):24
    [Crossref] [Google Scholar]
  77. 77.
    Crosby GA, Demas JN. 1971.. Quantum efficiencies on transition metal complexes. II. Charge-transfer luminescence. . J. Am. Chem. Soc. 93:(12):284147
    [Crossref] [Google Scholar]
  78. 78.
    Preiß S, Päpcke A, Burkhardt L, Großmann L, Lochbrunner S, et al. 2019.. Gold(II) porphyrins in photoinduced electron transfer reactions. . Chem. Eur. J. 25:(23):594049
    [Crossref] [Google Scholar]
  79. 79.
    Sayre H, Ripberger HH, Odella E, Zieleniewska A, Heredia DA, et al. 2021.. PCET-based ligand limits charge recombination with an Ir(III) photoredox catalyst. . J. Am. Chem. Soc. 143:(33):1303443
    [Crossref] [Google Scholar]
  80. 80.
    Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, et al. 2022.. A biohybrid strategy for enabling photoredox catalysis with low-energy light. . Chemistry 8:(1):17485
    [Crossref] [Google Scholar]
  81. 81.
    Waddell PM, Tian L, Scavuzzo AR, Venigalla L, Scholes GD, Carrow BP. 2023.. Visible light–induced palladium-carbon bond weakening in catalytically relevant T-shaped complexes. . Chem. Sci. 14:(48):1421728
    [Crossref] [Google Scholar]
  82. 82.
    Guerra WD, Sayre HJ, Ripberger HH, Odella E, Scholes GD, et al. 2022.. Ir(III)-naphthoquinone complex as a platform for photocatalytic activity. . J. Photochem. Photobiol. 9::100098
    [Crossref] [Google Scholar]
  83. 83.
    Woodhouse MD, McCusker JK. 2020.. Mechanistic origin of photoredox catalysis involving iron(II) polypyridyl chromophores. . J. Am. Chem. Soc. 142:(38):1622933
    [Crossref] [Google Scholar]
  84. 84.
    McCusker JK, Walda KN, Dunn RC, Simon JD, Magde D, Hendrickson DN. 1992.. Sub-picosecond ΔS = 2 intersystem crossing in low-spin ferrous complexes. . J. Am. Chem. Soc. 114:(17):691920
    [Crossref] [Google Scholar]
  85. 85.
    Creutz C, Chou M, Netzel TL, Okumura M, Sutin N. 1980.. Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). . J. Am. Chem. Soc. 102:(4):130919
    [Crossref] [Google Scholar]
  86. 86.
    Gualandi A, Marchini M, Mengozzi L, Natali M, Lucarini M, et al. 2015.. Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br2 catalyst and visible light. . ACS Catal. 5:(10):592731
    [Crossref] [Google Scholar]
  87. 87.
    Steube J, Kruse A, Bokareva OS, Reuter T, Demeshko S, et al. 2023.. Janus-type emission from a cyclometalated iron(III) complex. . Nat. Chem. 15:(4):46874
    [Crossref] [Google Scholar]
  88. 88.
    Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, et al. 2024.. Iron(III) carbene complexes with tunable excited state energies for photoredox and upconversion. . J. Am. Chem. Soc. 146:(16):11299318
    [Google Scholar]
  89. 89.
    Chábera P, Liu Y, Prakash O, Thyrhaug E, Nahhas AE, et al. 2017.. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence. . Nature 543:(7647):69599
    [Crossref] [Google Scholar]
  90. 90.
    Chábera P, Kjaer KS, Prakash O, Honarfar A, Liu Y, et al. 2018.. FeII hexa N-heterocyclic carbene complex with a 528 ps metal-to-ligand charge-transfer excited-state lifetime. . J. Phys. Chem. Lett. 9:(3):45963
    [Crossref] [Google Scholar]
  91. 91.
    Glaser F, Aydogan A, Elias B, Troian-Gautier L. 2024.. The great strides of iron photosensitizers for contemporary organic photoredox catalysis: on our way to the holy grail?. Coord. Chem. Rev. 500::215522
    [Crossref] [Google Scholar]
  92. 92.
    de Groot LHM, Ilic A, Schwarz J, Wärnmark K. 2023.. Iron photoredox catalysis—past, present, and future. . J. Am. Chem. Soc. 145:(17):936988
    [Crossref] [Google Scholar]
  93. 93.
