1932

Abstract

Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations. The issues discussed include the excitation mechanism, how to calculate the mode frequencies using continuum mechanics, and the factors that control vibrational damping. Recent results that demonstrate that the high frequencies inherent to the acoustic modes of nanomaterials trigger a viscoelastic response in surrounding liquids are also discussed, as well as vibrational coupling between nanostructures and mode hybridization within the nanostructures. Mode hybridization provides a way of manipulating the lifetimes of the acoustic modes, which is potentially useful for applications such as mass sensing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-032529
2025-04-21
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-032529.html?itemId=/content/journals/10.1146/annurev-physchem-082423-032529&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kriebig U, Vollmer M. 1995.. Optical Properties of Metal Clusters. Berlin:: Springer-Verlag
    [Google Scholar]
  2. 2.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003.. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. . J. Phys. Chem. B 107::66877
    [Crossref] [Google Scholar]
  3. 3.
    Halas NJ, Lal S, Link S, Chang WS, Natelson D, et al. 2012.. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. . Adv. Mater. 24::484277
    [Crossref] [Google Scholar]
  4. 4.
    Bohren CF, Huffman DR. 1983.. Absorption and Scattering of Light by Small Particles. New York:: Wiley
    [Google Scholar]
  5. 5.
    Willets KA, Van Duyne RP. 2007.. Localized surface plasmon resonance spectroscopy and sensing. . Annu. Rev. Phys. Chem. 58::26797
    [Crossref] [Google Scholar]
  6. 6.
    Brongersma ML, Halas NJ, Nordlander P. 2015.. Plasmon-induced hot carrier science and technology. . Nat. Nanotechnol. 10::2534
    [Crossref] [Google Scholar]
  7. 7.
    Chang L, Besteiro LV, Sun JC, Santiago EY, Gray SK, et al. 2019.. Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. . ACS Energy Lett. 4::255268
    [Crossref] [Google Scholar]
  8. 8.
    Wilson AJ, Jain PK. 2020.. Light-induced voltages in catalysis by plasmonic nanostructures. . Acc. Chem. Res. 53::177381
    [Crossref] [Google Scholar]
  9. 9.
    Linic S, Chavez S, Elias R. 2021.. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. . Nat. Mater. 20::91624
    [Crossref] [Google Scholar]
  10. 10.
    Duval E, Boukenter A, Champagnon B. 1986.. Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman-scattering. . Phys. Rev. Lett. 56::205255
    [Crossref] [Google Scholar]
  11. 11.
    Krauss TD, Wise FW. 1997.. Coherent acoustic phonons in a semiconductor quantum dot. . Phys. Rev. Lett. 79::51025
    [Crossref] [Google Scholar]
  12. 12.
    Nisoli M, DeSilvestri S, Cavalleri A, Malvezzi AM, Stella A, et al. 1997.. Coherent acoustic oscillations in metallic nanoparticles generated with femtosecond optical pulses. . Phys. Rev. B 55::1342427
    [Crossref] [Google Scholar]
  13. 13.
    Nisoli M, Stagira S, DeSilvestri S, Stella A, Tognini P, et al. 1997.. Ultrafast electronic dynamics in solid and liquid gallium nanoparticles. . Phys. Rev. Lett. 78::357578
    [Crossref] [Google Scholar]
  14. 14.
    Hodak JH, Martini I, Hartland GV. 1998.. Observation of acoustic quantum beats in nanometer sized Au particles. . J. Chem. Phys. 108::921013
    [Crossref] [Google Scholar]
  15. 15.
    Thoen ER, Steinmeyer G, Langlois P, Ippen EP, Tudury GE, et al. 1998.. Coherent acoustic phonons in PbTe quantum dots. . Appl. Phys. Lett. 73::214951
    [Crossref] [Google Scholar]
  16. 16.
    Del Fatti N, Voisin C, Chevy F, Vallée F, Flytzanis C. 1999.. Coherent acoustic mode oscillation and damping in silver nanoparticles. . J. Chem. Phys. 110::1148487
    [Crossref] [Google Scholar]
  17. 17.
    Cerullo G, De Silvestri S, Banin U. 1999.. Size-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. . Phys. Rev. B 60::192832
    [Crossref] [Google Scholar]
  18. 18.
    Waggoner PS, Craighead HG. 2007.. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. . Lab Chip 7::123855
    [Crossref] [Google Scholar]
  19. 19.
    Aspelmeyer M, Kippenberg TJ, Marquardt F. 2014.. Cavity optomechanics. . Rev. Mod. Phys. 86::1391452
    [Crossref] [Google Scholar]
  20. 20.
