1932

Abstract

In this review, we explore the electrostatic environment of the interface between a solid and dilute electrolyte solution, with an emphasis on the electric field profiles that these systems produce. We review the theoretical formalism that connects electrostatic potential profiles, electric field profiles, and charge density fields. This formalism has served as the basis for our understanding of interfacial electric fields and their influences on microscopic chemical and physical processes. Comparing various traditional models of interfacial electrostatics to the results of molecular dynamics (MD) simulation yields mutually inconsistent descriptions of the interfacial electric field profile. We present MD simulation results demonstrating that the average electric field profiles experienced by particles at the interface differ from the properties of traditional models and from the fields derived from the mean charge density of atomistic simulations. Furthermore, these experienced electric field profiles are species-dependent. Based on these results, we assert that a single unifying electrostatic potential profile—the gradient of which defines a single unifying electric field profile—cannot correctly predict the electrostatic forces that act on species at the interface.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082820-112101
2025-04-21
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-082820-112101.html?itemId=/content/journals/10.1146/annurev-physchem-082820-112101&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. 2020.. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. . J. Am. Chem. Soc. 142:(29):1255162
    [Crossref] [Google Scholar]
  2. 2.
    Ciampi S, Darwish N, Aitken HM, Díez-Pérez I, Coote ML. 2018.. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. . Chem. Soc. Rev. 47:(14):514664
    [Crossref] [Google Scholar]
  3. 3.
    Che F, Gray JT, Ha S, Kruse N, Scott SL, McEwen JS. 2018.. Elucidating the roles of electric fields in catalysis: a perspective. . ACS Catal. 8:(6):515374
    [Crossref] [Google Scholar]
  4. 4.
    Gonella G, Backus EHG, Nagata Y, Bonthuis DJ, Loche P, et al. 2021.. Water at charged interfaces. . Nat. Rev. Chem. 5:(7):46685
    [Crossref] [Google Scholar]
  5. 5.
    Li P, Jiao Y, Huang J, Chen S. 2023.. Electric double layer effects in electrocatalysis: insights from ab initio simulation and hierarchical continuum modeling. . JACS Au 3:(10):264059
    [Crossref] [Google Scholar]
  6. 6.
    Warburton RE, Soudackov AV, Hammes-Schiffer S. 2022.. Theoretical modeling of electrochemical proton-coupled electron transfer. . Chem. Rev. 122:(12):10599650
    [Crossref] [Google Scholar]
  7. 7.
    Welborn VV, Ruiz Pestana L, Head-Gordon T. 2018.. Computational optimization of electric fields for better catalysis design. . Nat. Catal. 1:(9):64955
    [Crossref] [Google Scholar]
  8. 8.
    Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. 2017.. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. . Nat. Energy 2:(4):17031
    [Crossref] [Google Scholar]
  9. 9.
    Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. 2017.. Energy and fuels from electrochemical interfaces. . Nat. Mater. 16:(1):5769
    [Crossref] [Google Scholar]
  10. 10.
    Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. 2019.. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. . Nat. Energy 4:(9):73245
    [Crossref] [Google Scholar]
  11. 11.
    Bandarenka AS, Koper MTM. 2013.. Structural and electronic effects in heterogeneous electrocatalysis: toward a rational design of electrocatalysts. . J. Catal. 308::1124
    [Crossref] [Google Scholar]
  12. 12.
    Sebastián-Pascual P, Shao-Horn Y, Escudero-Escribano M. 2022.. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. . Curr. Opin. Electrochem. 32::100918
    [Crossref] [Google Scholar]
  13. 13.
    Bockris JO, Reddy AK. 1998.. Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science. New York:: Springer
    [Google Scholar]
  14. 14.
    Becker M, Loche P, Rezaei M, Wolde-Kidan A, Uematsu Y, et al. 2024.. Multiscale modeling of aqueous electric double layers. . Chem. Rev. 124:(1):126
    [Crossref] [Google Scholar]
  15. 15.
    Boettcher SW, Oener SZ, Lonergan MC, Surendranath Y, Ardo S, et al. 2021.. Potentially confusing: potentials in electrochemistry. . ACS Energy Lett. 6:(1):26166
    [Crossref] [Google Scholar]
  16. 16.
    Lyklema J. 2017.. Interfacial potentials: measuring the immeasurable?. Substantia 1:(2):7593
    [Google Scholar]
  17. 17.
    Scalfi L, Salanne M, Rotenberg B. 2021.. Molecular simulation of electrode-solution interfaces. . Annu. Rev. Phys. Chem. 72::189212
    [Crossref] [Google Scholar]
  18. 18.
    Ahrens-Iwers LJ, Janssen M, Tee SR, Meißner RH. 2022.. ELECTRODE: an electrochemistry package for atomistic simulations. . J. Chem. Phys. 157:(8):084801
    [Crossref] [Google Scholar]
  19. 19.
    Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. 2024.. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. . PNAS 121:(18):e2318157121
    [Crossref] [Google Scholar]
  20. 20.
    Blumberger J, Sprik M. 2006.. Redox free energies from vertical energy gaps: ab initio molecular dynamics implementation. . In Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, Vol. 2, ed. M Ferrario, G Ciccotti, K Binder , pp. 481506. Berlin:: Springer
    [Google Scholar]
  21. 21.
    Limaye AM, Ding W, Willard AP. 2020.. Understanding attenuated solvent reorganization energies near electrode interfaces. . J. Chem. Phys. 152:(11):114706
    [Crossref] [Google Scholar]
  22. 22.
