1932

Abstract

Vibrational spectroscopy and fluorescence spectroscopy have historically been two established but separate fields of molecular spectroscopy. While vibrational spectroscopy provides exquisite chemical information, fluorescence spectroscopy often offers orders of magnitude higher detection sensitivity. However, they each lack the advantages of each other. In recent years, a series of novel nonlinear optical spectroscopy studies have been developed that merge both spectroscopies into a single double-resonance process. These techniques combine the chemical specificity of Raman or infrared (IR) spectroscopy with the superb detection sensitivity and spatial resolution of fluorescence microscopy. Many facets have been explored, including Raman transition versus IR transition, time domain versus frequency domain, and spectroscopy versus microscopy. Notably, single-molecule vibrational spectroscopy has been achieved at room temperature without the need for plasmonics. Even superresolution vibrational imaging beyond the diffraction limit was demonstrated. This review summarizes the growing field of vibrational-encoded fluorescence microscopy, including key technical developments, emerging applications, and future prospects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-121033
2025-04-21
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-121033.html?itemId=/content/journals/10.1146/annurev-physchem-082423-121033&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wilson EB, Decius JC, Cross PC. 1980.. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. New York:: Dover
    [Google Scholar]
  2. 2.
    Herzberg G. 1945.. Infrared and Raman Spectra of Polyatomic Molecules. New York:: Van Nostrand
    [Google Scholar]
  3. 3.
    Diem M. 1993.. Introduction to Modern Vibrational Spectroscopy. New York:: Wiley
    [Google Scholar]
  4. 4.
    Spiro TG, Strekas TC. 1972.. Resonance Raman spectra of hemoglobin and cytochrome c: inverse polarization and vibronic scattering. . PNAS 69::262226
    [Crossref] [Google Scholar]
  5. 5.
    Johnson BB, Peticolas WL. 1976.. The resonant Raman effect. . Annu. Rev. Phys. Chem. 27::465521
    [Crossref] [Google Scholar]
  6. 6.
    Asher SA. 1988.. UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. . Annu. Rev. Phys. Chem. 39::53788
    [Crossref] [Google Scholar]
  7. 7.
    Kukura P, McCamant DW, Mathies RA. 2007.. Femtosecond stimulated Raman spectroscopy. . Annu. Rev. Phys. Chem. 58::46188
    [Crossref] [Google Scholar]
  8. 8.
    Shim S, Stuart CM, Mathies RA. 2008.. Resonance Raman cross-sections and vibronic analysis of Rhodamine 6G from broadband stimulated Raman spectroscopy. . ChemPhysChem 9::69799
    [Crossref] [Google Scholar]
  9. 9.
    Efremov EV, Ariese F, Gooijer C. 2008.. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. . Anal. Chim. Acta 606::11934
    [Crossref] [Google Scholar]
  10. 10.
    Carey P. 2012.. Biochemical Applications of Raman and Resonance Raman Spectroscopes. New York:: Elsevier
    [Google Scholar]
  11. 11.
    Min W, Gao X. 2024.. The duality of Raman scattering. . Acc. Chem. Res. 57::1896905
    [Crossref] [Google Scholar]
  12. 12.
    Min W, Gao X. 2024.. Absolute signal of stimulated Raman scattering microscopy: a quantum electrodynamics treatment. . Sci. Adv. 10:(50):eadm8424
    [Crossref] [Google Scholar]
  13. 13.
    Min W, Freudiger CW, Lu S, Xie XS. 2011.. Coherent nonlinear optical imaging: beyond fluorescence microscopy. . Annu. Rev. Phys. Chem. 62::50730
    [Crossref] [Google Scholar]
  14. 14.
    Min W, Gao X. 2024.. Fundamental detectability of Raman scattering: a unified diagrammatic approach. . J. Chem. Phys. 160::094110
    [Crossref] [Google Scholar]
  15. 15.
    Wei L, Chen Z, Shi L, Long R, Anzalone AV, et al. 2017.. Super-multiplex vibrational imaging. . Nature 544::46570
    [Crossref] [Google Scholar]
  16. 16.
    Wei L, Min W. 2018.. Electronic preresonance stimulated Raman scattering microscopy. . J. Phys. Chem. Lett. 9::4294301
    [Crossref] [Google Scholar]
  17. 17.
    Nie S, Emory SR. 1997.. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. . Science 275::11026
    [Crossref] [Google Scholar]
  18. 18.
