1932

Abstract

Molecular machines transduce free energy between different forms throughout all living organisms. Unlike their macroscopic counterparts, molecular machines are characterized by stochastic fluctuations, overdamped dynamics, and soft components, and operate far from thermodynamic equilibrium. In addition, information is a relevant free energy resource for molecular machines, leading to new modes of operation for nanoscale engines. Toward the objective of engineering synthetic nanomachines, an important goal is to understand how molecular machines transduce free energy to perform their functions in biological systems. In this review, we discuss the nonequilibrium thermodynamics of free energy transduction within molecular machines, with a focus on quantifying energy and information flows between their components. We review results from theory, modeling, and inference from experiments that shed light on the internal thermodynamics of molecular machines, and ultimately explore what we can learn from considering these interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-030023
2025-04-21
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-030023.html?itemId=/content/journals/10.1146/annurev-physchem-082423-030023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schrödinger E. 1992.. What Is Life?: With Mind and Matter and Autobiographical Sketches. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Brown AI, Sivak DA. 2019.. Theory of nonequilibrium free energy transduction by molecular machines. . Chem. Rev. 120:(1):43459
    [Crossref] [Google Scholar]
  3. 3.
    Vinyard DJ, Ananyev GM, Charles Dismukes G. 2013.. Photosystem II: the reaction center of oxygenic photosynthesis. . Ann. Rev. Biochem. 82::577606
    [Crossref] [Google Scholar]
  4. 4.
    Oster G, Wang H. 1999.. ATP synthase: two motors, two fuels. . Structure 7:(4):R6772
    [Crossref] [Google Scholar]
  5. 5.
    Howard J. 2002.. Mechanics of motor proteins. . In Physique des biomolécules et des cellules, ed. F Flyvbjerg, FF Jülicher, P Ormons, F David , pp. 6994. Berlin:: Springer
    [Google Scholar]
  6. 6.
    Phillips R, Kondev J, Theriot J, Garcia H. 2012.. Physical Biology of the Cell. New York:: Garland Sci.
    [Google Scholar]
  7. 7.
    Purcell EM. 2014.. Life at low Reynolds number. . In Physics and Our World: Reissue of the Proceedings of a Symposium in Honor of Victor F Weisskopf, ed. K Huang , pp. 4767. Singapore:: World Sci.
    [Google Scholar]
  8. 8.
    Marden JH, Allen LR. 2002.. Molecules, muscles, and machines: universal performance characteristics of motors. . PNAS 99:(7):416166
    [Crossref] [Google Scholar]
  9. 9.
    Silverstein TP. 2014.. An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of FoF1 ATP synthases. . J. Bioenerg. Biomembr. 46:(3):22941
    [Crossref] [Google Scholar]
  10. 10.
    Matsuno-Yagi A, Hatefi Y. 1988.. Estimation of the turnover number of bovine heart FoF1 complexes for ATP synthesis. . Biochemistry 27:(1):33540
    [Crossref] [Google Scholar]
  11. 11.
    Schnitzer MJ, Block SM. 1997.. Kinesin hydrolyses one ATP per 8-nm step. . Nature 388:(6640):38690
    [Crossref] [Google Scholar]
  12. 12.
    Parrondo JMR, Horowitz JM, Sagawa T. 2015.. Thermodynamics of information. . Nat. Phys. 11::13139
    [Crossref] [Google Scholar]
  13. 13.
    McGrath T, Jones NS, Ten Wolde PR, Ouldridge TE. 2017.. Biochemical machines for the interconversion of mutual information and work. . Phys. Rev. Lett. 118:(2):028101
    [Crossref] [Google Scholar]
  14. 14.
    Serreli V, Lee CF, Kay ER, Leigh DA. 2007.. A molecular information ratchet. . Nature 445:(7127):52327
    [Crossref] [Google Scholar]
  15. 15.
    Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M. 2010.. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. . Nat. Phys. 6:(12):98892
    [Crossref] [Google Scholar]
  16. 16.
    Koski JV, Maisi VF, Pekola JP, Averin DV. 2014.. Experimental realization of a Szilard engine with a single electron. . PNAS 111:(38):1378689
    [Crossref] [Google Scholar]
  17. 17.