    West RG, Kanellopulos K, Schmid S. 2023.. Photothermal microscopy and spectroscopy with nanomechanical resonators. . J. Phys. Chem. C 127::2191529
    [Crossref] [Google Scholar]
  21. 21.
    Chien MH, Brameshuber M, Rossboth BK, Schutz GJ, Schmid S. 2018.. Single-molecule optical absorption imaging by nanomechanical photothermal sensing. . PNAS 115::1115055
    [Crossref] [Google Scholar]
  22. 22.
    Dominguez-Medina S, Fostner S, Defoort M, Sansa M, Stark AK, et al. 2018.. Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators. . Science 362::91822
    [Crossref] [Google Scholar]
  23. 23.
    Sbarra S, Waquier L, Suffit S, Lemaître A, Favero I. 2022.. Multimode optomechanical weighting of a single nanoparticle. . Nano Lett. 22::71015
    [Crossref] [Google Scholar]
  24. 24.
    Fogliano F, Besga B, Reigue A, Mercier de Lépinay L, Heringlake P, et al. 2021.. Ultrasensitive nano-optomechanical force sensor operated at dilution temperatures. . Nat. Commun. 12::4124
    [Crossref] [Google Scholar]
  25. 25.
    Hartland GV. 2004.. Measurements of the material properties of metal nanoparticles by time-resolved spectroscopy. . Phys. Chem. Chem. Phys. 6::526374
    [Crossref] [Google Scholar]
  26. 26.
    Uthe B, Sader JE, Pelton M. 2022.. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review. . Rep. Prog. Phys. 85::103001
    [Crossref] [Google Scholar]
  27. 27.
    Yu K, Jiang YQ, Wright C, Hartland GV. 2022.. Energy dissipation for nanometer sized acoustic oscillators. . J. Phys. Chem. C 126::381119
    [Crossref] [Google Scholar]
  28. 28.
    Crut A, Maioli P, Del Fatti N, Vallee F. 2015.. Acoustic vibrations of metal nano-objects: time-domain investigations. . Phys. Rep. 549::143
    [Crossref] [Google Scholar]
  29. 29.
    Mork AJ, Lee EMY, Dahod NS, Willard AP, Tisdale WA. 2016.. Modulation of low-frequency acoustic vibrations in semiconductor nanocrystals through choice of surface ligand. . J. Phys. Chem. Lett. 7::421316
    [Crossref] [Google Scholar]
  30. 30.
    Girard A, Saviot L, Pedetti S, Tessier MD, Margueritat J, et al. 2016.. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets. . Nanoscale 8::1325156
    [Crossref] [Google Scholar]
  31. 31.
    Girard A, Lermé J, Gehan H, Margueritat J, Mermet A. 2017.. Mechanisms of resonant low frequency Raman scattering from metallic nanoparticle Lamb modes. . J. Chem. Phys. 146::194201
    [Crossref] [Google Scholar]
  32. 32.
    Vernier C, Saviot L, Fan Y, Courty A, Portalès H. 2023.. Sensitivity of localized surface plasmon resonance and acoustic vibrations to edge rounding in silver nanocubes. . ACS Nano 17::2046272
    [Crossref] [Google Scholar]
  33. 33.
    Devkota T, Brown BS, Beane G, Yu K, Hartland GV. 2019.. Making waves: radiation damping in metallic nanostructures. . J. Chem. Phys. 151::080901
    [Crossref] [Google Scholar]
  34. 34.
    Crut A, Maioli P, Del Fatti N, Vallee F. 2015.. Time-domain investigation of the acoustic vibrations of metal nanoparticles: size and encapsulation effects. . Ultrasonics 56::98108
    [Crossref] [Google Scholar]
  35. 35.
    Medeghini F, Crut A, Gandolfi M, Rossella F, Maioli P, et al. 2018.. Controlling the quality factor of a single acoustic nanoresonator by tuning its morphology. . Nano Lett. 18::515966
    [Crossref] [Google Scholar]
  36. 36.
    Gross N, Madadi M, Ostovar B, Dongare PD, McCarthy LA, et al. 2023.. Strong substrate binding modulates the acoustic quality factors in gold nanodisks. . J. Phys. Chem. C 127::505466
    [Crossref] [Google Scholar]
  37. 37.
    Wright C, Hartland GV. 2023.. Vibrational anharmonicity and energy relaxation in nanoscale acoustic resonators. . Nano Lett. 23::1116166
    [Crossref] [Google Scholar]
  38. 38.
