1932

Abstract

How long thread-like eukaryotic chromosomes fit tidily in the small volume of the nucleus without significant entanglement is just beginning to be understood, thanks to major advances in experimental techniques. Several polymer models, which reproduce contact maps that measure the probabilities that two loci are in spatial contact, have predicted the 3D structures of interphase chromosomes. Data-driven approaches, using contact maps as input, predict that mitotic helical chromosomes are characterized by a switch in handedness, referred to as perversion. By using experimentally derived effective interactions between chromatin loci in simulations, structures of conventional and inverted nuclei have been accurately predicted. Polymer theory and simulations show that the dynamics of individual loci in chromatin exhibit subdiffusive behavior but the diffusion exponents are broadly distributed, which accords well with experiments. Although coarse-grained models are successful, many challenging problems remain, which require the creation of new experimental and computational tools to understand genome biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-024123
2025-04-21
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-024123.html?itemId=/content/journals/10.1146/annurev-physchem-082423-024123&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Paweletz N. 2001.. Walther Flemming: pioneer of mitosis research. . Nat. Rev. Mol. Cell Biol. 2:(1):7275
    [Crossref] [Google Scholar]
  2. 2.
    Flemming W. 1882.. Zellsubstanz, Kern und Zelltheilung. Leipzig, Ger:.: Vogel
    [Google Scholar]
  3. 3.
    Rabl C. 1885.. Uber zelltheilung. . Morph. Jb. 10::214330
    [Google Scholar]
  4. 4.
    Boveri T. 1909.. Die Blastomerenkerne von Ascaris Megalocephala und die Theorie der Chromosomenindividualität. . Arch. Zellforsch. 3::181268
    [Google Scholar]
  5. 5.
    Cremer T, Cremer M. 2010.. Chromosome territories. . Cold Spring Harb. Perspect. Biol. 2:(3):a003889
    [Crossref] [Google Scholar]
  6. 6.
    Watson JD, Crick FH. 1953.. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. . Nature 171:(4356):73738
    [Crossref] [Google Scholar]
  7. 7.
    Kornberg RD. 1974.. Chromatin structure: a repeating unit of histones and DNA. . Science 184::86871
    [Crossref] [Google Scholar]
  8. 8.
    Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A. 1984.. Structure of the nucleosome core particle at 7 Å resolution. . Nature 311:(5986):53237
    [Crossref] [Google Scholar]
  9. 9.
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997.. Crystal structure of the nucleosome core particle at 2.8 Å resolution. . Nature 389:(6648):25160
    [Crossref] [Google Scholar]
  10. 10.
    Rowley MJ, Corces VG. 2018.. Organizational principles of 3D genome architecture. . Nat. Rev. Genet. 19:(12):789800
    [Crossref] [Google Scholar]
  11. 11.
    Dekker J, Marti-Renom MA, Mirny LA. 2013.. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. . Nat. Rev. Genet. 14:(6):390403
    [Crossref] [Google Scholar]
  12. 12.
    Mirny L, Dekker J. 2022.. Mechanisms of chromosome folding and nuclear organization: their interplay and open questions. . Cold Spring Harb. Perspect. Biol. 14:(7):a040147
    [Crossref] [Google Scholar]
  13. 13.
    Rieder CL, Khodjakov A. 2003.. Mitosis through the microscope: advances in seeing inside live dividing cells. . Science 300:(5616):9196
    [Crossref] [Google Scholar]
  14. 14.
    Dekker J, Rippe K, Dekker M, Kleckner N. 2002.. Capturing chromosome conformation. . Science 295:(5558):130611
    [Crossref] [Google Scholar]
  15. 15.
    Hanson CV, Shen C-K, Hearst JE. 1976.. Cross-linking of DNA in situ as a probe for chromatin structure. . Science 193:(4247):6264
    [Crossref] [Google Scholar]
  16. 16.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. . Science 326:(5950):28993
    [Crossref] [Google Scholar]
  17. 17.
    Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, et al. 2018.. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. . Science 362::eaau1783
    [Crossref] [Google Scholar]
  18. 18.
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, et al. 2016.. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. . Nature 529:(7586):41822
    [Crossref] [Google Scholar]
  19. 19.
    Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020.. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. . Cell 182:(6):164159.e26
    [Crossref] [Google Scholar]
  20. 20.