    Saha TK, Lucero JN, Ehrich J, Sivak DA, Bechhoefer J. 2021.. Maximizing power and velocity of an information engine. . PNAS 118:(20):e2023356118
    [Crossref] [Google Scholar]
  18. 18.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. 2000.. The protein data bank. . Nucleic Acids Res. 28:(1):23542
    [Crossref] [Google Scholar]
  19. 19.
    Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. 2021.. Insights from an information thermodynamics analysis of a synthetic molecular motor. . ChemRxiv. https://doi.org/10.26434/chemrxiv-2021-60k1r
  20. 20.
    Balzani V, Credi A, Raymo FM, Stoddart JF. 2000.. Artificial molecular machines. . Angew. Chem. Int. Ed. 39:(19):334891
    [Crossref] [Google Scholar]
  21. 21.
    Wilson MR, Solà J, Carlone A, Goldup SM, Lebrasseur N, Leigh DA. 2016.. An autonomous chemically fuelled small-molecule motor. . Nature 534:(7606):23540
    [Crossref] [Google Scholar]
  22. 22.
    Courbet A, Hansen J, Hsia Y, Bethel N, Park YJ, et al. 2022.. Computational design of mechanically coupled axle-rotor protein assemblies. . Science 376:(6591):38390
    [Crossref] [Google Scholar]
  23. 23.
    van Beek CL, Feringa BL. 2024.. Coupled rotary motion in molecular motors. . J. Am. Chem. Soc. 146:(8):563442
    [Crossref] [Google Scholar]
  24. 24.
    Korosec CS, Unksov IN, Surendiran P, Lyttleton R, Curmi PM, et al. 2024.. Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle. . Nat. Commun. 15:(1):1511
    [Crossref] [Google Scholar]
  25. 25.
    Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BM. 2022.. Insights from an information thermodynamics analysis of a synthetic molecular motor. . Nat. Chem. 14:(5):53037
    [Crossref] [Google Scholar]
  26. 26.
    Meacci G, Tu Y. 2009.. Dynamics of the bacterial flagellar motor with multiple stators. . PNAS 106:(10):374651
    [Crossref] [Google Scholar]
  27. 27.
    Leopold PL, McDowall AW, Pfister KK, Bloom GS, Brady ST. 1992.. Association of kinesin with characterized membrane-bounded organelles. . Cell Motil. Cytoskelet. 23:(1):1933
    [Crossref] [Google Scholar]
  28. 28.
    Rastogi K, Puliyakodan MS, Pandey V, Nath S, Elangovan R. 2016.. Maximum limit to the number of myosin II motors participating in processive sliding of actin. . Sci. Rep. 6:(1):32043
    [Crossref] [Google Scholar]
  29. 29.
    Visscher K, Schnitzer MJ, Block SM. 1999.. Single kinesin molecules studied with a molecular force clamp. . Nature 400:(6740):18489
    [Crossref] [Google Scholar]
  30. 30.
    Toyabe S, Okamoto T, Watanabe-Nakayama T, Taketani H, Kudo S, Muneyuki E. 2010.. Nonequilibrium energetics of a single F1-ATPase molecule. . Phys. Rev. Lett. 104:(19):198103
    [Crossref] [Google Scholar]
  31. 31.
    Ehrich J, Sivak D. 2023.. Energy and information flows in autonomous systems. . Front. Phys. 11::1108357
    [Crossref] [Google Scholar]
  32. 32.
    Leighton MP, Ehrich J, Sivak DA. 2024.. Information arbitrage in bipartite heat engines. . Phys. Rev. X 14:041038
    [Google Scholar]
  33. 33.
    Jarzynski C. 1997.. Nonequilibrium equality for free energy differences. . Phys. Rev. Lett. 78:(14):2690
    [Crossref] [Google Scholar]
  34. 34.
    Crooks GE. 1999.. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. . Phys. Rev. E 60:(3):2721
    [Crossref] [Google Scholar]
  35. 35.
    Hummer G, Szabo A. 2001.. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. . PNAS 98:(7):365861
    [Crossref] [Google Scholar]
  36. 36.