    Kjær KS, Kaul N, Prakash O, Chábera P, Rosemann NW, et al. 2019.. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. . Science 363:(6424):24953
    [Crossref] [Google Scholar]
  94. 94.
    Ilic A, Schwarz J, Johnson C, de Groot LHM, Kaufhold S, et al. 2022.. Photoredox catalysis via consecutive 2LMCT- and 3MLCT-excitation of an Fe(III/II)–N-heterocyclic carbene complex. . Chem. Sci. 13:(32):916575
    [Crossref] [Google Scholar]
  95. 95.
    Leis W, Argüello Cordero MA, Lochbrunner S, Schubert H, Berkefeld A. 2022.. A photoreactive iron(II) complex luminophore. . J. Am. Chem. Soc. 144:(3):116973
    [Crossref] [Google Scholar]
  96. 96.
    Gygi D, Gonzalez MI, Hwang SJ, Xia KT, Qin Y, et al. 2021.. Capturing the complete reaction profile of a C–H bond activation. . J. Am. Chem. Soc. 143:(16):606064
    [Crossref] [Google Scholar]
  97. 97.
    Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, et al. 2022.. Taming the chlorine radical: enforcing steric control over chlorine-radical-mediated C–H activation. . J. Am. Chem. Soc. 144:(3):146472
    [Crossref] [Google Scholar]
  98. 98.
    Bühler RE, Ebert M. 1967.. Transient charge-transfer complexes with chlorine atoms by pulse radiolysis of carbon tetrachloride solutions. . Nature 214:(5094):122021
    [Crossref] [Google Scholar]
  99. 99.
    Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. 2022.. Cobalt(III) carbene complex with an electronic excited-state structure similar to cyclometalated iridium(III) compounds. . J. Am. Chem. Soc. 144:(22):985973
    [Crossref] [Google Scholar]
  100. 100.
    Kaufhold S, Rosemann NW, Chábera P, Lindh L, Bolaño Losada I, et al. 2021.. Microsecond photoluminescence and photoreactivity of a metal-centered excited state in a hexacarbene-Co(III) complex. . J. Am. Chem. Soc. 143:(3):130712
    [Crossref] [Google Scholar]
  101. 101.
    Sinha N, Wenger OS. 2023.. Photoactive metal-to-ligand charge transfer excited states in 3d6 complexes with Cr0, MnI, FeII, and CoIII. . J. Am. Chem. Soc. 145:(9):490320
    [Crossref] [Google Scholar]
  102. 102.
    Yarranton JT, McCusker JK. 2022.. Ligand-field spectroscopy of Co(III) complexes and the development of a spectrochemical series for low-spin d6 charge-transfer chromophores. . J. Am. Chem. Soc. 144:(27):12488500
    [Crossref] [Google Scholar]
  103. 103.
    Chan AY, Ghosh A, Yarranton JT, Twilton J, Jin J, et al. 2023.. Exploiting the Marcus inverted region for first-row transition metal–based photoredox catalysis. . Science 382:(6667):19197
    [Crossref] [Google Scholar]
  104. 104.
    Alowakennu MM, Ghosh A, McCusker JK. 2023.. Direct evidence for excited ligand field state-based oxidative photoredox chemistry of a cobalt(III) polypyridyl photosensitizer. . J. Am. Chem. Soc. 145:(38):2078691
    [Crossref] [Google Scholar]
  105. 105.
    Powers DC, Anderson BL, Nocera DG. 2013.. Two-electron HCl to H2 photocycle promoted by Ni(II) polypyridyl halide complexes. . J. Am. Chem. Soc. 135:(50):1887683
    [Crossref] [Google Scholar]
  106. 106.
    Jun Hwang S, Powers DC, Maher AG, Nocera DG. 2015.. Tandem redox mediator/Ni(II) trihalide complex photocycle for hydrogen evolution from HCl. . Chem. Sci. 6:(2):91722
    [Crossref] [Google Scholar]
  107. 107.
