1932

Abstract

Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082423-124941
2025-04-21
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082423-124941.html?itemId=/content/journals/10.1146/annurev-physchem-082423-124941&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Xia F, Mueller T, Lin Y-M, Valdes-Garcia A, Avouris P. 2009.. Ultrafast graphene photodetector. . Nat. Nanotechnol. 4::83943
    [Crossref] [Google Scholar]
  2. 2.
    Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, et al. 2022.. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. . Chem. Rev. 122::1127207
    [Crossref] [Google Scholar]
  3. 3.
    Song L, Ci L, Lu H, Sorokin PB, Jin C, et al. 2010.. Large scale growth and characterization of atomic hexagonal boron nitride layers. . Nano Lett. 10::320915
    [Crossref] [Google Scholar]
  4. 4.
    Geim AK, Grigorieva IV. 2013.. Van der Waals heterostructures. . Nature 499::41925
    [Crossref] [Google Scholar]
  5. 5.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 2014.. 25th anniversary article: MXenes: a new family of two-dimensional materials. . Adv. Mater. 26::9921005
    [Crossref] [Google Scholar]
  6. 6.
    Zhou D, Li H, Si N, Li H, Fuchs H, Niu T. 2021.. Epitaxial growth of main group monoelemental 2D materials. . Adv. Funct. Mater. 31::2006997
    [Crossref] [Google Scholar]
  7. 7.
    Li L, Wang Y, Xie S, Li X-B, Wang Y-Q, et al. 2013.. Two-dimensional transition metal honeycomb realized: Hf on Ir(111). . Nano Lett. 13::467174
    [Crossref] [Google Scholar]
  8. 8.
    Zhang L, Gong T, Yu Z, Dai H, Yang Z, et al. 2021.. Recent advances in hybridization, doping, and functionalization of 2D Xenes. . Adv. Funct. Mater. 31::2005471
    [Crossref] [Google Scholar]
  9. 9.
    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S. 2009.. Two- and one-dimensional honeycomb structures of silicon and germanium. . Phys. Rev. Lett. 102::236804
    [Crossref] [Google Scholar]
  10. 10.
    Li L, Schultz JF, Mahapatra S, Liu X, Shaw C, et al. 2021.. Angstrom-scale spectroscopic visualization of interfacial interactions in an organic/borophene vertical heterostructure. . J. Am. Chem. Soc. 143::1562434
    [Crossref] [Google Scholar]
  11. 11.
    Sheng S, Wu J-B, Cong X, Li W, Gou J, et al. 2017.. Vibrational properties of a monolayer silicene sheet studied by tip-enhanced Raman spectroscopy. . Phys. Rev. Lett. 119::196803
    [Crossref] [Google Scholar]
  12. 12.
    Peña Román RJ, Bretel R, Pommier D, Parra López LE, Lorchat E, et al. 2022.. Tip-induced and electrical control of the photoluminescence yield of monolayer WS2. . Nano Lett. 22::924451
    [Crossref] [Google Scholar]
  13. 13.
    Wu S-S, Huang T-X, Xu X, Bao Y-F, Pei X-D, et al. 2022.. Quantitatively deciphering electronic properties of defects at atomically thin transition-metal dichalcogenides. . ACS Nano 16::478694
    [Crossref] [Google Scholar]
  14. 14.
    Geim AK, Novoselov KS. 2007.. The rise of graphene. . Nat. Mater. 6::18391
    [Crossref] [Google Scholar]
  15. 15.
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2017.. 2D transition metal dichalcogenides. . Nat. Rev. Mater. 2::17033
    [Crossref] [Google Scholar]
  16. 16.
    Garg M, Sharma A, BS Chandran N, Thakur A. 2023.. From borophene to indiene: recent advances and future directions in 2D icosagens-based materials. . FlatChem 42::100549
    [Crossref] [Google Scholar]
  17. 17.
    Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. 2017.. Synthesis and chemistry of elemental 2D materials. . Nat. Rev. Chem. 1::0014
    [Crossref] [Google Scholar]
  18. 18.
    Mannix AJ, Zhang Z, Guisinger NP, Yakobson BI, Hersam MC. 2018.. Borophene as a prototype for synthetic 2D materials development. . Nat. Nanotechnol. 13::44450
    [Crossref] [Google Scholar]
  19. 19.