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, et al. 2014.. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. . Cell 159::166580
    [Crossref] [Google Scholar]
  21. 21.
    Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, et al. 2005.. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. . PLOS Biol. 3:(5):e157
    [Crossref] [Google Scholar]
  22. 22.
    Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, et al. 2016.. Spatial organization of chromatin domains and compartments in single chromosomes. . Science 353:(6299):598602
    [Crossref] [Google Scholar]
  23. 23.
    Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. 2015.. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. . Cell 162:(1):10819
    [Crossref] [Google Scholar]
  24. 24.
    Hsieh T-HS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, et al. 2020.. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. . Mol. Cell 78:(3):53953.e8
    [Crossref] [Google Scholar]
  25. 25.
    Goel VY, Huseyin MK, Hansen AS. 2023.. Region capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. . Nat. Genet. 55:(6):104856
    [Crossref] [Google Scholar]
  26. 26.
    Xie WJ, Qi Y, Zhang B. 2020.. Characterizing chromatin folding coordinate and landscape with deep learning. . PLOS Comput. Biol. 16:(9):e1008262
    [Crossref] [Google Scholar]
  27. 27.
    Whalen S, Schreiber J, Noble WS, Pollard KS. 2022.. Navigating the pitfalls of applying machine learning in genomics. . Nat. Rev. Genet. 23:(3):16981
    [Crossref] [Google Scholar]
  28. 28.
    Zhou J. 2022.. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. . Nat. Genet. 54:(5):72534
    [Crossref] [Google Scholar]
  29. 29.
    Fudenberg G, Kelley DR, Pollard KS. 2020.. Predicting 3D genome folding from DNA sequence with Akita. . Nat. Methods 17:(11):111117
    [Crossref] [Google Scholar]
  30. 30.
    Van den Engh G, Sachs R, Trask BJ. 1992.. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. . Science 257:(5075):141012
    [Crossref] [Google Scholar]
  31. 31.
    Sachs R, Van den Engh G, Trask B, Yokota H, Hearst J. 1995.. A random-walk/giant-loop model for interphase chromosomes. . PNAS 92:(7):271014
    [Crossref] [Google Scholar]
  32. 32.
    Nicodemi M, Pombo A. 2014.. Models of chromosome structure. . Curr. Opin. Cell Biol. 28::9095
    [Crossref] [Google Scholar]
  33. 33.
    Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, et al. 2012.. Complexity of chromatin folding is captured by the strings and binders switch model. . PNAS 109:(40):1617378
    [Crossref] [Google Scholar]
  34. 34.
    Bianco S, Lupiáñez DG, Chiariello AM, Annunziatella C, Kraft K, et al. 2018.. Polymer physics predicts the effects of structural variants on chromatin architecture. . Nat. Genet. 50::66267
    [Crossref] [Google Scholar]
  35. 35.
    Brackley CA, Johnson J, Kelly S, Cook PR, Marenduzzo D. 2016.. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. . Nucleic Acids Res. 44:(8):350312
    [Crossref] [Google Scholar]
  36. 36.
    Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN. 2016.. Transferable model for chromosome architecture. . PNAS 113:(43):1216873
    [Crossref] [Google Scholar]
  37. 37.
    Jost D, Carrivain P, Cavalli G, Vaillant C. 2014.. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. . Nucleic Acids Res. 42:(15):955361
    [Crossref] [Google Scholar]
  38. 38.
    Zhang B, Wolynes PG. 2015.. Topology, structures, and energy landscapes of human chromosomes. . PNAS 112::606267
    [Crossref] [Google Scholar]
  39. 39.
    Michieletto D, Orlandini E, Marenduzzo D. 2016.. Polymer model with epigenetic recoloring reveals a pathway for the de novo establishment and 3D organization of chromatin domains. . Phys. Rev. X 6:(4):041047
    [Google Scholar]
  40. 40.
    Shi G, Liu L, Hyeon C, Thirumalai D. 2018.. Interphase human chromosome exhibits out of equilibrium glassy dynamics. . Nat. Commun. 9:(1):3161
    [Crossref] [Google Scholar]
  41. 41.
    Flory PJ. 1942.. Thermodynamics of high polymer solutions. . J. Chem. Phys. 10:(1):5161
    [Crossref] [Google Scholar]
  42. 42.