    Le Ru EC, Etchegoin PG. 2012.. Single-molecule surface-enhanced Raman spectroscopy. . Annu. Rev. Phys. Chem. 63::6587
    [Crossref] [Google Scholar]
  19. 19.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP. 2012.. SERS: materials, applications, and the future. . Mater. Today 15::1625
    [Crossref] [Google Scholar]
  20. 20.
    Brus L. 2008.. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. . Acc. Chem. Res. 41::174249
    [Crossref] [Google Scholar]
  21. 21.
    Yampolsky S, Fishman DA, Dey S, Hulkko E, Banik M, et al. 2014.. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. . Nat. Photon. 8::65056
    [Crossref] [Google Scholar]
  22. 22.
    Zong C, Premasiri R, Lin H, Huang Y, Zhang C, et al. 2019.. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. . Nat. Commun. 10::5318
    [Crossref] [Google Scholar]
  23. 23.
    Zong C, Xu M, Xu L-J, Wei T, Ma X, et al. 2018.. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. . Chem. Rev. 118::494680
    [Crossref] [Google Scholar]
  24. 24.
    Siebert F, Hildebrandt P. 2008.. Vibrational Spectroscopy in Life Science. Weinheim, Ger:.: Wiley-VCH
    [Google Scholar]
  25. 25.
    Barnes RB, Bonner LG. 1936.. The early history and the methods of infrared spectroscopy. . Am. Phys. Teach. 4::18189
    [Crossref] [Google Scholar]
  26. 26.
    Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. 1994.. Quantum cascade laser. . Science 264::55356
    [Crossref] [Google Scholar]
  27. 27.
    Li X, Huang X, Hu X, Guo X, Han Y. 2023.. Recent progress on mid-infrared pulsed fiber lasers and the applications. . Optics Laser Technol. 158::108898
    [Crossref] [Google Scholar]
  28. 28.
    Hartstein A, Kirtley J, Tsang J. 1980.. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. . Phys. Rev. Lett. 45::201
    [Crossref] [Google Scholar]
  29. 29.
    Xomalis A, Zheng X, Chikkaraddy R, Koczor-Benda Z, Miele E, et al. 2021.. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. . Science 374::126871
    [Crossref] [Google Scholar]
  30. 30.
    Kurouski D, Dazzi A, Zenobi R, Centrone A. 2020.. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. . Chem. Soc. Rev. 49::331547
    [Crossref] [Google Scholar]
  31. 31.
    Kenkel S, Gryka M, Chen L, Confer MP, Rao A, et al. 2022.. Chemical imaging of cellular ultrastructure by null-deflection infrared spectroscopic measurements. . PNAS 119::e2210516119
    [Crossref] [Google Scholar]
  32. 32.
    Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, et al. 2009.. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. . PNAS 106::1922732
    [Crossref] [Google Scholar]
  33. 33.
    Dazzi A, Prater CB. 2017.. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. . Chem. Rev. 117::514673
    [Crossref] [Google Scholar]
  34. 34.
    Wang L, Wang H, Xu XG. 2022.. Principle and applications of peak force infrared microscopy. . Chem. Soc. Rev. 51::526886
    [Crossref] [Google Scholar]
  35. 35.
    Zhang D, Li C, Zhang C, Slipchenko MN, Eakins G, Cheng J-X. 2016.. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. . Sci. Adv. 2::e1600521
    [Crossref] [Google Scholar]
  36. 36.
    Teng X, Li M, He H, Jia D, Yin J, et al. 2024.. Mid-infrared photothermal imaging: instrument and life science applications. . Anal. Chem. 96::7895906
    [Crossref] [Google Scholar]
  37. 37.
    Li Z, Aleshire K, Kuno M, Hartland GV. 2017.. Super-resolution far-field infrared imaging by photothermal heterodyne imaging. . J. Phys. Chem. B 121::883846
    [Crossref] [Google Scholar]
  38. 38.
    Li M, Razumtcev A, Yang R, Liu Y, Rong J, et al. 2021.. Fluorescence-detected mid-infrared photothermal microscopy. . J. Am. Chem. Soc. 143::1080915
    [Crossref] [Google Scholar]
  39. 39.
    Zhang Y, Zong H, Zong C, Tan Y, Zhang M, et al. 2021.. Fluorescence-detected mid-infrared photothermal microscopy. . J. Am. Chem. Soc. 143::1149099
    [Crossref] [Google Scholar]
  40. 40.