    Belliard L, Cornelius TW, Perrin B, Kacemi N, Becerra L, et al. 2013.. Vibrational response of free standing single copper nanowire through transient reflectivity microscopy. . J. Appl. Phys. 114::193509
    [Crossref] [Google Scholar]
  39. 39.
    Yi CY, Dongare PD, Su MN, Wang WX, Chakraborty D, et al. 2017.. Vibrational coupling in plasmonic molecules. . PNAS 114::1162126
    [Crossref] [Google Scholar]
  40. 40.
    Wang JZ, Yu K, Yang Y, Hartland GV, Sader JE, Wang GP. 2019.. Strong vibrational coupling in room temperature plasmonic resonators. . Nat. Commun. 10::1527
    [Crossref] [Google Scholar]
  41. 41.
    Beane G, Devkota T, Brown BS, Hartland GV. 2019.. Ultrafast measurements of the dynamics of single nanostructures: a review. . Rep. Prog. Phys. 82::016401
    [Crossref] [Google Scholar]
  42. 42.
    Zhu T, Snaider JM, Yuan L, Huang LB. 2019.. Ultrafast dynamic microscopy of carrier and exciton transport. . Annu. Rev. Phys. Chem. 70::21944
    [Crossref] [Google Scholar]
  43. 43.
    Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, et al. 2023.. Progress and prospects in optical ultrafast microscopy in the visible spectral region: transient absorption and two-dimensional microscopy. . J. Phys. Chem. C 127::1455786
    [Crossref] [Google Scholar]
  44. 44.
    Hodak JH, Henglein A, Hartland GV. 1999.. Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes. . J. Chem. Phys. 111::861321
    [Crossref] [Google Scholar]
  45. 45.
    Del Fatti N, Voisin C, Christofilos D, Vallée F, Flytzanis C. 2000.. Acoustic vibration of metal films and nanoparticles. . J. Phys. Chem. A 104::432126
    [Crossref] [Google Scholar]
  46. 46.
    Voisin C, Del Fatti N, Christofilos D, Vallée F. 2000.. Time-resolved investigation of the vibrational dynamics of metal nanoparticles. . Appl. Surf. Sci. 164::13139
    [Crossref] [Google Scholar]
  47. 47.
    Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS. 1992.. Theory for displacive excitation of coherent phonons. . Phys. Rev. B 45::76878
    [Crossref] [Google Scholar]
  48. 48.
    Cheng TK, Vidal J, Zeiger HJ, Dresselhaus G, Dresselhaus MS, Ippen EP. 1991.. Mechanism for displacive excitation of coherent phonons in Sb, Bi, Te, And Ti2O3. . Appl. Phys. Lett. 59::192325
    [Crossref] [Google Scholar]
  49. 49.
    Dong S, Lian J, Jhon MH, Chan Y, Loh Z-H. 2017.. Pump-power dependence of coherent acoustic phonon frequencies in colloidal CdSe/CdS core/shell nanoplatelets. . Nano Lett. 17::331219
    [Crossref] [Google Scholar]
  50. 50.
    Tyagi P, Cooney RR, Sewall SL, Sagar DM, Saari JI, Kambhampati P. 2010.. Controlling piezoelectric response in semiconductor quantum dots via impulsive charge localization. . Nano Lett. 10::306267
    [Crossref] [Google Scholar]
  51. 51.
    Saari JI, Dias EA, Reifsnyder D, Krause MM, Walsh BR, et al. 2013.. Ultrafast electron trapping at the surface of semiconductor nanocrystals: excitonic and biexcitonic processes. . J. Phys. Chem. B 117::441221
    [Crossref] [Google Scholar]
  52. 52.
    Arbouet A, Voisin C, Christofilos D, Langot P, Del Fatti N, et al. 2003.. Electron-phonon scattering in metal clusters. . Phys. Rev. Lett. 90::177401
    [Crossref] [Google Scholar]
  53. 53.
    Mongin D, Maioli P, Burgin J, Langot P, Cottancin E, et al. 2019.. Ultrafast electron-lattice thermalization in copper and other noble metal nanoparticles. . J. Phys. Condens. Matter 31::084001
    [Crossref] [Google Scholar]
  54. 54.
    Thomsen C, Grahn HT, Maris HJ, Tauc J. 1986.. Surface generation and detection of phonons by picosecond light pulses. . Phys. Rev. B 34::412938
    [Crossref] [Google Scholar]
  55. 55.