    Huggins ML. 1942.. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. . J. Am. Chem. Soc. 64:(11):271618
    [Crossref] [Google Scholar]
  43. 43.
    Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson G. 2017.. Cell Biology. Amsterdam:: Elsevier. , 3rd ed..
    [Google Scholar]
  44. 44.
    Michieletto D, Turner MS. 2016.. A topologically driven glass in ring polymers. . PNAS 113:(19):5195200
    [Crossref] [Google Scholar]
  45. 45.
    Hildebrand EM, Dekker J. 2020.. Mechanisms and functions of chromosome compartmentalization. . Trends Biochem. Sci. 45:(5):38596
    [Crossref] [Google Scholar]
  46. 46.
    Misteli T. 2020.. The self-organizing genome: principles of genome architecture and function. . Cell 183:(1):2845
    [Crossref] [Google Scholar]
  47. 47.
    Feric M, Misteli T. 2021.. Phase separation in genome organization across evolution. . Trends Cell Biol. 31:(8):67185
    [Crossref] [Google Scholar]
  48. 48.
    Cui Y, Bustamante C. 2000.. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. . PNAS 97:(1):12732
    [Crossref] [Google Scholar]
  49. 49.
    Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. 2016.. Uncovering the forces between nucleosomes using DNA origami. . Sci. Adv. 2:(11):e1600974
    [Crossref] [Google Scholar]
  50. 50.
    Shimamoto Y, Tamura S, Masumoto H, Maeshima K. 2017.. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity. . Mol. Biol. Cell 28:(11):158089
    [Crossref] [Google Scholar]
  51. 51.
    Gibson BA, Doolittle LK, Schneider MW, Jensen LE, Gamarra N, et al. 2019.. Organization of chromatin by intrinsic and regulated phase separation. . Cell 179:(2):47084.e21
    [Crossref] [Google Scholar]
  52. 52.
    Shin S, Shi G, Thirumalai D. 2023.. From effective interactions extracted using Hi-C data to chromosome structures in conventional and inverted nuclei. . Phys. Rev. X. Life 1:(1):013010
    [Google Scholar]
  53. 53.
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, et al. 2017.. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. . Nature 547:(7662):23640
    [Crossref] [Google Scholar]
  54. 54.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017.. Phase separation drives heterochromatin domain formation. . Nature 547:(7662):24145
    [Crossref] [Google Scholar]
  55. 55.
    Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, et al. 2019.. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. . Nature 575:(7782):39094
    [Crossref] [Google Scholar]
  56. 56.
    Plys AJ, Davis CP, Kim J, Rizki G, Keenen MM, et al. 2019.. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. . Genes Dev. 33:(13–14):799813
    [Crossref] [Google Scholar]
  57. 57.
    Cho WK, Spille JH, Hecht M, Lee C, Li C, et al. 2018.. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. . Science 361:(6400):41215
    [Crossref] [Google Scholar]
  58. 58.
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, et al. 2018.. Coactivator condensation at super-enhancers links phase separation and gene control. . Science 361:(6400):eaar3958
    [Crossref] [Google Scholar]
  59. 59.
    Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, et al. 2018.. Transcription factors activate genes through the phase-separation capacity of their activation domains. . Cell 175:(7):184255.e16
    [Crossref] [Google Scholar]
  60. 60.
    Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. 2012.. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. . Nat. Biotechnol. 30:(1):9098
    [Crossref] [Google Scholar]
  61. 61.
    Di Stefano M, Paulsen J, Lien TG, Hovig E, Micheletti C. 2016.. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization. . Sci. Rep. 6:(1):35985
    [Crossref] [Google Scholar]
  62. 62.
    Di Pierro M, Cheng RR, Lieberman Aiden E, Wolynes PG, Onuchic JN. 2017.. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. . PNAS 114:(46):1212631
    [Crossref] [Google Scholar]
  63. 63.
    Hua N, Tjong H, Shin H, Gong K, Zhou XJ, Alber F. 2018.. Producing genome structure populations with the dynamic and automated PGS software. . Nat. Protoc. 13:(5):91526
    [Crossref] [Google Scholar]
  64. 64.
    Abbas A, He X, Niu J, Zhou B, Zhu G, et al. 2019.. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. . Nat. Commun. 10:(1):2049
    [Crossref] [Google Scholar]
  65. 65.