    Shields BJ, Kudisch B, Scholes GD, Doyle AG. 2018.. Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. . J. Am. Chem. Soc. 140:(8):303539
    [Crossref] [Google Scholar]
  108. 108.
    Bím D, Luedecke KM, Cagan DA, Hadt RG. 2024.. Light activation and photophysics of a structurally constrained nickel(II)–bipyridine aryl halide complex. . Inorg. Chem. 63:(9):412031
    [Crossref] [Google Scholar]
  109. 109.
    Lauenstein R, Mader SL, Derondeau H, Esezobor OZ, Block M, et al. 2021.. The central role of the metal ion for photoactivity: Zn- versus Ni-Mabiq. . Chem. Sci. 12:(21):752132
    [Crossref] [Google Scholar]
  110. 110.
    Cavedon C, Gisbertz S, Reischauer S, Vogl S, Sperlich E, et al. 2022.. Intraligand charge transfer enables visible-light-mediated nickel-catalyzed cross-coupling reactions. . Angew. Chem. Int. Ed. 61:(46):e202211433
    [Crossref] [Google Scholar]
  111. 111.
    Manafe SY, Le N, Lambert EC, Curiac C, Nugegoda D, et al. 2024.. Sensitized and self-sensitized photocatalytic CO2 reduction to HCO2− and CO under visible light with Ni(II) CNC-pincer catalysts. . ACS Catal. 14:(9):6589602
    [Crossref] [Google Scholar]
  112. 112.
    Wallick RF, Chakrabarti S, Burke JH, Gnewkow R, Chae JB, et al. 2024.. Excited-state identification of a nickel-bipyridine photocatalyst by time-resolved X-ray absorption spectroscopy. . J. Phys. Chem. Lett. 15:(18):497682
    [Crossref] [Google Scholar]
  113. 113.
    Cagan DA, Bím D, Silva B, Kazmierczak NP, McNicholas BJ, Hadt RG. 2022.. Elucidating the mechanism of excited-state bond homolysis in nickel-bipyridine photoredox catalysts. . J. Am. Chem. Soc. 144:(14):651631
    [Crossref] [Google Scholar]
  114. 114.
    East NR, Naumann R, Förster C, Ramanan C, Diezemann G, Heinze K. 2024.. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. . Nat. Chem. 16:(5):82734
    [Crossref] [Google Scholar]
  115. 115.
    Herr P, Kerzig C, Larsen CB, Häussinger D, Wenger OS. 2021.. Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. . Nat. Chem. 13:(10):95662
    [Crossref] [Google Scholar]
  116. 116.
    Förster C, Heinze K. 2020.. Photophysics and photochemistry with Earth-abundant metals—fundamentals and concepts. . Chem. Soc. Rev. 49:(4):105770
    [Crossref] [Google Scholar]
  117. 117.
    Shaw GB, Grant CD, Shirota H, Castner EW, Meyer GJ, Chen LX. 2007.. Ultrafast structural rearrangements in the MLCT excited state for copper(I) bis-phenanthrolines in solution. . J. Am. Chem. Soc. 129:(7):214760
    [Crossref] [Google Scholar]
  118. 118.
    Garakyaraghi S, Danilov EO, McCusker CE, Castellano FN. 2015.. Transient absorption dynamics of sterically congested Cu(I) MLCT excited states. . J. Phys. Chem. A 119:(13):318193
    [Crossref] [Google Scholar]
  119. 119.
    McCusker CE, Castellano FN. 2013.. Design of a long-lifetime, Earth-abundant, aqueous compatible Cu(I) photosensitizer using cooperative steric effects. . Inorg. Chem. 52:(14):811420
    [Crossref] [Google Scholar]
  120. 120.
    Khnayzer RS, McCusker CE, Olaiya BS, Castellano FN. 2013.. Robust cuprous phenanthroline sensitizer for solar hydrogen photocatalysis. . J. Am. Chem. Soc. 135:(38):1406870
    [Crossref] [Google Scholar]
  121. 121.