    Zare RN. 2012.. My life with LIF: a personal account of developing laser-induced fluorescence. . Annu. Rev. Anal. Chem. 5::114
    [Crossref] [Google Scholar]
  41. 41.
    Nie S, Chiu DT, Zare RN. 1994.. Probing individual molecules with confocal fluorescence microscopy. . Science 266::101821
    [Crossref] [Google Scholar]
  42. 42.
    Xie XS, Trautman JK. 1998.. Optical studies of single molecules at room temperature. . Annu. Rev. Phys. Chem. 49::44180
    [Crossref] [Google Scholar]
  43. 43.
    Moerner WE, Orrit M. 1999.. Illuminating single molecules in condensed matter. . Science 283::167076
    [Crossref] [Google Scholar]
  44. 44.
    Moerner W. 2002.. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. . J. Phys. Chem. B 5::91027
    [Crossref] [Google Scholar]
  45. 45.
    Basché T, Moerner WE, Orrit M, Wild UP, eds. 1997.. Single-Molecule Optical Detection, Imaging and Spectroscopy. Weinheim, Ger:.: Wiley-VCH
    [Google Scholar]
  46. 46.
    Laubereau A, Seilmeier A, Kaiser W. 1975.. A new technique to measure ultrashort vibrational relaxation times in liquid systems. . Chem. Phys. Lett. 36::23237
    [Crossref] [Google Scholar]
  47. 47.
    Seilmeier A, Kaiser W, Laubereau A, Fischer S. 1978.. A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules. . Chem. Phys. Lett. 58::22529
    [Crossref] [Google Scholar]
  48. 48.
    Hübner H-J, Wörner M, Kaiser W, Seilmeier A. 1991.. Subpicosecond vibrational relaxation of skeletal modes in polyatomic molecules. . Chem. Phys. Lett. 182::31520
    [Crossref] [Google Scholar]
  49. 49.
    Wright JC. 1980.. Double resonance excitation of fluorescence in the condensed phase—an alternative to infrared, Raman, and fluorescence spectroscopy. . Appl. Spectrosc. 34::15157
    [Crossref] [Google Scholar]
  50. 50.
    Prince RC, Frontiera RR, Potma EO. 2017.. Stimulated Raman scattering: from bulk to nano. . Chem. Rev. 117::507094
    [Crossref] [Google Scholar]
  51. 51.
    Lee S, Nguyen D, Wright J. 1983.. Double resonance excitation of fluorescence by stimulated Raman scattering. . Appl. Spectrosc. 37::47274
    [Crossref] [Google Scholar]
  52. 52.
    Winterhalder M, Zumbusch A, Lippitz M, Orrit M. 2011.. Toward far-field vibrational spectroscopy of single molecules at room temperature. . J. Phys. Chem. B 115::542530
    [Crossref] [Google Scholar]
  53. 53.
    Craig DP, Thirunamachandran T. 1998.. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions. New York:: Dover
    [Google Scholar]
  54. 54.
    Deleted in proof
  55. 55.
    Xiong H, Shi L, Wei L, Shen Y, Long R, et al. 2019.. Stimulated Raman excited fluorescence spectroscopy and imaging. . Nat. Photon. 13::41217
    [Crossref] [Google Scholar]
  56. 56.
    Xiong H, Qian N, Miao Y, Zhao Z, Min W. 2019.. Stimulated Raman excited fluorescence spectroscopy of visible dyes. . J. Phys. Chem. Lett. 10::356370
    [Crossref] [Google Scholar]
  57. 57.
    Albrecht A, Hutley M. 1971.. On the dependence of vibrational Raman intensity on the wavelength of incident light. . J. Chem. Phys. 55::443843
    [Crossref] [Google Scholar]
  58. 58.
    Fimpel P, Choorakuttil AJ, Pruccoli A, Ebner L, Tanaka S, et al. 2020.. Double modulation SRS and SREF microscopy: signal contributions under pre-resonance conditions. . Phys. Chem. Chem. Phys. 22::2142127
    [Crossref] [Google Scholar]
  59. 59.
    Xiong H, Qian N, Miao Y, Zhao Z, Chen C, Min W. 2021.. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. . Light Sci. Appl. 10::87
    [Crossref] [Google Scholar]
  60. 60.
    Xiong H, Min W. 2020.. Combining the best of two worlds: stimulated Raman excited fluorescence. . J. Chem. Phys. 153::210901
    [Crossref] [Google Scholar]
  61. 61.