    Wright OB. 1994.. Ultrafast nonequilibrium stress generation in gold and silver. . Phys. Rev. B 49::998588
    [Crossref] [Google Scholar]
  56. 56.
    Perner M, Gresillon S, März J, von Plessen G, Feldmann J, et al. 2000.. Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. . Phys. Rev. Lett. 85::79295
    [Crossref] [Google Scholar]
  57. 57.
    Park H, Wang X, Nie S, Clinite R, Cao J. 2005.. Mechanism of coherent acoustic phonon generation under nonequilibrium conditions. . Phys. Rev. B 72::100301
    [Crossref] [Google Scholar]
  58. 58.
    Sun CK, Vallée F, Acioli L, Ippen EP, Fujimoto JG. 1993.. Femtosecond investigation of electron thermalization in gold. . Phys. Rev. B 48::1236568
    [Crossref] [Google Scholar]
  59. 59.
    Groeneveld RHM, Sprik R, Lagendijk A. 1995.. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. . Phys. Rev. B 51::1143345
    [Crossref] [Google Scholar]
  60. 60.
    Hartland GV. 2011.. Optical studies of dynamics in noble metal nanostructures. . Chem. Rev. 111::385887
    [Crossref] [Google Scholar]
  61. 61.
    Ashcroft NW, Mermin ND. 1976.. Solid State Physics. New York:: Holt, Rinehart and Winston
    [Google Scholar]
  62. 62.
    Brown AM, Sundararaman R, Narang P, Goddard WA, Atwater HA. 2016.. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. . Phys. Rev. B 94::075120
    [Crossref] [Google Scholar]
  63. 63.
    Fedou J, Viarbitskaya S, Marty R, Sharma J, Paillard V, et al. 2013.. From patterned optical near-fields to high symmetry acoustic vibrations in gold crystalline platelets. . Phys. Chem. Chem. Phys. 15::420513
    [Crossref] [Google Scholar]
  64. 64.
    Haynes WM. 2016.. CRC Handbook of Chemistry and Physics. Boca Raton, FL:: CRC Press. 97th ed .
    [Google Scholar]
  65. 65.
    Matsui M. 2010.. High temperature and high pressure equation of state of gold. . J. Phys. Conf. Ser. 215::012197
    [Crossref] [Google Scholar]
  66. 66.
    Salzwedel R, Knorr A, Hoeing D, Lange H, Selig M. 2023.. Theory of radial oscillations in metal nanoparticles driven by optically induced electron density gradients. . J. Chem. Phys. 158::064107
    [Crossref] [Google Scholar]
  67. 67.
    Hoeing D, Salzwedel R, Worbs L, Zhuang Y, Samanta AK, et al. 2023.. Time-resolved single-particle X-ray scattering reveals electron-density gradients as coherent plasmonic-nanoparticle-oscillation source. . Nano Lett. 23::594350
    [Crossref] [Google Scholar]
  68. 68.
    Bonacina L, Callegari A, Bonati C, van Mourik F, Chergui M. 2006.. Time-resolved photodynamics of triangular-shaped silver nanoplates. . Nano Lett. 6::710
    [Crossref] [Google Scholar]
  69. 69.
    McMahon JM, Schatz GC, Gray SK. 2013.. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. . Phys. Chem. Chem. Phys. 15::541523
    [Crossref] [Google Scholar]
  70. 70.
    Uthe B, Collis JF, Madadi M, Sader JE, Pelton M. 2021.. Highly spherical nanoparticles probe gigahertz viscoelastic flows of simple liquids without the no-slip condition. . J. Phys. Chem. Lett. 12::444046
    [Crossref] [Google Scholar]
  71. 71.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, et al. 2011.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. . Chem. Rev. 111::3669712
    [Crossref] [Google Scholar]
  72. 72.
    Hu M, Wang X, Hartland GV, Mulvaney P, Juste JP, Sader JE. 2003.. Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis. . J. Am. Chem. Soc. 125::1492533
    [Crossref] [Google Scholar]
  73. 73.
    Zijlstra P, Tchebotareva AL, Chon JWM, Gu M, Orrit M. 2008.. Acoustic oscillations and elastic moduli of single gold nanorods. . Nano Lett. 8::349397
    [Crossref] [Google Scholar]
  74. 74.
    Ahmed A, Pelton M, Guest JR. 2017.. Understanding how acoustic vibrations modulate the optical response of plasmonic metal nanoparticles. . ACS Nano 11::936069
    [Crossref] [Google Scholar]
  75. 75.