    Oganov AR, Solozhenko VL. 2009.. Boron: a hunt for superhard polymorphs. . J. Superhard Mater. 31::28591
    [Crossref] [Google Scholar]
  20. 20.
    Mannix AJ, Zhou XF, Kiraly B, Wood JD, Alducin D, et al. 2015.. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. . Science 350::151316
    [Crossref] [Google Scholar]
  21. 21.
    Edwards RS, Coleman KS. 2013.. Graphene film growth on polycrystalline metals. . Acc. Chem. Res. 46::2330
    [Crossref] [Google Scholar]
  22. 22.
    Feng BJ, Zhang J, Zhong Q, Li WB, Li S, et al. 2016.. Experimental realization of two-dimensional boron sheets. . Nat. Chem. 8::56368
    [Crossref] [Google Scholar]
  23. 23.
    Yang R, Sun M. 2023.. Borophenes: monolayer, bilayer and heterostructures. . J. Mater. Chem. C 11::683446
    [Crossref] [Google Scholar]
  24. 24.
    Liu X, Li Q, Ruan Q, Rahn MS, Yakobson BI, Hersam MC. 2022.. Borophene synthesis beyond the single-atomic-layer limit. . Nat. Mater. 21::3540
    [Crossref] [Google Scholar]
  25. 25.
    Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, et al. 2022.. Synthesis of bilayer borophene. . Nat. Chem. 14::2531
    [Crossref] [Google Scholar]
  26. 26.
    Li L, Schultz JF, Mahapatra S, Liu X, Zhang X, et al. 2023.. Atomic-scale insights into the interlayer characteristics and oxygen reactivity of bilayer borophene. . Angew. Chem. Int. Ed. 62::e202306590
    [Crossref] [Google Scholar]
  27. 27.
    Liu X, Hersam MC. 2019.. Borophene-graphene heterostructures. . Sci. Adv. 5::eaax6444
    [Crossref] [Google Scholar]
  28. 28.
    Li Q, Liu X, Aklile EB, Li S, Hersam MC. 2021.. Self-assembled borophene/graphene nanoribbon mixed-dimensional heterostructures. . Nano Lett. 21::402935
    [Crossref] [Google Scholar]
  29. 29.
    Liu X, Wei Z, Balla I, Mannix AJ, Guisinger NP, et al. 2017.. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. . Sci. Adv. 3::e1602356
    [Crossref] [Google Scholar]
  30. 30.
    Cuxart MG, Seufert K, Chesnyak V, Waqas WA, Robert A, et al. 2021.. Borophenes made easy. . Sci. Adv. 7::eabk1490
    [Crossref] [Google Scholar]
  31. 31.
    Wang J, Cheng F, Sun Y, Xu H, Cao L. 2024.. Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. . Phys. Chem. Chem. Phys. 26::79888012
    [Crossref] [Google Scholar]
  32. 32.
    Xie Z, Meng X, Li X, Liang W, Huang W, et al. 2020.. Two-dimensional borophene: properties, fabrication, and promising applications. . Research 2020::2624617
    [Crossref] [Google Scholar]
  33. 33.
    Li Q, Kolluru VSC, Rahn MS, Schwenker E, Li S, et al. 2021.. Synthesis of borophane polymorphs through hydrogenation of borophene. . Science 371::114348
    [Crossref] [Google Scholar]
  34. 34.
    Li L, Schultz JF, Mahapatra S, Lu Z, Zhang X, Jiang N. 2022.. Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene. . Nat. Commun. 13::1796
    [Crossref] [Google Scholar]
  35. 35.
    Liu X, Rahn MS, Ruan Q, Yakobson BI, Hersam MC. 2022.. Probing borophene oxidation at the atomic scale. . Nanotechnology 33::235702
    [Crossref] [Google Scholar]
  36. 36.
    Glavin NR, Rao R, Varshney V, Bianco E, Apte A, et al. 2020.. Emerging applications of elemental 2D materials. . Adv. Mater. 32::1904302
    [Crossref] [Google Scholar]
  37. 37.
    Kamal C, Chakrabarti A, Ezawa M. 2015.. Aluminene as highly hole-doped graphene. . New J. Phys. 17::083014
    [Crossref] [Google Scholar]
  38. 38.