    Qi Y, Reyes A, Johnstone SE, Aryee MJ, Bernstein BE, Zhang B. 2020.. Data-driven polymer model for mechanistic exploration of diploid genome organization. . Biophys. J. 119:(9):190516
    [Crossref] [Google Scholar]
  66. 66.
    Perez-Rathke A, Sun Q, Wang B, Boeva V, Shao Z, Liang J. 2020.. CHROMATIX: computing the functional landscape of many-body chromatin interactions in transcriptionally active loci from deconvolved single cells. . Genome Biol. 21:(1):13
    [Crossref] [Google Scholar]
  67. 67.
    Kumari K, Duenweg B, Padinhateeri R, Prakash JR. 2020.. Computing 3D chromatin configurations from contact probability maps by inverse Brownian dynamics. . Biophys. J. 118:(9):2193208
    [Crossref] [Google Scholar]
  68. 68.
    Shi G, Thirumalai D. 2021.. From Hi-C contact map to three-dimensional organization of interphase human chromosomes. . Phys. Rev. X 11:(1):011051
    [Google Scholar]
  69. 69.
    Di Stefano M, Paulsen J, Jost D, Marti-Renom MA. 2021.. 4D nucleome modeling. . Curr. Opin. Genet. Dev. 67::2532
    [Crossref] [Google Scholar]
  70. 70.
    Boninsegna L, Yildirim A, Polles G, Zhan Y, Quinodoz SA, et al. 2022.. Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations. . Nat. Methods 19:(8):93849
    [Crossref] [Google Scholar]
  71. 71.
    Contessoto VG, Dudchenko O, Aiden EL, Wolynes PG, Onuchic JN, Di Pierro M. 2023.. Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues. . Nat. Commun. 14:(1):326
    [Crossref] [Google Scholar]
  72. 72.
    Shi G, Thirumalai D. 2023.. A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants. . Nat. Commun. 14:(1):1150
    [Crossref] [Google Scholar]
  73. 73.
    Jebara T. 2004.. Machine Learning: Discriminative and Generative. New York:: Springer
    [Google Scholar]
  74. 74.
    Jaynes ET. 1957.. Information theory and statistical mechanics. . Phys. Rev. 106:(4):62030
    [Crossref] [Google Scholar]
  75. 75.
    Pressé S, Ghosh K, Lee J, Dill KA. 2013.. Principles of maximum entropy and maximum caliber in statistical physics. . Rev. Mod. Phys. 85:(3):111541
    [Crossref] [Google Scholar]
  76. 76.
    Shi G, Thirumalai D. 2019.. Conformational heterogeneity in human interphase chromosome organization reconciles the FISH and Hi-C paradox. . Nat. Commun. 10:(1):3894
    [Crossref] [Google Scholar]
  77. 77.
    Jeong D, Shi G, Li X, Thirumalai D. 2024.. Structural basis for the preservation of a subset of topologically associating domains in interphase chromosomes upon cohesin depletion. . eLife 12::RP88564
    [Crossref] [Google Scholar]
  78. 78.
    Dey A, Shi G, Takaki R, Thirumalai D. 2023.. Structural changes in chromosomes driven by multiple condensin motors during mitosis. . Cell Rep. 42:(4):112348
    [Crossref] [Google Scholar]
  79. 79.
    Flory PJ. 1976.. Statistical thermodynamics of random networks. . Proc. R. Soc. A 351:(1666):35180
    [Google Scholar]
  80. 80.
    Doi M, Edwards SF. 1988.. The Theory of Polymer Dynamics. Oxford:: Oxford Univ. Press
    [Google Scholar]
  81. 81.
    Bryngelson JD, Thirumalai D. 1996.. Internal constraints induce localization in an isolated polymer molecule. . Phys. Rev. Lett. 76:(3):54245
    [Crossref] [Google Scholar]
  82. 82.
    Shukron O, Holcman D. 2017.. Statistics of randomly cross-linked polymer models to interpret chromatin conformation capture data. . Phys. Rev. E 96:(1):012503
    [Crossref] [Google Scholar]
  83. 83.
    Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME, et al. 2019.. Extensive heterogeneity and intrinsic variation in spatial genome organization. . Cell 176:(6):150215
    [Crossref] [Google Scholar]
  84. 84.
    Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, et al. 2017.. 3D structures of individual mammalian genomes studied by single-cell Hi-C. . Nature 544:(7648):5964
    [Crossref] [Google Scholar]
  85. 85.
    Liu L, Kim MH, Hyeon C. 2019.. Heterogeneous loop model to infer 3D chromosome structures from Hi-C. . Biophys. J. 117::61325
    [Crossref] [Google Scholar]
  86. 86.
    Liu L, Hyeon C. 2020.. Revisiting the organization of Polycomb-repressed domains: 3D chromatin models from Hi-C compared with super-resolution imaging. . Nucleic Acids Res. 48::1148694
    [Crossref] [Google Scholar]
  87. 87.
    Liu L, Zhang B, Hyeon C. 2021.. Extracting multi-way chromatin contacts from Hi-C data. . PLOS Comput. Biol. 17:(12):e1009669
    [Crossref] [Google Scholar]
  88. 88.
    Liu L, Cao X, Zhang B, Hyeon C. 2022.. Dissecting the cosegregation probability from genome architecture mapping. . Biophys. J. 121:(20):377484
    [Crossref] [Google Scholar]
  89. 89.
    Bohn M, Heermann DW, van Driel R. 2007.. Random loop model for long polymers. . Phys. Rev. E 76:(5):051805
    [Crossref] [Google Scholar]
  90. 90.
    Solf MP, Vilgis TA. 1995.. Statistical mechanics of macromolecular networks without replicas. . J. Phys. A Math. Gen. 28:(23):6655
    [Crossref] [Google Scholar]
  91. 91.
    Zwanzig R. 1997.. Effect of close contacts on the radius of gyration of a polymer. . J. Chem. Phys. 106:(7):282427
    [Crossref] [Google Scholar]
  92. 92.
    Le Treut G, Képès F, Orland H. 2018.. A polymer model for the quantitative reconstruction of chromosome architecture from HiC and GAM data. . Biophys. J. 115:(12):228694
    [Crossref] [Google Scholar]
  93. 93.
    Shinkai S, Nakagawa M, Sugawara T, Togashi Y, Ochiai H, et al. 2020.. PHi-C: deciphering Hi-C data into polymer dynamics. . NAR Genom. Bioinf. 2:(2):lqaa020
    [Crossref] [Google Scholar]
  94. 94.
    Shinkai S, Sugawara T, Miura H, Hiratani I, Onami S. 2020.. Microrheology for Hi-C data reveals the spectrum of the dynamic 3D genome organization. . Biophys. J. 118:(9):222028
    [Crossref] [Google Scholar]
  95. 95.
    Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, et al. 2021.. Integrated spatial genomics reveals global architecture of single nuclei. . Nature 590:(7845):34450
    [Crossref] [Google Scholar]
  96. 96.
    Olivares-Chauvet P, Mukamel Z, Lifshitz A, Schwartzman O, Elkayam NO, et al. 2016.. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. . Nature 540::296300
    [Crossref] [Google Scholar]
  97. 97.
    Oudelaar AM, Harrold CL, Hanssen LLP, Telenius JM, Higgs DR, Hughes JR. 2019.. A revised model for promoter competition based on multi-way chromatin interactions at the α-globin locus. . Nat. Commun. 10::5412
    [Crossref] [Google Scholar]
  98. 98.
    Allahyar A, Vermeulen C, Bouwman BAM, Krijger PHL, Verstegen MJAM, et al. 2018.. Enhancer hubs and loop collisions identified from single-allele topologies. . Nat. Genet. 50:(8):115160
    [Crossref] [Google Scholar]
  99. 99.
    Vermeulen C, Allahyar A, Bouwman BAM, Krijger PHL, Verstegen MJAM, et al. 2020.. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. . Nat. Protoc. 15::36497
    [Crossref] [Google Scholar]
  100. 100.
    Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, et al. 2017.. Complex multi-enhancer contacts captured by genome architecture mapping. . Nature 543::51924
    [Crossref] [Google Scholar]
  101. 101.
    Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, et al. 2018.. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. . Cell 174:(3):74457.e24
    [Crossref] [Google Scholar]
  102. 102.