    McCann PC, Hiramatsu K, Goda K. 2021.. Highly sensitive low-frequency time-domain Raman spectroscopy via fluorescence encoding. . J. Phys. Chem. Lett. 12::785965
    [Crossref] [Google Scholar]
  62. 62.
    Yu Q, Yao Z, Zhang H, Li Z, Chen Z, Xiong H. 2023.. Transient stimulated Raman excited fluorescence spectroscopy. . J. Am. Chem. Soc. 145::775862
    [Crossref] [Google Scholar]
  63. 63.
    Tamura T, McCann PC, Nishiyama R, Hiramatsu K, Goda K. 2024.. Fluorescence-encoded time-domain coherent Raman spectroscopy in the visible range. . J. Phys. Chem. Lett. 15::494047
    [Crossref] [Google Scholar]
  64. 64.
    Ogilvie JP, Beaurepaire E, Alexandrou A, Joffre M. 2006.. Fourier-transform coherent anti-Stokes Raman scattering microscopy. . Optics Lett. 31::48082
    [Crossref] [Google Scholar]
  65. 65.
    Brinks D, Stefani FD, Kulzer F, Hildner R, Taminiau TH, et al. 2010.. Visualizing and controlling vibrational wave packets of single molecules. . Nature 465::9058
    [Crossref] [Google Scholar]
  66. 66.
    Whaley-Mayda L, Guha A, Penwell SB, Tokmakoff A. 2021.. Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity. . J. Am. Chem. Soc. 143::306064
    [Crossref] [Google Scholar]
  67. 67.
    Wang H, Lee D, Cao Y, Bi X, Du J, et al. 2023.. Bond-selective fluorescence imaging with single-molecule sensitivity. . Nat. Photon. 17::84655
    [Crossref] [Google Scholar]
  68. 68.
    Chikkaraddy R, Arul R, Jakob LA, Baumberg JJ. 2023.. Single-molecule mid-infrared spectroscopy and detection through vibrationally assisted luminescence. . Nat. Photon. 17::86571
    [Crossref] [Google Scholar]
  69. 69.
    Sakai M, Kawashima Y, Takeda A, Ohmori T, Fujii M. 2007.. Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy. . Chem. Phys. Lett. 439::17176
    [Crossref] [Google Scholar]
  70. 70.
    Ohmori T, Sakai M, Ishihara M, Kikuchi M, Fujii M. 2008.. Cell imaging by transient fluorescence detected infrared microscopy. . Proc. Biomed. Opt. Spectrosc. 6853::5864
    [Google Scholar]
  71. 71.
    Takahashi H, Oue T, Sakai M. 2020.. Resonance IR spectroscopy in aqueous solution by combining IR super-resolution with TFD-IR method. . Chem. Phys. Lett. 758::137942
    [Crossref] [Google Scholar]
  72. 72.
    Whaley-Mayda L, Guha A, Tokmakoff A. 2022.. Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy. . J. Chem. Phys. 156::174202
    [Crossref] [Google Scholar]
  73. 73.
    Lee D, Wang H, Kocheril PA, Bi X, Naji N, Wei L. 2024.. Wide-field bond-selective fluorescence imaging: from single-molecule to cellular imaging beyond video-rate. . bioRxiv 2024.07.05.601986 . https://doi.org/10.1101/2024.07.05.601986
  74. 74.
    Yan C, Wang C, Wagner JC, Ren J, Lee C, et al. 2023.. Multidimensional widefield infrared-encoded spontaneous emission microscopy: distinguishing chromophores by ultrashort infrared pulses. . J. Am. Chem. Soc. 146::187486
    [Crossref] [Google Scholar]
  75. 75.
    Moerner WE, Shechtman Y, Wang Q. 2015.. Single-molecule spectroscopy and imaging over the decades. . Faraday Discuss. 184::936
    [Crossref] [Google Scholar]
  76. 76.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. 1995.. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. . Nature 374::55559
    [Crossref] [Google Scholar]
  77. 77.
    Zrimsek A, Chiang N, Mattei M, Zaleski S, McAnally M, et al. 2017.. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy. . Chem. Rev. 117::7583
    [Crossref] [Google Scholar]
  78. 78.