    Kochat V, Samanta A, Zhang Y, Bhowmick S, Manimunda P, et al. 2018.. Atomically thin gallium layers from solid-melt exfoliation. . Sci. Adv. 4::e1701373
    [Crossref] [Google Scholar]
  39. 39.
    Zhang H-M, Sun Y, Li W, Peng J-P, Song C-L, et al. 2015.. Detection of a superconducting phase in a two-atom layer of hexagonal Ga film grown on semiconducting GaN(0001). . Phys. Rev. Lett. 114::107003
    [Crossref] [Google Scholar]
  40. 40.
    Bauernfeind M, Erhardt J, Eck P, Thakur PK, Gabel J, et al. 2021.. Design and realization of topological Dirac fermions on a triangular lattice. . Nat. Commun. 12::5396
    [Crossref] [Google Scholar]
  41. 41.
    Briggs N, Bersch B, Wang Y, Jiang J, Koch RJ, et al. 2020.. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. . Nat. Mater. 19::63743
    [Crossref] [Google Scholar]
  42. 42.
    Schmitt C, Erhardt J, Eck P, Schmitt M, Lee K, et al. 2024.. Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation. . Nat. Commun. 15::1486
    [Crossref] [Google Scholar]
  43. 43.
    Gruznev DV, Bondarenko LV, Tupchaya AY, Mihalyuk AN, Eremeev SV, et al. 2020.. Thallene: graphene-like honeycomb lattice of Tl atoms frozen on single-layer NiSi2. . 2D Materials 7::045026
    [Crossref] [Google Scholar]
  44. 44.
    Mihalyuk AN, Bondarenko LV, Tupchaya AY, Vekovshinin YE, Utas TV, et al. 2023.. Large-scale thallene film with emergent spin-polarized states mediated by tin intercalation for spintronics applications. . Mater. Today Adv. 18::100372
    [Crossref] [Google Scholar]
  45. 45.
    Takeda K, Shiraishi K. 1994.. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. . Phys. Rev. B 50::1491622
    [Crossref] [Google Scholar]
  46. 46.
    Guzmán-Verri GG. 2007.. Electronic structure of silicon-based nanostructures. . Phys. Rev. B 76::075131
    [Crossref] [Google Scholar]
  47. 47.
    Liu C-C, Feng W, Yao Y. 2011.. Quantum spin Hall effect in silicene and two-dimensional germanium. . Phys. Rev. Lett. 107::076802
    [Crossref] [Google Scholar]
  48. 48.
    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, et al. 2012.. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. . Phys. Rev. Lett. 108::155501
    [Crossref] [Google Scholar]
  49. 49.
    Feng B, Ding Z, Meng S, Yao Y, He X, et al. 2012.. Evidence of silicene in honeycomb structures of silicon on Ag(111). . Nano Lett. 12::350711
    [Crossref] [Google Scholar]
  50. 50.
    Lin C-L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, et al. 2012.. Structure of silicene grown on Ag(111). . Appl. Phys. Express 5::045802
    [Crossref] [Google Scholar]
  51. 51.
    Leandri C, Lay GL, Aufray B, Girardeaux C, Avila J, et al. 2005.. Self-aligned silicon quantum wires on Ag(110). . Surf. Sci. 574::L915
    [Crossref] [Google Scholar]
  52. 52.
    Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H. 2012.. Silicene structures on silver surfaces. . J. Phys. Condens. Matter 24::314211
    [Crossref] [Google Scholar]
  53. 53.
    Rachid Tchalala M, Enriquez H, Mayne AJ, Kara A, Roth S, et al. 2013.. Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2×1). . Appl. Phys. Lett. 102::083107
    [Crossref] [Google Scholar]
  54. 54.
    Meng L, Wang Y, Zhang L, Du S, Wu R, et al. 2013.. Buckled silicene formation on Ir(111). . Nano Lett. 13::68590
    [Crossref] [Google Scholar]
  55. 55.
    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y. 2012.. Experimental evidence for epitaxial silicene on diboride thin films. . Phys. Rev. Lett. 108:(24):245501
    [Crossref] [Google Scholar]
  56. 56.
    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, et al. 2014.. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. . Adv. Mater. 26::2096101
    [Crossref] [Google Scholar]
  57. 57.
    Kupchak I, Fabbri F, De Crescenzi M, Scarselli M, Salvato M, et al. 2019.. Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature. . Nanoscale 11::614552
    [Crossref] [Google Scholar]
  58. 58.