    Saison-Francioso O, Lévêque G, Akjouj A. 2020.. Numerical modeling of acousto–plasmonic coupling in metallic nanoparticles. . J. Phys. Chem. C 124::1212033
    [Crossref] [Google Scholar]
  76. 76.
    Petrova H, Lin CH, de Liejer S, Hu M, McLellan JM, et al. 2007.. Time-resolved spectroscopy of silver nanocubes: observation and assignment of coherently excited vibrational modes. . J. Chem. Phys. 126::094709
    [Crossref] [Google Scholar]
  77. 77.
    Clark JN, Beitra L, Xiong G, Higginbotham A, Fritz DM, et al. 2013.. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. . Science 341::5659
    [Crossref] [Google Scholar]
  78. 78.
    Szilagyi E, Wittenberg JS, Miller TA, Lutker K, Quirin F, et al. 2015.. Visualization of nanocrystal breathing modes at extreme strains. . Nat. Commun. 6::6577
    [Crossref] [Google Scholar]
  79. 79.
    Clark JN, Beitra L, Xiong G, Fritz DM, Lemke HT, et al. 2015.. Imaging transient melting of a nanocrystal using an X-ray laser. . PNAS 112::744448
    [Crossref] [Google Scholar]
  80. 80.
    Valley DT, Ferry VE, Flannigan DJ. 2016.. Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy. . Nano Lett. 16::73028
    [Crossref] [Google Scholar]
  81. 81.
    Tong L, Li D, Su T, Gao S, Wang P, et al. 2023.. Direct mapping of bending and torsional dynamics in individual nanostructures. . PNAS 120::e2221956120
    [Crossref] [Google Scholar]
  82. 82.
    Kim Y-J, Jung H, Han SW, Kwon O-H. 2019.. Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces. . Matter 1::48195
    [Crossref] [Google Scholar]
  83. 83.
    Kirschner MS, Lethiec CM, Lin XM, Schatz GC, Chen LX, Schaller RD. 2016.. Size-dependent coherent-phonon plasmon modulation and deformation characterization in gold bipyramids and nanojavelins. . ACS Photonics 3::75863
    [Crossref] [Google Scholar]
  84. 84.
    Wang L, Oppermann M, Puppin M, Bauer B, Chow TH, et al. 2023.. Interband transition probing of coherent acoustic phonons of gold/metal oxide core–shell nanoparticles. . Appl. Phys. Lett. 122::082201
    [Crossref] [Google Scholar]
  85. 85.
    Galstyan V, Pak OS, Stone HA. 2015.. A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. . Phys. Fluids 27::1478489
    [Crossref] [Google Scholar]
  86. 86.
    Chakraborty D, Hartland GV, Pelton M, Sader JE. 2018.. When can the elastic properties of simple liquids be probed using high-frequency nanoparticle vibrations?. J. Phys. Chem. C 122::1334753
    [Crossref] [Google Scholar]
  87. 87.
    Major TA, Crut A, Gao B, Lo SS, Del Fatti N, et al. 2013.. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments. . Phys. Chem. Chem. Phys. 15::416976
    [Crossref] [Google Scholar]
  88. 88.
    Wright C, Hartland GV. 2023.. Mode specific dynamics for the acoustic vibrations of a gold nanoplate. . Photoacoustics 30::100476
    [Crossref] [Google Scholar]
  89. 89.
    Zheng JP, Cheng XZ, Zhang H, Bai XP, Ai RQ, et al. 2021.. Gold nanorods: the most versatile plasmonic nanoparticles. . Chem. Rev. 121::13342453
    [Crossref] [Google Scholar]
  90. 90.
    Hodak JH, Henglein A, Hartland GV. 2000.. Coherent excitation of acoustic breathing modes in bimetallic core-shell nanoparticles. . J. Phys. Chem. B 104::505355
    [Crossref] [Google Scholar]
  91. 91.
    Sader JE, Hartland GV, Mulvaney P. 2002.. Theory of acoustic breathing modes of core-shell nanoparticles. . J. Phys. Chem. B 106::1399402
    [Crossref] [Google Scholar]
  92. 92.
    Mongin D, Juvé V, Maioli P, Crut A, Del Fatti N, et al. 2011.. Acoustic vibrations of metal-dielectric core-shell nanoparticles. . Nano Lett. 11::301621
    [Crossref] [Google Scholar]
  93. 93.