    Jayasekara GK, Antolini C, Smith MA, Jacoby DJ, Escolastico J, et al. 2021.. Mechanisms of the Cu(I)-catalyzed intermolecular photocycloaddition reaction revealed by optical and X-ray transient absorption spectroscopies. . J. Am. Chem. Soc. 143:(46):1935664
    [Crossref] [Google Scholar]
  122. 122.
    Kochi JK. 1962.. Photolyses of metal compounds: cupric chloride in organic media. . J. Am. Chem. Soc. 84:(11):212127
    [Crossref] [Google Scholar]
  123. 123.
    Fayad R, Engl S, Danilov EO, Hauke CE, Reiser O, Castellano FN. 2020.. Direct evidence of visible light–induced homolysis in chlorobis(2,9-dimethyl-1,10-phenanthroline)copper(II). . J. Phys. Chem. Lett. 11:(13):534549
    [Crossref] [Google Scholar]
  124. 124.
    Li QY, Gockel SN, Lutovsky GA, DeGlopper KS, Baldwin NJ, et al. 2022.. Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. . Nat. Chem. 14:(1):9499
    [Crossref] [Google Scholar]
  125. 125.
    Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, et al. 2022.. A unified approach to decarboxylative halogenation of (hetero)aryl carboxylic acids. . J. Am. Chem. Soc. 144:(18):8296305
    [Crossref] [Google Scholar]
  126. 126.
    Zhang Y, Petersen JL, Milsmann C. 2016.. A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. . J. Am. Chem. Soc. 138:(40):1311518
    [Crossref] [Google Scholar]
  127. 127.
    Zhang Y, Lee TS, Favale JM, Leary DC, Petersen JL, et al. 2020.. Delayed fluorescence from a zirconium(IV) photosensitizer with ligand-to-metal charge-transfer excited states. . Nat. Chem. 12:(4):34552
    [Crossref] [Google Scholar]
  128. 128.
    Kitzmann WR, Bertrams M-S, Boden P, Fischer AC, Klauer R, et al. 2023.. Stable molybdenum(0) carbonyl complex for upconversion and photoredox catalysis. . J. Am. Chem. Soc. 145:(30):16597609
    [Crossref] [Google Scholar]
  129. 129.
    Waele VD, Poizat O, Fagnoni M, Bagno A, Ravelli D. 2016.. Unraveling the key features of the reactive state of decatungstate anion in hydrogen atom transfer (HAT) photocatalysis. . ACS Catal. 6:(10):717482
    [Crossref] [Google Scholar]
  130. 130.
    Lee Y, Ki H, Im D, Eom S, Gu J, et al. 2023.. Cerium photocatalyst in action: structural dynamics in the presence of substrate visualized via time-resolved X-ray liquidography. . J. Am. Chem. Soc. 145:(43):2371526
    [Crossref] [Google Scholar]
  131. 131.
    Zhao R, Shi L. 2018.. A renaissance of ligand-to-metal charge transfer by cerium photocatalysis. . Org. Chem. Front. 5:(20):301821
    [Crossref] [Google Scholar]
  132. 132.
    Hu A, Guo J, Pan H, Zuo Z. 2018.. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. . Science 361:(6403):66872
    [Crossref] [Google Scholar]
  133. 133.
    An Q, Wang Z, Chen Y, Wang X, Zhang K, et al. 2020.. Cerium-catalyzed C–H functionalizations of alkanes utilizing alcohols as hydrogen atom transfer agents. . J. Am. Chem. Soc. 142:(13):621626
    [Crossref] [Google Scholar]
  134. 134.
    Speckmeier E, Fischer TG, Zeitler K. 2018.. A toolbox approach to construct broadly applicable metal-free catalysts for photoredox chemistry: deliberate tuning of redox potentials and importance of halogens in donor-acceptor cyanoarenes. . J. Am. Chem. Soc. 140:(45):1535365
    [Crossref] [Google Scholar]
  135. 135.
    Pearson RM, Lim C-H, McCarthy BG, Musgrave CB, Miyake GM. 2016.. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts. . J. Am. Chem. Soc. 138:(35):11399407
    [Crossref] [Google Scholar]
  136. 136.