    Lalmi B, Oughaddou H, Enriquez H, Karae A, Vizzini S, et al. 2010.. Epitaxial growth of a silicene sheet. . Appl. Phys. Lett. 97::223109
    [Crossref] [Google Scholar]
  59. 59.
    Pawlak R, Drechsel C, d'Astolfo P, Kisiel M, Meyer E, Cerdá JI. 2019.. Quantitative determination of atomic buckling of silicene by atomic force microscopy. . PNAS 117::22837
    [Crossref] [Google Scholar]
  60. 60.
    Arafune R, Lin C-L, Kawahara K, Tsukahara N, Minamitani E, et al. 2013.. Structural transition of silicene on Ag(111). . Surf. Sci. 608::297300
    [Crossref] [Google Scholar]
  61. 61.
    Majzik Z, Rachid Tchalala M, Švec M, Hapala P, Enriquez H, et al. 2013.. Combined AFM and STM measurements of a silicene sheet grown on the Ag(111) surface. . J. Phys. Condens. Matter 25::225301
    [Crossref] [Google Scholar]
  62. 62.
    Chen L, Liu C-C, Feng B, He X, Cheng P, et al. 2012.. Evidence for Dirac fermions in a honeycomb lattice based on silicon. . Phys. Rev. Lett. 109::056804
    [Crossref] [Google Scholar]
  63. 63.
    Chen L, Li H, Feng B, Ding Z, Qiu J, et al. 2013.. Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. . Phys. Rev. Lett. 110::085504
    [Crossref] [Google Scholar]
  64. 64.
    Li W, Sheng S, Chen J, Cheng P, Chen L, Wu K. 2016.. Ordered chlorinated monolayer silicene structures. . Phys. Rev. B 93::155410
    [Crossref] [Google Scholar]
  65. 65.
    Kopciuszyński M, A, Zdyb R, Krawiec M. 2024.. Emergent Dirac fermions in epitaxial planar silicene heterostructure. . Nano Lett. 24::217580
    [Crossref] [Google Scholar]
  66. 66.
    Li G, Zhang L, Xu W, Pan J, Song S, et al. 2018.. Stable silicene in graphene/silicene van der Waals heterostructures. . Adv. Mater. 30::1804650
    [Crossref] [Google Scholar]
  67. 67.
    Guo H, Zhang R, Li H, Wang X, Lu H, et al. 2020.. Sizable band gap in epitaxial bilayer graphene induced by silicene intercalation. . Nano Lett. 20::267480
    [Crossref] [Google Scholar]
  68. 68.
    Li L, Lu S-z, Pan J, Qin Z, Wang Y-q, et al. 2014.. Buckled germanene formation on Pt(111). . Adv. Mater. 26::482024
    [Crossref] [Google Scholar]
  69. 69.
    Dávila ME, Xian L, Cahangirov S, Rubio A, Le Lay G. 2014.. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. . New J. Phys. 16::095002
    [Crossref] [Google Scholar]
  70. 70.
    Qin Z, Pan J, Lu S, Shao Y, Wang Y, et al. 2017.. Direct evidence of Dirac signature in bilayer germanene islands on Cu(111). . Adv. Mater. 29::1606046
    [Crossref] [Google Scholar]
  71. 71.
    Yuhara J, Shimazu H, Ito K, Ohta A, Araidai M, et al. 2018.. Germanene epitaxial growth by segregation through Ag(111) thin films on Ge(111). . ACS Nano 12::1163237
    [Crossref] [Google Scholar]
  72. 72.
    Derivaz M, Dentel D, Stephan R, Hanf M-C, Mehdaoui A, et al. 2015.. Continuous germanene layer on Al(111). . Nano Lett. 15::251016
    [Crossref] [Google Scholar]
  73. 73.
    Gou J, Zhong Q, Sheng S, Li W, Cheng P, et al. 2016.. Strained monolayer germanene with 1 × 1 lattice on Sb(111). . 2D Materials 3::045005
    [Crossref] [Google Scholar]
  74. 74.
    Zhang L, Bampoulis P, Rudenko AN, Yao Q, van Houselt A, et al. 2016.. Structural and electronic properties of germanene on MoS2. . Phys. Rev. Lett. 116: 25:256804
    [Crossref] [Google Scholar]
  75. 75.