    Min W, Freudiger CW, Lu S, Xie XS. 2011.. Coherent nonlinear optical imaging: beyond fluorescence microscopy. . Annu. Rev. Phys. Chem. 62::50730
    [Crossref] [Google Scholar]
  79. 79.
    Min W, Gao X. 2023.. Raman scattering and vacuum fluctuation: an Einstein-coefficient-like equation for Raman cross sections. . J. Chem. Phys. 159::194103
    [Crossref] [Google Scholar]
  80. 80.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. 1997.. Single molecule detection using surface-enhanced Raman scattering (SERS). . Phys. Rev. Lett. 78::1667
    [Crossref] [Google Scholar]
  81. 81.
    Zhang Y, Zhen Y-R, Neumann O, Day JK, Nordlander P, Halas NJ. 2014.. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. . Nat. Commun. 5::4424
    [Crossref] [Google Scholar]
  82. 82.
    Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. 2020.. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. . Nat. Commun. 11::2945
    [Crossref] [Google Scholar]
  83. 83.
    Xu XG, Rang M, Craig IM, Raschke MB. 2012.. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. . J. Phys. Chem. Lett. 3::183641
    [Crossref] [Google Scholar]
  84. 84.
    Stipe BC, Rezaei MA, Ho W. 1998.. Single-molecule vibrational spectroscopy and microscopy. . Science 280::173235
    [Crossref] [Google Scholar]
  85. 85.
    Whaley-Mayda L, Penwell SB, Tokmakoff A. 2019.. Fluorescence-encoded infrared spectroscopy: ultrafast vibrational spectroscopy on small ensembles of molecules in solution. . J. Phys. Chem. Lett. 10::196772
    [Crossref] [Google Scholar]
  86. 86.
    Mastron JN, Tokmakoff A. 2018.. Fourier transform fluorescence-encoded infrared spectroscopy. . J. Phys. Chem. A 122::55462
    [Crossref] [Google Scholar]
  87. 87.
    Mastron JN, Tokmakoff A. 2016.. Two-photon-excited fluorescence-encoded infrared spectroscopy. . J. Phys. Chem. A 120::917887
    [Crossref] [Google Scholar]
  88. 88.
    Otomo K, Dewa T, Matsushita M, Fujiyoshi S. 2023.. Cryogenic single-molecule fluorescence detection of the mid-infrared response of an intrinsic pigment in a light-harvesting complex. . J. Phys. Chem. B 127::495965
    [Crossref] [Google Scholar]
  89. 89.
    Hell SW. 2007.. Far-field optical nanoscopy. . Science 316::115358
    [Crossref] [Google Scholar]
  90. 90.
    Xiong H, Qian N, Zhao Z, Shi L, Miao Y, Min W. 2020.. Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy. . Opt. Express 28::1566377
    [Crossref] [Google Scholar]
  91. 91.
    Rust MJ, Bates M, Zhuang X. 2006.. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. . Nat. Methods 3::79396
    [Crossref] [Google Scholar]
  92. 92.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, et al. 2006.. Imaging intracellular fluorescent proteins at nanometer resolution. . Science 313::164245
    [Crossref] [Google Scholar]
  93. 93.
    Yan C, Wang C, Wagner JC, Ren J, Lee C, et al. 2024.. Multidimensional widefield infrared-encoded spontaneous emission microscopy: distinguishing chromophores by ultrashort infrared pulses. . J. Am. Chem. Soc. 146::187486
    [Crossref] [Google Scholar]
  94. 94.
    Tang M, Han Y, Jia D, Yang Q, Cheng J-X. 2023.. Far-field super-resolution chemical microscopy. . Light Sci. Appl. 12::137
    [Crossref] [Google Scholar]
  95. 95.
    Lewis SM, Asselin-Labat M-L, Nguyen Q, Berthelet J, Tan X, et al. 2021.. Spatial omics and multiplexed imaging to explore cancer biology. . Nat. Methods 18::9971012
    [Crossref] [Google Scholar]
  96. 96.
    Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, et al. 2017.. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. . Nature 546::16267
    [Crossref] [Google Scholar]
  97. 97.
    Dean KM, Palmer AE. 2014.. Advances in fluorescence labeling strategies for dynamic cellular imaging. . Nat. Chem. Biol. 10::51223
    [Crossref] [Google Scholar]
  98. 98.
    Hu F, Zeng C, Long R, Miao Y, Wei L, et al. 2018.. Supermultiplexed optical imaging and barcoding with engineered polyynes. . Nat. Methods 15::194200
    [Crossref] [Google Scholar]
  99. 99.