    Liphardt J, Dumont S, Smith SB, Tinoco I Jr., Bustamante C. 2002.. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. . Science 296:(5574):183235
    [Crossref] [Google Scholar]
  37. 37.
    Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I Jr., Bustamante C. 2005.. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. . Nature 437:(7056):23134
    [Crossref] [Google Scholar]
  38. 38.
    Schmiedl T, Seifert U. 2007.. Optimal finite-time processes in stochastic thermodynamics. . Phys. Rev. Lett. 98:(10):108301
    [Crossref] [Google Scholar]
  39. 39.
    Sivak DA, Crooks GE. 2012.. Thermodynamic metrics and optimal paths. . Phys. Rev. Lett. 108:(19):190602
    [Crossref] [Google Scholar]
  40. 40.
    Aurell E, Meja-Monasterio C, Muratore-Ginanneschi P. 2011.. Optimal protocols and optimal transport in stochastic thermodynamics. . Phys. Rev. Lett. 106:(25):250601
    [Crossref] [Google Scholar]
  41. 41.
    Barato AC, Seifert U. 2015.. Thermodynamic uncertainty relation for biomolecular processes. . Phys. Rev. Lett. 114:(15):158101
    [Crossref] [Google Scholar]
  42. 42.
    Gingrich TR, Horowitz JM, Perunov N, England JL. 2016.. Dissipation bounds all steady-state current fluctuations. . Phys. Rev. Lett. 116:(12):120601
    [Crossref] [Google Scholar]
  43. 43.
    Horowitz JM, Gingrich TR. 2020.. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. . Nat. Phys. 16:(1):1520
    [Crossref] [Google Scholar]
  44. 44.
    Leighton MP, Sivak DA. 2022.. Dynamic and thermodynamic bounds for collective motor-driven transport. . Phys. Rev. Lett. 129:(11):118102
    [Crossref] [Google Scholar]
  45. 45.
    Leighton MP, Sivak DA. 2024.. Jensen bound for the entropy production rate in stochastic thermodynamics. . Phys. Rev. E 109:(1):L012101
    [Crossref] [Google Scholar]
  46. 46.
    Seifert U. 2018.. Stochastic thermodynamics: from principles to the cost of precision. . Phys. A Stat. Mech. Appl. 504::17691
    [Crossref] [Google Scholar]
  47. 47.
    Song Y, Hyeon C. 2020.. Thermodynamic cost, speed, fluctuations, and error reduction of biological copy machines. . J. Phys. Chem. Lett. 11:(8):313643
    [Crossref] [Google Scholar]
  48. 48.
    Albaugh A, Fu RS, Gu G, Gingrich TR. 2023.. Limits on the precision of catenane molecular motors: insights from thermodynamics and molecular dynamics simulations. . J. Chem. Theory Comput. 20:(1):16
    [Crossref] [Google Scholar]
  49. 49.
    Pietzonka P, Barato AC, Seifert U. 2016.. Universal bound on the efficiency of molecular motors. . JSTAT Mech. 2016:(12):124004
    [Crossref] [Google Scholar]
  50. 50.
    Leighton MP, Sivak DA. 2023.. Inferring subsystem efficiencies in bipartite molecular machines. . Phys. Rev. Lett. 130:(17):178401
    [Crossref] [Google Scholar]
  51. 51.
    Horowitz JM, Esposito M. 2014.. Thermodynamics with continuous information flow. . Phys. Rev. X 4:(3):031015
    [Google Scholar]
  52. 52.
    Barato AC, Seifert U. 2017.. Thermodynamic cost of external control. . New J. Phys. 19:(7):073021
    [Crossref] [Google Scholar]
  53. 53.
    Beyenbach KW, Wieczorek H. 2006.. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. . J. Exp. Biol. 209:(4):57789
    [Crossref] [Google Scholar]
  54. 54.
    Sowa Y, Berry RM. 2008.. Bacterial flagellar motor. . Q. Rev. Biophys. 41:(2):10332
    [Crossref] [Google Scholar]
  55. 55.
    Wikstrom M, Sharma V, Kaila VR, Hosler JP, Hummer G. 2015.. New perspectives on proton pumping in cellular respiration. . Chem. Rev. 115:(5):2196221
    [Crossref] [Google Scholar]
  56. 56.
    Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. 2015.. Artificial molecular machines. . Chem. Rev. 115:(18):10081206
    [Crossref] [Google Scholar]
  57. 57.
    Corra S, Bakić MT, Groppi J, Baroncini M, Silvi S, et al. 2022.. Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. . Nat. Nanotech. 17:(7):74651
    [Crossref] [Google Scholar]
  58. 58.
    Albaugh A, Gingrich TR. 2022.. Simulating a chemically fueled molecular motor with nonequilibrium molecular dynamics. . Nat. Commun. 13:(1):2204
    [Crossref] [Google Scholar]
  59. 59.
    Li CB, Toyabe S. 2020.. Efficiencies of molecular motors: a comprehensible overview. . Biophys. Rev. 12:(2):41923
    [Crossref] [Google Scholar]
  60. 60.
    Mugnai ML, Hyeon C, Hinczewski M, Thirumalai D. 2020.. Theoretical perspectives on biological machines. . Rev. Mod. Phys. 92:(2):025001
    [Crossref] [Google Scholar]
  61. 61.
    Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. 2023.. Artificial molecular ratchets: tools enabling endergonic processes. . Angew. Chem. Int. Ed. 62:(47):e202309501
    [Crossref] [Google Scholar]
  62. 62.
    Jarzynski C. 2011.. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. . Annu. Rev. Condens. Matter Phys. 2::32951
    [Crossref] [Google Scholar]
  63. 63.
    Seifert U. 2012.. Stochastic thermodynamics, fluctuation theorems and molecular machines. . Rep. Prog. Phys. 75:(12):126001
    [Crossref] [Google Scholar]
  64. 64.
    Blaber S, Sivak DA. 2023.. Optimal control in stochastic thermodynamics. . J. Phys. Commun. 7:(3):033001
    [Crossref] [Google Scholar]
  65. 65.
    Peliti L, Pigolotti S. 2021.. Stochastic Thermodynamics: An Introduction. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  66. 66.
    Seifert U. 2019.. From stochastic thermodynamics to thermodynamic inference. . Annu. Rev. Condens. Matter Phys. 10::17192
    [Crossref] [Google Scholar]
  67. 67.
    Parrondo J, Tabanera-Bravo J, Fedele F, Ares N. 2023.. Information flows in nanomachines. . arXiv:2312.02068 [cond-mat.mes-hall]
  68. 68.
    Ciliberto S. 2017.. Experiments in stochastic thermodynamics: short history and perspectives. . Phys. Rev. X 7:(2):021051
    [Google Scholar]
  69. 69.
    du Buisson J, Sivak DA, Bechhoefer J. 2024.. Performance limits of information engines. . Adv. Phys. X 9:(1):2352112
    [Google Scholar]
  70. 70.
    Borsley S, Leigh DA, Roberts BM. 2024.. Molecular ratchets and kinetic asymmetry: giving chemistry direction. . Angew. Chem. Int. Ed. 63:(23):e202400495
    [Crossref] [Google Scholar]
  71. 71.
    Hess H. 2011.. Engineering applications of biomolecular motors. . Annu. Rev. Biomed. Eng. 13::42950
    [Crossref] [Google Scholar]
  72. 72.
    Saper G, Hess H. 2019.. Synthetic systems powered by biological molecular motors. . Chem. Rev. 120:(1):288309
    [Crossref] [Google Scholar]
  73. 73.
    Cover TM, Thomas JA. 2006.. Elements of Information Theory. Hoboken, NJ:: Wiley-Interscience. , 2nd ed..
    [Google Scholar]
  74. 74.
    Lathouwers E, Sivak DA. 2022.. Internal energy and information flows mediate input and output power in bipartite molecular machines. . Phys. Rev. E 105:(2):024136
    [Crossref] [Google Scholar]
  75. 75.
    Wang H, Oster G. 2002.. The Stokes efficiency for molecular motors and its applications. . Europhys. Lett. 57:(1):134
    [Crossref] [Google Scholar]
  76. 76.
    Leighton MP, Sivak DA. 2022.. Performance scaling and trade-offs for collective motor-driven transport. . New J. Phys. 24:(1):013009
    [Crossref] [Google Scholar]
  77. 77.