    Wu Q, Bagheri Tagani M, Tian Q, Izadi Vishkayi S, Zhang L, et al. 2022.. Symmetry breaking induced bandgap opening in epitaxial germanene on WSe2. . Appl. Phys. Lett. 121::051901
    [Crossref] [Google Scholar]
  76. 76.
    Kubo O, Kinoshita S, Sato H, Miyamoto K, Sugahara R, et al. 2021.. Kagome-like structure of germanene on Al(111). . Phys. Rev. B 104::085404
    [Crossref] [Google Scholar]
  77. 77.
    Yuhara J, Muto H, Araidai M, Kobayashi M, Ohta A, et al. 2021.. Single germanene phase formed by segregation through Al(111) thin films on Ge(111). . 2D Materials 8::045039
    [Crossref] [Google Scholar]
  78. 78.
    Bampoulis P, Castenmiller C, Klaassen DJ, van Mil J, Liu Y, et al. 2023.. Quantum spin Hall states and topological phase transition in germanene. . Phys. Rev. Lett. 130::196401
    [Crossref] [Google Scholar]
  79. 79.
    Jiao Z, Yao Q, Rudenko AN, Zhang L, Zandvliet HJW. 2020.. Germanium/MoS2: competition between the growth of germanene and intercalation. . Phys. Rev. B 102::205419
    [Crossref] [Google Scholar]
  80. 80.
    Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, et al. 2016.. Van der Waals heteroepitaxy of germanene islands on graphite. . J. Phys. Chem. Lett. 7::324651
    [Crossref] [Google Scholar]
  81. 81.
    Peng W, Xu T, Diener P, Biadala L, Berthe M, et al. 2018.. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. . ACS Nano 12::475460
    [Crossref] [Google Scholar]
  82. 82.
    Osiecki JR, Uhrberg RIG. 2013.. Alloying of Sn in the surface layer of Ag(111). . Phys. Rev. B 87::075441
    [Crossref] [Google Scholar]
  83. 83.
    Zhu F-f, Chen W-j, Xu Y, Gao C-l, Guan D-d, et al. 2015.. Epitaxial growth of two-dimensional stanene. . Nat. Mater. 14::102025
    [Crossref] [Google Scholar]
  84. 84.
    Gou J, Kong L, Li H, Zhong Q, Li W, et al. 2017.. Strain-induced band engineering in monolayer stanene on Sb(111). . Phys. Rev. Mater. 1::054004
    [Crossref] [Google Scholar]
  85. 85.
    Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, et al. 2018.. Large area planar stanene epitaxially grown on Ag(111). . 2D Materials 5::025002
    [Crossref] [Google Scholar]
  86. 86.
    Deng J, Xia B, Ma X, Chen H, Shan H, et al. 2018.. Epitaxial growth of ultraflat stanene with topological band inversion. . Nat. Mater. 17::108186
    [Crossref] [Google Scholar]
  87. 87.
    Liu Y, Gao N, Zhuang J, Liu C, Wang J, et al. 2019.. Realization of strained stanene by interface engineering. . J. Phys. Chem. Lett. 10::155865
    [Crossref] [Google Scholar]
  88. 88.
    Zhou D, Li H, Bu S, Xin B, Jiang Y, et al. 2021.. Phase engineering of epitaxial stanene on a surface alloy. . J. Phys. Chem. Lett. 12::21117
    [Crossref] [Google Scholar]
  89. 89.
    Ogikubo T, Shimazu H, Fujii Y, Ito K, Ohta A, et al. 2020.. Continuous growth of germanene and stanene lateral heterostructures. . Adv. Mater. Interfaces 7::1902132
    [Crossref] [Google Scholar]
  90. 90.
    Kumar N, Lan Y-S, Chen C-J, Lin Y-H, Huang S-T, et al. 2022.. Self-assembly of magnetic Co atoms on stanene. . Phys. Rev. Mater. 6::066001
    [Crossref] [Google Scholar]
  91. 91.
    Zhou Y, Zhang M, Guo Z, Miao L, Han S-T, et al. 2017.. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. . Mater. Horiz. 4::9971019
    [Crossref] [Google Scholar]
  92. 92.