    Tanaka S, Scheraga HA. 1976.. Medium-and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. . Macromolecules 9:(6):94550
    [Crossref] [Google Scholar]
  103. 103.
    Miyazawa S, Jernigan RL. 1996.. Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. . J. Mol. Biol. 256:(3):62344
    [Crossref] [Google Scholar]
  104. 104.
    Dima RI, Hyeon C, Thirumalai D. 2005.. Extracting stacking interaction parameters for RNA from the data set of native structures. . J. Mol. Biol. 347:(1):5369
    [Crossref] [Google Scholar]
  105. 105.
    Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, et al. 2009.. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. . Cell 137:(2):35668
    [Crossref] [Google Scholar]
  106. 106.
    Miyazawa S, Jernigan RL. 1985.. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. . Macromolecules 18:(3):53452
    [Crossref] [Google Scholar]
  107. 107.
    Fujishiro S, Sasai M. 2022.. Generation of dynamic three-dimensional genome structure through phase separation of chromatin. . PNAS 119:(22):e2109838119
    [Crossref] [Google Scholar]
  108. 108.
    Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, et al. 2019.. Heterochromatin drives compartmentalization of inverted and conventional nuclei. . Nature 570:(7761):39599
    [Crossref] [Google Scholar]
  109. 109.
    de la Tour EB, Laemmli U. 1988.. The metaphase scaffold is helically folded: Sister chromatids have predominantly opposite helical handedness. . Cell 55:(6):93744
    [Crossref] [Google Scholar]
  110. 110.
    Earnshaw WC. 1988.. Mitotic chromosome structure. . Bioessays 9:(5):14750
    [Crossref] [Google Scholar]
  111. 111.
    Chu L, Liang Z, Mukhina M, Fisher J, Vincenten N, et al. 2020.. The 3D topography of mitotic chromosomes. . Mol. Cell 79:(6):90216
    [Crossref] [Google Scholar]
  112. 112.
    Chu L, Liang Z, Mukhina MV, Fisher JK, Hutchinson JW, Kleckner NE. 2020.. One-dimensional spatial patterning along mitotic chromosomes: a mechanical basis for macroscopic morphogenesis. . PNAS 117:(43):2674955
    [Crossref] [Google Scholar]
  113. 113.
    Woodcock C, Frado LL, Rattner J. 1984.. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. . J. Cell Biol. 99:(1):4252
    [Crossref] [Google Scholar]
  114. 114.
    Zhang B, Wolynes PG. 2016.. Shape transitions and chiral symmetry breaking in the energy landscape of the mitotic chromosome. . Phys. Rev. Lett. 116:(24):248101
    [Crossref] [Google Scholar]
  115. 115.
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, et al. 2018.. A pathway for mitotic chromosome formation. . Science 359:(6376):eaao6135
    [Crossref] [Google Scholar]
  116. 116.
    Sun M, Biggs R, Hornick J, Marko JF. 2018.. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. . Chromosome Res. 26::27795
    [Crossref] [Google Scholar]
  117. 117.
    Robinett CC, Straight A, Li G, Willhelm C, Sudlow G, et al. 1996.. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. . J. Cell Biol. 135:(6):1685700
    [Crossref] [Google Scholar]
  118. 118.
    Chen B, Gilbert L, Cimini B, Schnitzbauer J, Zhang W, et al. 2013.. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. . Cell 155:(7):147991
    [Crossref] [Google Scholar]
  119. 119.
    Brückner DB, Chen H, Barinov L, Zoller B, Gregor T. 2023.. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. . Science 380:(6652):135762
    [Crossref] [Google Scholar]
  120. 120.
    Liu L, Shi G, Thirumalai D, Hyeon C. 2018.. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. . PLOS Comput. Biol. 14:(12):e1006617
    [Crossref] [Google Scholar]
  121. 121.
    de Gennes PG. 1979.. Scaling Concepts in Polymer Physics. Ithaca, NY:: Cornell Univ. Press
    [Google Scholar]
  122. 122.
    Grosberg A, Rabin Y, Havlin S, Neer A. 1993.. Crumpled globule model of the three-dimensional structure of DNA. . Europhys. Lett. 23::373
    [Crossref] [Google Scholar]
  123. 123.