    Horowitz JM. 2015.. Multipartite information flow for multiple Maxwell demons. . JSTAT Mech. 2015:(3):P03006
    [Crossref] [Google Scholar]
  78. 78.
    Crooks GE. 2017.. On measures of entropy and information. Tech. Note 009. http://threeplusone.com/info
    [Google Scholar]
  79. 79.
    Chetrite R, Rosinberg M, Sagawa T, Tarjus G. 2019.. Information thermodynamics for interacting stochastic systems without bipartite structure. . JSTAT Mech. 2019:(11):114002
    [Crossref] [Google Scholar]
  80. 80.
    Rao R, Esposito M. 2016.. Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. . Phys. Rev. X 6:(4):041064
    [Google Scholar]
  81. 81.
    Penocchio E, Avanzini F, Esposito M. 2022.. Information thermodynamics for deterministic chemical reaction networks. . J. Chem. Phys. 157:(3):034110
    [Crossref] [Google Scholar]
  82. 82.
    Tu Y, Cao Y. 2018.. Design principles and optimal performance for molecular motors under realistic constraints. . Phys. Rev. E 97:(2):022403
    [Crossref] [Google Scholar]
  83. 83.
    Kasper AK, Sivak DA. 2020.. Modeling work-speed-accuracy trade-offs in a stochastic rotary machine. . Phys. Rev. E 101:(3):032110
    [Crossref] [Google Scholar]
  84. 84.
    Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S, Muneyuki E. 2011.. Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. . PNAS 108:(44):1795156
    [Crossref] [Google Scholar]
  85. 85.
    Kawaguchi K, Sasa S-i, Sagawa T. 2014.. Nonequilibrium dissipation-free transport in F1-ATPase and the thermodynamic role of asymmetric allosterism. . Biophys. J. 106:(11):245057
    [Crossref] [Google Scholar]
  86. 86.
    Gupta D, Large SJ, Toyabe S, Sivak DA. 2022.. Optimal control of the F1-ATPase molecular motor. . J. Phys. Chem. Lett. 13:(51):1184449
    [Crossref] [Google Scholar]
  87. 87.
    Xing J, Wang H, Oster G. 2005.. From continuum Fokker-Planck models to discrete kinetic models. . Biophys. J. 89:(3):155163
    [Crossref] [Google Scholar]
  88. 88.
    Golubeva N, Imparato A, Peliti L. 2012.. Efficiency of molecular machines with continuous phase space. . Europhys. Lett. 97:(6):60005
    [Crossref] [Google Scholar]
  89. 89.
    Fogedby HC, Imparato A. 2017.. A minimal model of an autonomous thermal motor. . Europhys. Lett. 119:(5):50007
    [Crossref] [Google Scholar]
  90. 90.
    Okazaki K-i, Hummer G. 2015.. Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase. . PNAS 112:(34):1072025
    [Crossref] [Google Scholar]
  91. 91.
    Lathouwers E, Lucero JN, Sivak DA. 2020.. Nonequilibrium energy transduction in stochastic strongly coupled rotary motors. . J. Phys. Chem. Lett. 11:(13):527378
    [Crossref] [Google Scholar]
  92. 92.
    Takaki R, Mugnai ML, Thirumalai D. 2022.. Information flow, gating, and energetics in dimeric molecular motors. . PNAS 119::e2208083119
    [Crossref] [Google Scholar]
  93. 93.
    Kosugi T, Iida T, Tanabe M, Iino R, Koga N. 2023.. Design of allosteric sites into rotary motor V1-ATPase by restoring lost function of pseudo-active sites. . Nat. Chem. 15:(11):159198
    [Crossref] [Google Scholar]
  94. 94.
    Cao Y, Li T, Tu Y. 2022.. Modeling bacterial flagellar motor with new structure information: rotational dynamics of two interacting protein nano-rings. . Front. Microbiol. 13::866141
    [Crossref] [Google Scholar]
  95. 95.
    Shtridelman Y, Cahyuti T, Townsend B, DeWitt D, Macosko JC. 2008.. Force–velocity curves of motor proteins cooperating in vivo. . Cell Biochem. Biophys. 52:(1):1929
    [Crossref] [Google Scholar]
  96. 96.