    Zhang JL, Zhao S, Han C, Wang Z, Zhong S, et al. 2016.. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. . Nano Lett. 16::49038
    [Crossref] [Google Scholar]
  93. 93.
    Zhou D, Si N, Jiang B, Song X, Huang H, et al. 2019.. Interfacial effects on the growth of atomically thin film: group VA elements on Au(111). . Adv. Mater. Interfaces 6::1901050
    [Crossref] [Google Scholar]
  94. 94.
    Zhuang J, Liu C, Gao Q, Liu Y, Feng H, et al. 2018.. Band gap modulated by electronic superlattice in blue phosphorene. . ACS Nano 12::505965
    [Crossref] [Google Scholar]
  95. 95.
    Zhang W, Enriquez H, Tong Y, Bendounan A, Kara A, et al. 2018.. Epitaxial synthesis of blue phosphorene. . Small 14::1804066
    [Crossref] [Google Scholar]
  96. 96.
    Song Y-H, Muzaffar MU, Wang Q, Wang Y, Jia Y, et al. 2024.. Realization of large-area ultraflat chiral blue phosphorene. . Nat. Commun. 15::1157
    [Crossref] [Google Scholar]
  97. 97.
    Zhou D, Meng Q, Si N, Zhou X, Zhai S, et al. 2020.. Epitaxial growth of flat, metallic monolayer phosphorene on metal oxide. . ACS Nano 14::238594
    [Crossref] [Google Scholar]
  98. 98.
    Gu C, Zhao S, Zhang JL, Sun S, Yuan K, et al. 2017.. Growth of quasi-free-standing single-layer blue phosphorus on tellurium monolayer functionalized Au(111). . ACS Nano 11::494349
    [Crossref] [Google Scholar]
  99. 99.
    Zhang JL, Zhao S, Telychko M, Sun S, Lian X, et al. 2019.. Reversible oxidation of blue phosphorus monolayer on Au(111). . Nano Lett. 19::534046
    [Crossref] [Google Scholar]
  100. 100.
    Shah J, Wang W, Sohail HM, Uhrberg RIG. 2020.. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material. . 2D Mater. 7::025013
    [Crossref] [Google Scholar]
  101. 101.
    Liu G, Xu S-G, Ma Y, Shao X, Xiong W, et al. 2022.. Arsenic monolayers formed by zero-dimensional tetrahedral clusters and one-dimensional armchair nanochains. . ACS Nano 16::1708796
    [Crossref] [Google Scholar]
  102. 102.
    Ji J, Song X, Liu J, Yan Z, Huo C, et al. 2016.. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. . Nat. Commun. 7::13352
    [Crossref] [Google Scholar]
  103. 103.
    Wu X, Shao Y, Liu H, Feng Z, Wang Y-L, et al. 2017.. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. . Adv. Mater. 29::1605407
    [Crossref] [Google Scholar]
  104. 104.
    Shi Z-Q, Li H, Yuan Q-Q, Song Y-H, Lv Y-Y, et al. 2019.. Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure. . Adv. Mater. 31::1806130
    [Crossref] [Google Scholar]
  105. 105.
    Shi Z-Q, Li H, Yuan Q-Q, Xue C-L, Xu Y-J, et al. 2020.. Kinetics-limited two-step growth of van der Waals puckered honeycomb Sb monolayer. . ACS Nano 14::1675560
    [Crossref] [Google Scholar]
  106. 106.
    Flammini R, Colonna S, Hogan C, Mahatha SK, Papagno M, et al. 2018.. Evidence of β-antimonene at the Sb/Bi2Se3 interface. . Nanotechnology 29::065704
    [Crossref] [Google Scholar]
  107. 107.
    Hogan C, Holtgrewe K, Ronci F, Colonna S, Sanna S, et al. 2019.. Temperature driven phase transition at the antimonene/Bi2Se3 van der Waals heterostructure. . ACS Nano 13::1048189
    [Crossref] [Google Scholar]
  108. 108.
    Lu Q, Cook J, Zhang X, Chen KY, Snyder M, et al. 2022.. Realization of unpinned two-dimensional Dirac states in antimony atomic layers. . Nat. Commun. 13::4603
    [Crossref] [Google Scholar]
  109. 109.
    Fortin-Deschênes M, Waller O, Menteş TO, Locatelli A, Mukherjee S, et al. 2017.. Synthesis of antimonene on germanium. . Nano Lett. 17::497075
    [Crossref] [Google Scholar]
  110. 110.