    Mirny LA. 2011.. The fractal globule as a model of chromatin architecture in the cell. . Chromosome Res. 19:(1):3751
    [Crossref] [Google Scholar]
  124. 124.
    Redner S. 1980.. Distribution functions in the interior of polymer chains. . J. Phys. A Math. Gen. 13:(11):352541
    [Crossref] [Google Scholar]
  125. 125.
    Jannink G, des Cloizeaux J. 1990.. Polymers in solution. . J. Phys. Condens. Matter 2:(1):124
    [Crossref] [Google Scholar]
  126. 126.
    Toan NM, Morrison G, Hyeon C, Thirumalai D. 2008.. Kinetics of loop formation in polymer chains. . J. Phys. Chem. B 112:(19):6094106
    [Crossref] [Google Scholar]
  127. 127.
    Amitai A, Holcman D. 2018.. Encounter times of chromatin loci influenced by polymer decondensation. . Phys. Rev. E 97:(3):032417
    [Crossref] [Google Scholar]
  128. 128.
    Schoenfelder S, Fraser P. 2019.. Long-range enhancer–promoter contacts in gene expression control. . Nat. Rev. Genet. 20:(8):43755
    [Crossref] [Google Scholar]
  129. 129.
    Marshall W, Straight A, Marko J, Swedlow J, Dernburg A, et al. 1997.. Interphase chromosomes undergo constrained diffusional motion in living cells. . Curr. Biol. 7:(12):93039
    [Crossref] [Google Scholar]
  130. 130.
    Shinkai S, Nozaki T, Maeshima K, Togashi Y. 2016.. Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells. . PLOS Comput. Biol. 12:(10):e1005136
    [Crossref] [Google Scholar]
  131. 131.
    Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E. 2005.. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. . Biophys. J. 89:(6):427585
    [Crossref] [Google Scholar]
  132. 132.
    Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, et al. 2009.. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. . Phys. Rev. Lett. 103:(1):018102
    [Crossref] [Google Scholar]
  133. 133.
    Weber SC, Spakowitz AJ, Theriot JA. 2010.. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. . Phys. Rev. Lett. 104:(23):238102
    [Crossref] [Google Scholar]
  134. 134.
    Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, et al. 2013.. High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. . Genome Res. 23:(11):182938
    [Crossref] [Google Scholar]
  135. 135.
    Amitai A, Seeber A, Gasser SM, Holcman D. 2017.. Visualization of chromatin decompaction and break site extrusion as predicted by statistical polymer modeling of single-locus trajectories. . Cell Rep. 18:(5):120014
    [Crossref] [Google Scholar]
  136. 136.
    Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, et al. 2022.. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. . Science 376:(6592):496501
    [Crossref] [Google Scholar]
  137. 137.
    Mach P, Kos PI, Zhan Y, Cramard J, Gaudin S, et al. 2022.. Cohesin and CTCF control the dynamics of chromosome folding. . Nat. Genet. 54:(12):190718
    [Crossref] [Google Scholar]
  138. 138.
    Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T. 2018.. Dynamic interplay between enhancer–promoter topology and gene activity. . Nat. Genet. 50:(9):1296303
    [Crossref] [Google Scholar]
  139. 139.
    Grosberg A, Nechaev S, Shakhnovich E. 1988.. The role of topological constraints in the kinetics of collapse of macromolecules. . J. Phys. 49:(12):2095100
    [Crossref] [Google Scholar]
  140. 140.
    Rosa A, Everaers R. 2008.. Structure and dynamics of interphase chromosomes. . PLOS Comput. Biol. 4::e1000153
    [Crossref] [Google Scholar]
  141. 141.
    Kang H, Yoon YG, Thirumalai D, Hyeon C. 2015.. Confinement-induced glassy dynamics in a model for chromosome organization. . Phys. Rev. Lett. 115::198102
    [Crossref] [Google Scholar]
  142. 142.
    Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, et al. 2015.. Loss of lamin A function increases chromatin dynamics in the nuclear interior. . Nat. Commun. 6::8044
    [Crossref] [Google Scholar]
  143. 143.
    Liu S, Athreya A, Lao Z, Zhang B. 2024.. From nucleosomes to compartments: physicochemical interactions underlying chromatin organization. . Annu. Rev. Biophys. 53::22145
    [Crossref] [Google Scholar]
  144. 144.