    Shtridelman Y, Holzwarth GM, Bauer CT, Gassman NR, DeWitt DA, Macosko JC. 2009.. In vivo multimotor force–velocity curves by tracking and sizing sub-diffraction limited vesicles. . Cell. Mol. Bioeng. 2:(2):19099
    [Crossref] [Google Scholar]
  97. 97.
    Ariga T, Tomishige M, Mizuno D. 2018.. Nonequilibrium energetics of molecular motor kinesin. . Phys. Rev. Lett. 121:(21):218101
    [Crossref] [Google Scholar]
  98. 98.
    Wagoner JA, Dill KA. 2021.. Evolution of mechanical cooperativity among myosin II motors. . PNAS 118:(20):e2101871118
    [Crossref] [Google Scholar]
  99. 99.
    Yildiz A, Tomishige M, Gennerich A, Vale RD. 2008.. Intramolecular strain coordinates kinesin stepping behavior along microtubules. . Cell 134:(6):103041
    [Crossref] [Google Scholar]
  100. 100.
    Andreasson JO, Milic B, Chen GY, Guydosh NR, Hancock WO, Block SM. 2015.. Examining kinesin processivity within a general gating framework. . eLife 4::e07403
    [Crossref] [Google Scholar]
  101. 101.
    Hinczewski M, Tehver R, Thirumalai D. 2013.. Design principles governing the motility of myosin V. . PNAS 110:(43):E405968
    [Crossref] [Google Scholar]
  102. 102.
    Wijeratne SS, Fiorenza SA, Neary AE, Subramanian R, Betterton MD. 2022.. Motor guidance by long-range communication on the microtubule highway. . PNAS 119:(28):e2120193119
    [Crossref] [Google Scholar]
  103. 103.
    DelRosso NV, Derr ND. 2017.. Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. . Curr. Opin. Biotechnol. 46::2026
    [Crossref] [Google Scholar]
  104. 104.
    Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL. 2012.. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. . Science 338:(6107):66265
    [Crossref] [Google Scholar]
  105. 105.
    Binks L, Borsley S, Gingrich TR, Leigh DA, Penocchio E, Roberts BM. 2023.. The role of kinetic asymmetry and power strokes in an information ratchet. . Chemistry 9:(10):290217
    [Crossref] [Google Scholar]
  106. 106.
    Grelier M, Sivak DA, Ehrich J. 2024.. Unlocking the potential of information flow: maximizing free-energy transduction in a model of an autonomous rotary molecular motor. . Phys. Rev. E 109:(3):034115
    [Crossref] [Google Scholar]
  107. 107.
    Buddhiraju S, Santhanam P, Fan S. 2018.. Thermodynamic limits of energy harvesting from outgoing thermal radiation. . PNAS 115:(16):E360915
    [Crossref] [Google Scholar]
  108. 108.
    Penocchio E, Rao R, Esposito M. 2021.. Nonequilibrium thermodynamics of light-induced reactions. . J. Chem. Phys. 155:(11):114101
    [Crossref] [Google Scholar]
  109. 109.
    Mizuno D, Tardin C, Schmidt CF, MacKintosh FC. 2007.. Nonequilibrium mechanics of active cytoskeletal networks. . Science 315::37073
    [Crossref] [Google Scholar]
  110. 110.
    Gallet F, Arcizet D, Bohec P, Richert A. 2009.. Power spectrum of out-of-equilibrium forces in living cells: amplitude and frequency dependence. . Soft Matter 5::294753
    [Crossref] [Google Scholar]
  111. 111.
    Pietzonka P, Fodor É, Lohrmann C, Cates ME, Seifert U. 2019.. Autonomous engines driven by active matter: energetics and design principles. . Phys. Rev. X 9:(4):041032
    [Google Scholar]
  112. 112.
    Dabelow L, Bo S, Eichhorn R. 2019.. Irreversibility in active matter systems: fluctuation theorem and mutual information. . Phys. Rev. X 9:(2):021009
    [Google Scholar]
  113. 113.
    Datta A, Pietzonka P, Barato AC. 2022.. Second law for active heat engines. . Phys. Rev. X 12:(3):031034
    [Google Scholar]
  114. 114.