    Theriot JC, Lim C-H, Yang H, Ryan MD, Musgrave CB, Miyake GM. 2016.. Organocatalyzed atom transfer radical polymerization driven by visible light. . Science 352:(6289):108286
    [Crossref] [Google Scholar]
  137. 137.
    Corbin DA, Miyake GM. 2022.. Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP): precision polymer synthesis using organic photoredox catalysis. . Chem. Rev. 122:(2):183074
    [Crossref] [Google Scholar]
  138. 138.
    McCarthy BG, Pearson RM, Lim C-H, Sartor SM, Damrauer NH, Miyake GM. 2018.. Structure-property relationships for tailoring phenoxazines as reducing photoredox catalysts. . J. Am. Chem. Soc. 140:(15):5088101
    [Crossref] [Google Scholar]
  139. 139.
    Sartor SM, McCarthy BG, Pearson RM, Miyake GM, Damrauer NH. 2018.. Exploiting charge-transfer states for maximizing intersystem crossing yields in organic photoredox catalysts. . J. Am. Chem. Soc. 140:(14):477881
    [Crossref] [Google Scholar]
  140. 140.
    Sartor SM, Lattke YM, McCarthy BG, Miyake GM, Damrauer NH. 2019.. Effects of naphthyl connectivity on the photophysics of compact organic charge-transfer photoredox catalysts. . J. Phys. Chem. A 123:(22):472736
    [Crossref] [Google Scholar]
  141. 141.
    Orr-Ewing AJ. 2019.. Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis?. Struct. Dyn. 6::010901
    [Crossref] [Google Scholar]
  142. 142.
    Koyama D, Dale HJA, Orr-Ewing AJ. 2018.. Ultrafast observation of a photoredox reaction mechanism: photoinitiation in organocatalyzed atom-transfer radical polymerization. . J. Am. Chem. Soc. 140:(4):128593
    [Crossref] [Google Scholar]
  143. 143.
    Bhattacherjee A, Sneha M, Lewis-Borrell L, Amoruso G, Oliver TAA, et al. 2021.. Singlet and triplet contributions to the excited-state activities of dihydrophenazine, phenoxazine, and phenothiazine organocatalysts used in atom transfer radical polymerization. . J. Am. Chem. Soc. 143:(9):361327
    [Crossref] [Google Scholar]
  144. 144.
    Zeman CJ, Kim S, Zhang F, Schanze KS. 2020.. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. . J. Am. Chem. Soc. 142:(5):22047
    [Crossref] [Google Scholar]
  145. 145.
    MacKenzie IA, Wang L, Onuska NPR, Williams OF, Begam K, et al. 2020.. Discovery and characterization of an acridine radical photoreductant. . Nature 580:(7801):7680
    [Crossref] [Google Scholar]
  146. 146.
    Baek Y, Reinhold A, Tian L, Jeffrey PD, Scholes GD, Knowles RR. 2023.. Singly reduced iridium chromophores: synthesis, characterization, and photochemistry. . J. Am. Chem. Soc. 145:(23):12499508
    [Crossref] [Google Scholar]
  147. 147.
    Christensen JA, Phelan BT, Chaudhuri S, Acharya A, Batista VS, Wasielewski MR. 2018.. Pheno-thiazine radical cation excited states as super-oxidants for energy-demanding reactions. . J. Am. Chem. Soc. 140:(15):529099
    [Crossref] [Google Scholar]
  148. 148.
    Gumy J-C, Vauthey E. 1997.. Investigation of the excited-state dynamics of radical ions in the condensed phase using the picosecond transient grating technique. . J. Phys. Chem. A 101:(46):857580
    [Crossref] [Google Scholar]
  149. 149.
    Rieth AJ, Gonzalez MI, Kudisch B, Nava M, Nocera DG. 2021.. How radical are “radical” photocatalysts? A closed-shell Meisenheimer complex is identified as a super-reducing photoreagent. . J. Am. Chem. Soc. 143:(35):1435259
    [Crossref] [Google Scholar]
  150. 150.
    Pfund B, Gejsnæs-Schaad D, Lazarevski B, Wenger OS. 2024.. Picosecond reactions of excited radical ion super-reductants. . Nat. Commun. 15::4738
    [Crossref] [Google Scholar]
  151. 151.