    Cardinal MF, Mongin D, Crut A, Maioli P, Rodríguez-González B, et al. 2012.. Acoustic vibrations in bimetallic Au@Pd core-shell nanorods. . J. Phys. Chem. Lett. 3::61319
    [Crossref] [Google Scholar]
  94. 94.
    Yu S, Zhang J, Tang Y, Ouyang M. 2015.. Engineering acoustic phonons and electron–phonon coupling by the nanoscale interface. . Nano Lett. 15::628288
    [Crossref] [Google Scholar]
  95. 95.
    Yu K, Sader JE, Zijlstra P, Hong MH, Xu QH, Orrit M. 2014.. Probing silver deposition on single gold nanorods by their acoustic vibrations. . Nano Lett. 14::91522
    [Crossref] [Google Scholar]
  96. 96.
    Juodėnas M, Peckus D, Tamulevičius T, Yamauchi Y, Tamulevičius S, Henzie J. 2020.. Effect of Ag nanocube optomechanical modes on plasmonic surface lattice resonances. . ACS Photonics 7::313040
    [Crossref] [Google Scholar]
  97. 97.
    Peckus D, Rong H, Stankevičius L, Juodėnas M, Tamulevičius S, et al. 2017.. Hot electron emission can lead to damping of optomechanical modes in core–shell Ag@TiO2 nanocubes. . J. Phys. Chem. C 121::2415967
    [Crossref] [Google Scholar]
  98. 98.
    Wang L, Nishijima Y, Ueno K, Misawa H, Tamai N. 2012.. Effect of dipole coupling on near-IR LSPR and coherent phonon vibration of periodic gold pair nanocuboids. . J. Phys. Chem. C 116::1783846
    [Crossref] [Google Scholar]
  99. 99.
    Petrova H, Lin C-H, Hu M, Chen J, Siekkinen AR, et al. 2007.. Vibrational response of Au-Ag nanoboxes and nanocages to ultrafast laser-induced heating. . Nano Lett. 7::105963
    [Crossref] [Google Scholar]
  100. 100.
    Wang J, Li M, Jiang Y, Yu K, Hartland GV, Wang GP. 2021.. Polymer dependent acoustic mode coupling and Hooke's law spring constants in stacked gold nanoplates. . J. Chem. Phys. 155::144701
    [Crossref] [Google Scholar]
  101. 101.
    Pelton M, Chakraborty D, Malachosky E, Guyot-Sionnest P, Sader JE. 2013.. Viscoelastic flows in simple liquids generated by vibrating nanostructures. . Phys. Rev. Lett. 111::244502
    [Crossref] [Google Scholar]
  102. 102.
    Pelton M, Sader JE, Burgin J, Liu MZ, Guyot-Sionnest P, Gosztola D. 2009.. Damping of acoustic vibrations in gold nanoparticles. . Nat. Nanotechnol. 4::49295
    [Crossref] [Google Scholar]
  103. 103.
    Wang L, Takeda S, Sato R, Sakamoto M, Teranishi T, Tamai N. 2021.. Morphology-dependent coherent acoustic phonon vibrations and phonon beat of Au nanopolyhedrons. . ACS Omega 6::548589
    [Crossref] [Google Scholar]
  104. 104.
    Jean C, Belliard L, Cornelius TW, Thomas O, Toimil-Molares ME, et al. 2014.. Direct observation of gigahertz coherent guided acoustic phonons in free-standing single copper nanowires. . J. Phys. Chem. Lett. 5::41004
    [Crossref] [Google Scholar]
  105. 105.
    Hodak JH, Henglein A, Hartland GV. 2000.. Photophysics of nanometer sized metal particles: electron–phonon coupling and coherent excitation of breathing vibrational modes. . J. Phys. Chem. B 104::995465
    [Crossref] [Google Scholar]
  106. 106.
    Wang L, Sagaguchi T, Okuhata T, Tsuboi M, Tamai N. 2017.. Electron and phonon dynamics in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates. . ACS Nano 11::118088
    [Crossref] [Google Scholar]
  107. 107.
    Owrutsky JC, Pomfret MB, Brown DJ. 2009.. Coherent acoustic oscillations of nanorods composed of various metals. . J. Phys. Chem. C 113::1094755
    [Crossref] [Google Scholar]
  108. 108.
    Ostovar B, Su M-N, Renard D, Clark BD, Dongare PD, et al. 2020.. Acoustic vibrations of Al nanocrystals: size, shape, and crystallinity revealed by single-particle transient extinction spectroscopy. . J. Phys. Chem. A 124::392434
    [Crossref] [Google Scholar]
  109. 109.