    Moller J, Lequieu J, de Pablo JJ. 2019.. The free energy landscape of internucleosome interactions and its relation to chromatin fiber structure. . ACS Cent. Sci. 5:(2):34148
    [Crossref] [Google Scholar]
  145. 145.
    Zidovska A, Weitz DA, Mitchison TJ. 2013.. Micron-scale coherence in interphase chromatin dynamics. . PNAS 110:(39):1555560
    [Crossref] [Google Scholar]
  146. 146.
    Bruinsma R, Grosberg AY, Rabin Y, Zidovska A. 2014.. Chromatin hydrodynamics. . Biophys. J. 106:(9):187181
    [Crossref] [Google Scholar]
  147. 147.
    Smrek J, Kremer K. 2017.. Small activity differences drive phase separation in active-passive polymer mixtures. . Phys. Rev. Lett. 118:(9):098002
    [Crossref] [Google Scholar]
  148. 148.
    Tamm MV, Nazarov LI, Gavrilov AA, Chertovich AV. 2015.. Anomalous diffusion in fractal globules. . Phys. Rev. Lett. 114:(17):178102
    [Crossref] [Google Scholar]
  149. 149.
    Di Pierro M, Potoyan DA, Wolynes PG, Onuchic JN. 2018.. Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. . PNAS 115:(30):775358
    [Crossref] [Google Scholar]
  150. 150.
    Lampo T, Kennard A, Spakowitz A. 2016.. Physical modeling of dynamic coupling between chromosomal loci. . Biophys. J. 110:(2):33847
    [Crossref] [Google Scholar]
  151. 151.
    Nagashima R, Hibino K, Ashwin S, Babokhov M, Fujishiro S, et al. 2019.. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. . J. Cell Biol. 218:(5):151130
    [Crossref] [Google Scholar]
  152. 152.
    Shaban HA, Barth R, Recoules L, Bystricky K. 2020.. Hi-D: nanoscale mapping of nuclear dynamics in single living cells. . Genome Biol. 21:(1):95
    [Crossref] [Google Scholar]
  153. 153.
    Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J. 1995.. Transcription against an applied force. . Science 270:(5242):165357
    [Crossref] [Google Scholar]
  154. 154.
    Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM. 1998.. Force and velocity measured for single molecules of RNA polymerase. . Science 282:(5390):9027
    [Crossref] [Google Scholar]
  155. 155.
    Gu B, Swigut T, Spencley A, Bauer MR, Chung M, et al. 2018.. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. . Science 359:(6379):105055
    [Crossref] [Google Scholar]
  156. 156.
    Shin S, Shi G, Cho HW, Thirumalai D. 2024.. Transcription-induced active forces suppress chromatin motion. . PNAS 121:(12):e2307309121
    [Crossref] [Google Scholar]
  157. 157.
    Rhie SK, Perez AA, Lay FD, Schreiner S, Shi J, et al. 2019.. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. . Nat. Commun. 10:(1):4154
    [Crossref] [Google Scholar]
  158. 158.
    Hirano T, Kobayashi R, Hirano M. 1997.. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. . Cell 89:(4):51121
    [Crossref] [Google Scholar]
  159. 159.
    Uhlmann F. 2016.. SMC complexes: from DNA to chromosomes. . Nat. Rev. Mol. Cell Biol. 17:(7):399412
    [Crossref] [Google Scholar]
  160. 160.
    Alipour E, Marko JF. 2012.. Self-organization of domain structures by DNA-loop-extruding enzymes. . Nucleic Acids Res. 40:(22):1120212
    [Crossref] [Google Scholar]
  161. 161.
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016.. Formation of chromosomal domains by loop extrusion. . Cell Rep. 15:(9):203849
    [Crossref] [Google Scholar]
  162. 162.
    Takaki R, Dey A, Shi G, Thirumalai D. 2021.. Theory and simulations of condensin mediated loop extrusion in DNA. . Nat. Commun. 12:(1):5865
    [Crossref] [Google Scholar]
  163. 163.
    Mugnai ML, Hyeon C, Hinczewski M, Thirumalai D. 2020.. Theoretical perspectives on biological machines. . Rev. Mod. Phys. 92:(2):025001
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-024123
Loading
/content/journals/10.1146/annurev-physchem-082423-024123
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error