    Gaffney KJ. 2021.. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. . Chem. Sci. 12:(23):801025
    [Crossref] [Google Scholar]
  152. 152.
    Reinhard ME, Sidhu BK, Lozada IB, Powers-Riggs N, Ortiz RJ, et al. 2024.. Time-resolved X-ray emission spectroscopy and synthetic high-spin model complexes resolve ambiguities in excited-state assignments of transition-metal chromophores: a case study of Fe-amido complexes. . J. Am. Chem. Soc. 146:(26):1790816
    [Crossref] [Google Scholar]
  153. 153.
    Braun JD, Lozada IB, Kolodziej C, Burda C, Newman KME, et al. 2019.. Iron(II) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. . Nat. Chem. 11:(12):114450
    [Crossref] [Google Scholar]
  154. 154.
    Sneha M, Thornton GL, Lewis-Borrell L, Ryder ASH, Espley SG, et al. 2023.. Photoredox-HAT catalysis for primary amine α-C-H alkylation: mechanistic insight with transient absorption spectroscopy. . ACS Catal. 13:(12):800413
    [Crossref] [Google Scholar]
  155. 155.
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A, et al. 2017.. Using coherence to enhance function in chemical and biophysical systems. . Nature 543:(7647):64756
    [Crossref] [Google Scholar]
  156. 156.
    McCusker JK. 2019.. Electronic structure in the transition metal block and its implications for light harvesting. . Science 363:(6426):48488
    [Crossref] [Google Scholar]
  157. 157.
    Rather SR, Fu B, Kudisch B, Scholes GD. 2021.. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. . Nat. Chem. 13:(1):7076
    [Crossref] [Google Scholar]
  158. 158.
    Yoneda Y, Kudisch B, Rather SR, Maiuri M, Nagasawa Y, et al. 2021.. Vibrational dephasing along the reaction coordinate of an electron transfer reaction. . J. Am. Chem. Soc. 143:(36):1451122
    [Crossref] [Google Scholar]
  159. 159.
    Paulus BC, Adelman SL, Jamula LL, McCusker JK. 2020.. Leveraging excited-state coherence for synthetic control of ultrafast dynamics. . Nature 582:(7811):21418
    [Crossref] [Google Scholar]
  160. 160.
    Schrauben JN, Dillman KL, Beck WF, McCusker JK. 2010.. Vibrational coherence in the excited state dynamics of Cr(acac)3: probing the reaction coordinate for ultrafast intersystem crossing. . Chem. Sci. 1:(3):40510
    [Crossref] [Google Scholar]
  161. 161.
    Li X, Page CG, Zanetti-Polzi L, Kalra AP, Oblinsky DG, et al. 2023.. Mechanism and dynamics of photodecarboxylation catalyzed by lactate monooxygenase. . J. Am. Chem. Soc. 145:(24):1323240
    [Crossref] [Google Scholar]
  162. 162.
    Wu R, Li X, Wang L, Zhong D. 2022.. Ultrafast dynamics and catalytic mechanism of fatty acid photodecarboxylase. . Angew. Chem. Int. Ed. 61:(50):e202209180
    [Crossref] [Google Scholar]
  163. 163.
    Sorigué D, Hadjidemetriou K, Blangy S, Gotthard G, Bonvalet A, et al. 2021.. Mechanism and dynamics of fatty acid photodecarboxylase. . Science 372:(6538):eabd5687
    [Crossref] [Google Scholar]
  164. 164.
    Crisenza GEM, Mazzarella D, Melchiorre P. 2020.. Synthetic methods driven by the photoactivity of electron donor-acceptor complexes. . J. Am. Chem. Soc. 142:(12):546176
    [Crossref] [Google Scholar]
  165. 165.
    Cole JP, Chen D-F, Kudisch M, Pearson RM, Lim C-H, Miyake GM. 2020.. Organocatalyzed birch reduction driven by visible light. . J. Am. Chem. Soc. 142:(31):1357381
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-013952
Loading
/content/journals/10.1146/annurev-physchem-082423-013952
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error