    Shi L, Wei M, Miao Y, Qian N, Shi L, et al. 2022.. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. . Nat. Biotechnol. 40::36473
    [Crossref] [Google Scholar]
  100. 100.
    Shi L, Klimas A, Gallagher B, Cheng Z, Fu F, et al. 2022.. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. . Adv. Sci. 9::2200315
    [Crossref] [Google Scholar]
  101. 101.
    Shou J, Oda R, Hu F, Karasawa K, Nuriya M, et al. 2021.. Super-multiplex imaging of cellular dynamics and heterogeneity by integrated stimulated Raman and fluorescence microscopy. . iScience 24::102832
    [Crossref] [Google Scholar]
  102. 102.
    Du J, Tao X, Begušić T, Wei L. 2023.. Computational design of molecular probes for electronic preresonance Raman scattering microscopy. . J. Phys. Chem. B 127::497988
    [Crossref] [Google Scholar]
  103. 103.
    Fried SD, Boxer SG. 2015.. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. . Acc. Chem. Res. 48::9981006
    [Crossref] [Google Scholar]
  104. 104.
    Fried SD, Boxer SG. 2017.. Electric fields and enzyme catalysis. . Annu. Rev. Biochem. 86::387415
    [Crossref] [Google Scholar]
  105. 105.
    Shi L, Hu F, Min W. 2019.. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. . Nat. Commun. 10::4764
    [Crossref] [Google Scholar]
  106. 106.
    Xiong H, Lee JK, Zare RN, Min W. 2020.. Strong electric field observed at the interface of aqueous microdroplets. . J. Phys. Chem. Lett. 11::742328
    [Crossref] [Google Scholar]
  107. 107.
    Xiong H, Lee JK, Zare RN, Min W. 2020.. Strong concentration enhancement of molecules at the interface of aqueous microdroplets. . J. Phys. Chem. B 124::993844
    [Crossref] [Google Scholar]
  108. 108.
    Lee JK, Banerjee S, Nam HG, Zare RN. 2015.. Acceleration of reaction in charged microdroplets. . Q. Rev. Biophys. 48::43744
    [Crossref] [Google Scholar]
  109. 109.
    Wei Z, Li Y, Cooks RG, Yan X. 2020.. Accelerated reaction kinetics in microdroplets: overview and recent developments. . Annu. Rev. Phys. Chem. 71::3151
    [Crossref] [Google Scholar]
  110. 110.
    Hao H, Leven I, Head-Gordon T. 2022.. Can electric fields drive chemistry for an aqueous microdroplet?. Nat. Commun. 13::280
    [Crossref] [Google Scholar]
  111. 111.
    Jin S, Chen H, Yuan X, Xing D, Wang R, et al. 2023.. The spontaneous electron-mediated redox processes on sprayed water microdroplets. . JACS Au 3::156371
    [Crossref] [Google Scholar]
  112. 112.
    Lang X, Welsher K. 2020.. Mapping solvation heterogeneity in live cells by hyperspectral stimulated Raman scattering microscopy. . J. Chem. Phys. 152::174201
    [Crossref] [Google Scholar]
  113. 113.
    Lang X, Shi L, Zhao Z, Min W. 2024.. Probing the structure of water in individual living cells. . Nat. Commun. 15::5271
    [Crossref] [Google Scholar]
  114. 114.
    Kocheril PA, Wang H, Lee D, Naji N, Wei L. 2024.. Nitrile vibrational lifetimes as probes of local electric fields. . J. Phys. Chem. Lett. 15::530614
    [Crossref] [Google Scholar]
  115. 115.
    Guha A, Whaley-Mayda L, Lee SY, Tokmakoff A. 2024.. Molecular factors determining brightness in fluorescence-encoded infrared vibrational spectroscopy. . J. Chem. Phys. 160::104202
    [Crossref] [Google Scholar]
  116. 116.
    Zhu Y, Ge X, Ni H, Yin J, Lin H, et al. 2023.. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging. . Sci. Adv. 9::eadi2181
    [Crossref] [Google Scholar]
  117. 117.
    Wang Y, Laforge F, Goun A, Rabitz H. 2022.. Selective photo-excitation of molecules enabled by stimulated Raman pre-excitation. . Phys. Chem. Chem. Phys. 24::1006268
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-121033
Loading
/content/journals/10.1146/annurev-physchem-082423-121033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error