    Cantero ED, Martínez EA, Serkovic-Loli LN, Fuhr JD, Grizzi O, Sánchez EA. 2021.. Synthesis and characterization of a pure 2D antimony film on Au(111). . J. Phys. Chem. C 125::927380
    [Crossref] [Google Scholar]
  111. 111.
    Shao Y, Liu Z-L, Cheng C, Wu X, Liu H, et al. 2018.. Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene. . Nano Lett. 18::213339
    [Crossref] [Google Scholar]
  112. 112.
    Mao Y-H, Zhang L-F, Wang H-L, Shan H, Zhai X-F, et al. 2018.. Epitaxial growth of highly strained antimonene on Ag(111). . Front. Phys. 13::138106
    [Crossref] [Google Scholar]
  113. 113.
    Sun S, Yang T, Luo YZ, Gou J, Huang Y, et al. 2020.. Realization of a buckled antimonene monolayer on Ag(111) via surface engineering. . J. Phys. Chem. Lett. 11::897682
    [Crossref] [Google Scholar]
  114. 114.
    Zhu S-Y, Shao Y, Wang E, Cao L, Li X-Y, et al. 2019.. Evidence of topological edge states in buckled antimonene monolayers. . Nano Lett. 19::632329
    [Crossref] [Google Scholar]
  115. 115.
    Guo H, Jiménez-Sánchez MD, Martínez-Galera AJ, Gómez-Rodríguez JM. 2022.. Unraveling the highly complex nature of antimony on Pt(111). . Adv. Mater. Interfaces 9::2101272
    [Crossref] [Google Scholar]
  116. 116.
    A, Jaroch T, Krawiec M, Dróżdż P, M, Zdyb R. 2023.. Peculiar structural phase of a single-atom-thick layer of antimony. . Nano Lett. 23::989499
    [Crossref] [Google Scholar]
  117. 117.
    Märkl T, Kowalczyk PJ, Le Ster M, Mahajan IV, Pirie H, et al. 2018.. Engineering multiple topological phases in nanoscale Van der Waals heterostructures: realisation of α-antimonene. . 2D Materials 5::011002
    [Crossref] [Google Scholar]
  118. 118.
    Su SH, Chuang P-Y, Chen H-Y, Weng S-C, Chen W-C, et al. 2021.. Topological proximity-induced Dirac fermion in two-dimensional antimonene. . ACS Nano 15::1508595
    [Crossref] [Google Scholar]
  119. 119.
    Nagao T, Sadowski JT, Saito M, Yaginuma S, Fujikawa Y, et al. 2004.. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)−7 × 7. . Phys. Rev. Lett. 93::105501
    [Crossref] [Google Scholar]
  120. 120.
    Lu Y, Xu W, Zeng M, Yao G, Shen L, et al. 2015.. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). . Nano Lett. 15::8087
    [Crossref] [Google Scholar]
  121. 121.
    Kowalczyk PJ, Mahapatra O, Le Ster M, Brown SA, Bian G, et al. 2017.. Single atomic layer allotrope of bismuth with rectangular symmetry. . Phys. Rev. B 96::205434
    [Crossref] [Google Scholar]
  122. 122.
    Lyu Y, Daneshmandi S, Huyan S, Chu CW. 2021.. In-gap states induced by distortion in α-bismuthene. . Mater. Today Phys. 18::100380
    [Crossref] [Google Scholar]
  123. 123.
    Reis F, Li G, Dudy L, Bauernfeind M, Glass S, et al. 2017.. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. . Science 357::28790
    [Crossref] [Google Scholar]
  124. 124.
    Gou J, Kong L, He X, Huang YL, Sun J, et al. 2020.. The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions. . Sci. Adv. 6::eaba2773
    [Crossref] [Google Scholar]
  125. 125.
    Zhang KHL, McLeod IM, Lu YH, Dhanak VR, Matilainen A, et al. 2011.. Observation of a surface alloying-to-dealloying transition during growth of Bi on Ag(111). . Phys. Rev. B 83::235418
    [Crossref] [Google Scholar]
  126. 126.