    Son DH, Wittenberg JS, Banin U, Alivisatos AP. 2006.. Second harmonic generation and confined acoustic phonons in highly excited semiconductor nanocrystals. . J. Phys. Chem. B 110::1988490
    [Crossref] [Google Scholar]
  110. 110.
    Sagar DM, Cooney RR, Sewall SL, Dias EA, Barsan MM, et al. 2008.. Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots. . Phys. Rev. B 77::235321
    [Crossref] [Google Scholar]
  111. 111.
    Huxter VM, Lee A, Lo SS, Scholes GD. 2009.. CdSe nanoparticle elasticity and surface energy. . Nano Lett. 9::4059
    [Crossref] [Google Scholar]
  112. 112.
    Van Goethem EM, Pinion CW, Cating EEM, Cahoon JF, Papanikolas JM. 2019.. Observation of phonon propagation in germanium nanowires using femtosecond pump-probe microscopy. . ACS Photonics 6::221322
    [Crossref] [Google Scholar]
  113. 113.
    Guo PJ, Schaller RD, Ocola LE, Ketterson JB, Chang RPH. 2016.. Gigahertz acoustic vibrations of elastically anisotropic indium-tin-oxide nanorod arrays. . Nano Lett. 16::563946
    [Crossref] [Google Scholar]
  114. 114.
    Juvé V, Crut A, Maioli P, Pellarin M, Broyer M, et al. 2010.. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. . Nano Lett. 10::185358
    [Crossref] [Google Scholar]
  115. 115.
    Kang X, Li YW, Zhu MZ, Jin RC. 2020.. Atomically precise alloy nanoclusters: syntheses, structures, and properties. . Chem. Soc. Rev. 49::6443514
    [Crossref] [Google Scholar]
  116. 116.
    Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T III. 2010.. Optically excited acoustic vibrations in quantum-sized monolayer-protected gold clusters. . ACS Nano 4::340612
    [Crossref] [Google Scholar]
  117. 117.
    Qian HF, Sfeir MY, Jin RC. 2010.. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: effects of charge state. . J. Phys. Chem. C 114::1993540
    [Crossref] [Google Scholar]
  118. 118.
    Zhou M, Zeng CJ, Song YB, Padelford JW, Wang GL, et al. 2017.. On the non-metallicity of 2.2 nm Au246(SR)80 nanoclusters. . Angew. Chem. Int. Ed. 56::1625761
    [Crossref] [Google Scholar]
  119. 119.
    Maioli P, Stoll T, Sauceda HE, Valencia I, Demessence A, et al. 2018.. Mechanical vibrations of atomically defined metal clusters: from nano- to molecular-size oscillators. . Nano Lett. 18::684249
    [Crossref] [Google Scholar]
  120. 120.
    Jeffries WR, Malola S, Tofanelli MA, Ackerson CJ, Häkkinen H, Knappenberger KL Jr. 2023.. Coherent vibrational dynamics of Au144(SC8H9)60 nanoclusters. . J. Phys. Chem. Lett. 14::667985
    [Crossref] [Google Scholar]
  121. 121.
    Martinet Q, Berthelot A, Girard A, Donoeva B, Comby-Zerbino C, et al. 2020.. Performances of the Lamb model to describe the vibrations of gold quantum-sized clusters. . J. Phys. Chem. C 124::1932432
    [Crossref] [Google Scholar]
  122. 122.
    Zhou M, Jin RX, Sfeir MY, Chen YX, Song YB, Jin RC. 2017.. Electron localization in rod-shaped triicosahedral gold nanocluster. . PNAS 114::E4697705
    [Crossref] [Google Scholar]
  123. 123.
    Zhou M, Jin RC. 2021.. Optical properties and excited-state dynamics of atomically precise gold nanoclusters. . Annu. Rev. Phys. Chem. 72::12142
    [Crossref] [Google Scholar]
  124. 124.
    Nelet A, Crut A, Arbouet A, Del Fatti N, Vallée F, et al. 2004.. Acoustic vibrations of metal nanoparticles: high order radial mode detection. . Appl. Surf. Sci. 226::20915
    [Crossref] [Google Scholar]
  125. 125.
    Voisin C, Christofilos D, Del Fatti N, Vallée F. 2002.. Environment effect on the acoustic vibration of metal nanoparticles. . Phys. B Condens. Matter 316–317::8994
    [Crossref] [Google Scholar]
  126. 126.