    VanSaders B, Vitelli V. 2023.. Informational active matter. . arXiv:2302.07402 [cond-mat.soft]
  115. 115.
    Monthiller R, Loisy A, Koehl MA, Favier B, Eloy C. 2022.. Surfing on turbulence: a strategy for planktonic navigation. . Phys. Rev. Lett. 129:(6):064502
    [Crossref] [Google Scholar]
  116. 116.
    Ariga T, Tateishi K, Tomishige M, Mizuno D. 2021.. Noise-induced acceleration of single molecule kinesin-1. . Phys. Rev. Lett. 127:(17):178101
    [Crossref] [Google Scholar]
  117. 117.
    Otsubo S, Ito S, Dechant A, Sagawa T. 2020.. Estimating entropy production by machine learning of short-time fluctuating currents. . Phys. Rev. E 101:(6):062106
    [Crossref] [Google Scholar]
  118. 118.
    Tanogami T, Van Vu T, Saito K. 2023.. Universal bounds on the performance of information-thermodynamic engine. . Phys. Rev. Res. 5:(4):043280
    [Crossref] [Google Scholar]
  119. 119.
    Horowitz JM. 2015.. Multipartite information flows for multiple Maxwell demons. . J. Stat. Mech. 2015::P03006
    [Crossref] [Google Scholar]
  120. 120.
    Dechant A, Sasa SI. 2018.. Entropic bounds on currents in Langevin systems. . Phys. Rev. E 97:(6):062101
    [Crossref] [Google Scholar]
  121. 121.
    Shiraishi N, Funo K, Saito K. 2018.. Speed limit for classical stochastic processes. . Phys. Rev. Lett. 121:(7):070601
    [Crossref] [Google Scholar]
  122. 122.
    Falasco G, Esposito M. 2020.. Dissipation-time uncertainty relation. . Phys. Rev. Lett. 125:(12):120604
    [Crossref] [Google Scholar]
  123. 123.
    Van Vu T, Hasegawa Y, et al. 2020.. Unified approach to classical speed limit and thermodynamic uncertainty relation. . Phys. Rev. E 102:(6):062132
    [Crossref] [Google Scholar]
  124. 124.
    Nakazato M, Ito S. 2021.. Geometrical aspects of entropy production in stochastic thermodynamics based on Wasserstein distance. . Phys. Rev. Res. 3:(4):043093
    [Crossref] [Google Scholar]
  125. 125.
    Dechant A. 2023.. Upper bounds on entropy production in diffusive dynamics. . arXiv:2310.17929 [cond-mat.stat-mech]
  126. 126.
    Di Terlizzi I, Gironella M, Herráez-Aguilar D, Betz T, Monroy F, et al. 2024.. Variance sum rule for entropy production. . Science 383:(6686):97176
    [Crossref] [Google Scholar]
  127. 127.
    Di Terlizzi I, Baiesi M, Ritort F. 2024.. Variance sum rule: proofs and solvable models. . New J. Phys. 26::063013
    [Crossref] [Google Scholar]
  128. 128.
    Tsuruyama T. 2023.. RNA polymerase is a unique Maxwell's demon that converts its transcribing genetic information to free energy for its movement. . Eur. Phys. J. Plus 138:(7):604
    [Crossref] [Google Scholar]
  129. 129.
    Fourmond V, Plumeré N, Léger C. 2021.. Reversible catalysis. . Nat. Rev. Chem. 5:(5):34860
    [Crossref] [Google Scholar]
  130. 130.
    Ehrich J, Still S, Sivak DA. 2023.. Energetic cost of feedback control. . Phys. Rev. Res. 5:(2):023080
    [Crossref] [Google Scholar]
  131. 131.
    Scheiderer L, Wirth JO, Tarnawski M, Hell SW. 2024.. Dual-color minflux: kinesin-1 takes chassé-inchworm steps. . bioRxiv 2024.03.05.583551. https://doi.org/10.1101/2024.03.05.583551
/content/journals/10.1146/annurev-physchem-082423-030023
Loading
/content/journals/10.1146/annurev-physchem-082423-030023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error