    Sun S, You J-Y, Duan S, Gou J, Luo YZ, et al. 2022.. Epitaxial growth of ultraflat bismuthene with large topological band inversion enabled by substrate-orbital-filtering effect. . ACS Nano 16::143643
    [Crossref] [Google Scholar]
  127. 127.
    He B, Tian G, Gou J, Liu B, Shen K, et al. 2019.. Structural and electronic properties of atomically thin bismuth on Au(111). . Surf. Sci. 679::14753
    [Crossref] [Google Scholar]
  128. 128.
    Zhou D, Yang C, Bu S, Pan F, Si N, et al. 2021.. Atomic mechanism of the phase transition in monolayer bismuthene on copper oxide. . Phys. Rev. Mater. 5::064002
    [Crossref] [Google Scholar]
  129. 129.
    Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L. 2012.. Topological crystalline insulators in the SnTe material class. . Nat. Commun. 3::982
    [Crossref] [Google Scholar]
  130. 130.
    Sun Y, Zhong Z, Shirakawa T, Franchini C, Li D, et al. 2013.. Rocksalt SnS and SnSe: native topological crystalline insulators. . Phys. Rev. B 88::235122
    [Crossref] [Google Scholar]
  131. 131.
    Xian L, Pérez Paz A, Bianco E, Ajayan PM, Rubio A. 2017.. Square selenene and tellurene: novel group VI elemental 2D materials with nontrivial topological properties. . 2D Materials 4::041003
    [Crossref] [Google Scholar]
  132. 132.
    Qin J, Qiu G, Jian J, Zhou H, Yang L, et al. 2017.. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. . ACS Nano 11::1022229
    [Crossref] [Google Scholar]
  133. 133.
    Fan T, Xie Z, Huang W, Li Z, Zhang H. 2019.. Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector. . Nanotechnology 30::114002
    [Crossref] [Google Scholar]
  134. 134.
    Sarma PV, Nadarajan R, Kumar R, Patinharayil RM, Biju N, et al. 2022.. Growth of highly crystalline ultrathin two-dimensional selenene. . 2D Materials 9::045004
    [Crossref] [Google Scholar]
  135. 135.
    Huang X, Guan J, Lin Z, Liu B, Xing S, et al. 2017.. Epitaxial growth and band structure of Te film on graphene. . Nano Lett. 17::461923
    [Crossref] [Google Scholar]
  136. 136.
    Chen J, Dai Y, Ma Y, Dai X, Ho W, Xie M. 2017.. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. . Nanoscale 9::1594548
    [Crossref] [Google Scholar]
  137. 137.
    Zhu Z, Cai X, Yi S, Chen J, Dai Y, et al. 2017.. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. . Phys. Rev. Lett. 119::106101
    [Crossref] [Google Scholar]
  138. 138.
    Khatun S, Banerjee A, Pal AJ. 2019.. Nonlayered tellurene as an elemental 2D topological insulator: experimental evidence from scanning tunneling spectroscopy. . Nanoscale 11::359198
    [Crossref] [Google Scholar]
  139. 139.
    Bouaziz M, Zhang W, Tong Y, Oughaddou H, Enriquez H, et al. 2021.. Phase transition from Au–Te surface alloy towards tellurene-like monolayer. . 2D Materials 8::015029
    [Crossref] [Google Scholar]
  140. 140.
    Thupakula U, Laha P, Lippertz G, Schouteden K, Netsou A-M, et al. 2022.. Two-dimensional tellurium superstructures on Au(111) surfaces. . J. Chem. Phys. 157::164703
    [Crossref] [Google Scholar]
  141. 141.
    Quan W, Hong C, Pan S, Hu J, Wu Q, et al. 2023.. Rectangular-phase tellurene on Ni(111) from monolayer films to periodic striped patterns. . ACS Appl. Mater. Interfaces 15::1614452
    [Crossref] [Google Scholar]
  142. 142.
    Paulauskas T, Sen FG, Sun C, Longo P, Zhang Y, et al. 2019.. Stabilization of a monolayer tellurene phase at CdTe interfaces. . Nanoscale 11::14698706
    [Crossref] [Google Scholar]
  143. 143.
    Huang X, Xiong R, Hao C, Li W, Sa B, et al. 2024.. Experimental realization of monolayer α-tellurene. . Adv. Mater. 36::2309023
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082423-124941
Loading
/content/journals/10.1146/annurev-physchem-082423-124941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error