    Ruijgrok PV, Zijlstra P, Tchebotareva AL, Orrit M. 2012.. Damping of acoustic vibrations of single gold nanoparticles optically trapped in water. . Nano Lett. 12::106369
    [Crossref] [Google Scholar]
  127. 127.
    Major TA, Lo SS, Yu K, Hartland GV. 2014.. Time-resolved studies of the acoustic vibrational modes of metal and semiconductor nano-objects. . J. Phys. Chem. Lett. 5::86674
    [Crossref] [Google Scholar]
  128. 128.
    Lermé J, Margueritat J, Crut A. 2021.. Vibrations of dimers of mechanically coupled nanostructures: analytical and numerical modeling. . J. Phys. Chem. C 125::833948
    [Crossref] [Google Scholar]
  129. 129.
    Yu K, Yang Y, Wang J, Hartland GV, Wang GP. 2021.. Nanoparticle–fluid interactions at ultrahigh acoustic vibration frequencies studied by femtosecond time-resolved microscopy. . ACS Nano 15::183340
    [Crossref] [Google Scholar]
  130. 130.
    Crut A. 2022.. Substrate-supported nano-objects with high vibrational quality factors. . J. Appl. Phys. 131::244301
    [Crossref] [Google Scholar]
  131. 131.
    Devkota T, Chakraborty D, Yu KA, Beane G, Sader JE, Hartland GV. 2018.. On the measurement of relaxation times of acoustic vibrations in metal nanowires. . Phys. Chem. Chem. Phys. 20::1768793
    [Crossref] [Google Scholar]
  132. 132.
    Yu K, Zijlstra P, Sader JE, Xu Q-H, Orrit M. 2013.. Damping of acoustic vibrations of immobilized single gold nanorods in different environments. . Nano Lett. 13::271016
    [Crossref] [Google Scholar]
  133. 133.
    Yu K, Major TA, Chakraborty D, Devadas MS, Sader JE, Hartland GV. 2015.. Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires. . Nano Lett. 15::396470
    [Crossref] [Google Scholar]
  134. 134.
    Yi C, Su M-N, Dongare PD, Chakraborty D, Cai Y-Y, et al. 2018.. Polycrystallinity of lithographically fabricated plasmonic nanostructures dominates their acoustic vibrational damping. . Nano Lett. 18::3494501
    [Crossref] [Google Scholar]
  135. 135.
    Su MN, Ostovar B, Gross N, Sader JE, Chang WS, Link S. 2021.. Acoustic vibrations and energy dissipation mechanisms for lithographically fabricated plasmonic nanostructures revealed by single-particle transient extinction spectroscopy. . J. Phys. Chem. C 125::162136
    [Crossref] [Google Scholar]
  136. 136.
    Lifshitz R, Roukes ML. 2000.. Thermoelastic damping in micro- and nanomechanical systems. . Phys. Rev. B 61::56009
    [Crossref] [Google Scholar]
  137. 137.
    Chakraborty D, Sader JE. 2015.. Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. . Phys. Fluids 27::052002
    [Crossref] [Google Scholar]
  138. 138.
    Slie WM, Donfor AR, Litovitz TA. 1966.. Ultrasonic shear and longitudinal measurements in aqueous glycerol. . J. Chem. Phys. 44::371218
    [Crossref] [Google Scholar]
  139. 139.
    Yu K, Jiang YQ, Chen YA, Hu XY, Chang JL, et al. 2023.. Compressible viscoelasticity of cell membranes determined by gigahertz-frequency acoustic vibrations. . Photoacoustics 31::100494
    [Crossref] [Google Scholar]
  140. 140.
    Novotny L. 2010.. Strong coupling, energy splitting, and level crossings: a classical perspective. . Am. J. Phys. 78::1199202
    [Crossref] [Google Scholar]
  141. 141.
    Hettich M, Jacob K, Ristow O, Schubert M, Bruchhausen A, et al. 2016.. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies. . Sci. Rep. 6::33471
    [Crossref] [Google Scholar]
  142. 142.
    Yu K, Devkota T, Beane G, Wang GP, Hartland GV. 2017.. Brillouin oscillations from single Au nanoplate opto-acoustic transducers. . ACS Nano 11::806471
    [Crossref] [Google Scholar]
  143. 143.
    Panais C, Rouxel R, Lascoux N, Marguet S, Maioli P, et al. 2023.. Cooling dynamics of individual gold nanodisks deposited on thick substrates and nanometric membranes. . J. Phys. Chem. Lett. 14::534352
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-032529
Loading
/content/journals/10.1146/annurev-physchem-082423-032529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error