    Wolf D, Keblinski P, Phillpot S, Eggebrecht J. 1999.. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise summation. . J. Chem. Phys. 110:(17):825482
    [Crossref] [Google Scholar]
  23. 23.
    Mendoza FN, López-Lemus J, Chapela GA, Alejandre J. 2008.. The Wolf method applied to the liquid-vapor interface of water. . J. Chem. Phys. 129:(2):024706
    [Crossref] [Google Scholar]
  24. 24.
    Fennell CJ, Gezelter JD. 2006.. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. . J. Chem. Phys. 124:(23):234104
    [Crossref] [Google Scholar]
  25. 25.
    Falcón-González JM, Contreras-Aburto C, Lara-Peña M, Heinen M, Avendaño C, et al. 2020.. Assessment of the Wolf method using the Stillinger–Lovett sum rules: from strong electrolytes to weakly charged colloidal dispersions. . J. Chem. Phys. 153:(23):234901
    [Crossref] [Google Scholar]
  26. 26.
    Helmholtz H. 1879.. Studien über electrische Grenzschichten. . Ann. Phys. 243:(7):33782
    [Crossref] [Google Scholar]
  27. 27.
    Chapman DL. 1913.. LI. A contribution to the theory of electrocapillarity. . Lond. Edinb. Dublin Philos. Mag. J. Sci. 25:(148):47581
    [Crossref] [Google Scholar]
  28. 28.
    Limaye AM, Zeng JS, Willard AP, Manthiram K. 2021.. Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis. . Nat. Commun. 12:(1):703
    [Crossref] [Google Scholar]
  29. 29.
    Doblhoff-Dier K, Koper MTM. 2023.. Electric double layer of Pt(111): known unknowns and unknown knowns. . Curr. Opin. Electrochem. 39::101258
    [Crossref] [Google Scholar]
  30. 30.
    Wu J. 2022.. Understanding the electric double-layer structure, capacitance, and charging dynamics. . Chem. Rev. 122:(12):1082159
    [Crossref] [Google Scholar]
  31. 31.
    Majee R, Parvin S, Arif Islam Q, Kumar A, Debnath B, et al. 2022.. The perfect imperfections in electrocatalysts. . Chem. Rec. 22:(9):e202200070
    [Crossref] [Google Scholar]
  32. 32.
    Vidal F, Tadjeddine A. 2005.. Sum-frequency generation spectroscopy of interfaces. . Rep. Prog. Phys. 68:(5):1095
    [Crossref] [Google Scholar]
  33. 33.
    Wang HF, Velarde L, Gan W, Fu L. 2015.. Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. . Annu. Rev. Phys. Chem. 66::189216
    [Crossref] [Google Scholar]
  34. 34.
    Brosseau CL, Colina A, Perales-Rondon JV, Wilson AJ, Joshi PB, et al. 2023.. Electrochemical surface-enhanced Raman spectroscopy. . Nat. Rev. Methods Primers 3:(1):79
    [Crossref] [Google Scholar]
  35. 35.
    Gale RJ. 2012.. Spectroelectrochemistry: Theory and Practice. New York:: Springer
    [Google Scholar]
  36. 36.
    Wieckowski A, Korzeniewski C, Braunschweig B. 2013.. Vibrational Spectroscopy at Electrified Interfaces. Hoboken, NJ:: Wiley
    [Google Scholar]
  37. 37.
    Dreier LB, Bernhard C, Gonella G, Backus EHG, Bonn M. 2018.. Surface potential of a planar charged lipid–water interface. What do vibrating plate methods, second harmonic and sum frequency measure?. J. Phys. Chem. Lett. 9:(19):568591
    [Crossref] [Google Scholar]
  38. 38.
    Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. 2022.. Surface-enhanced Raman spectroscopy. . Nat. Rev. Methods Primers 1:(1):87
    [Crossref] [Google Scholar]
  39. 39.
    Rehl B, Ma E, Parshotam S, DeWalt-Kerian EL, Liu T, et al. 2022.. Water structure in the electrical double layer and the contributions to the total interfacial potential at different surface charge densities. . J. Am. Chem. Soc. 144:(36):1633849
    [Crossref] [Google Scholar]
  40. 40.
    Uddin MM, Azam MS, Hore DK. 2024.. Variable-angle surface spectroscopy reveals the water structure in the Stern layer at charged aqueous interfaces. . J. Am. Chem. Soc. 146:(17):1175663
    [Crossref] [Google Scholar]
  41. 41.
    Macdonald JR, Barlow CA Jr. 1962.. Theory of double-layer differential capacitance in electrolytes. . J. Chem. Phys. 36:(11):306280
    [Crossref] [Google Scholar]
  42. 42.
    Grahame DC. 1947.. The electrical double layer and the theory of electrocapillarity. . Chem. Rev. 41:(3):441501
    [Crossref] [Google Scholar]
  43. 43.
    Gouy M. 1910.. Sur la constitution de la charge électrique à la surface d'un électrolyte. . J. Phys. Theor. Appl. 9:(1):45768
    [Crossref] [Google Scholar]
  44. 44.
    Moreau E, Paillat T, Touchard G. 2001.. Space charge density in dielectric and conductive liquids flowing through a glass pipe. . J. Electrostat. 51::44854
    [Crossref] [Google Scholar]
  45. 45.
    Paillat T, Moreau E, Touchard G. 2001.. Space charge density at the wall in the case of heptane flowing through an insulating pipe. . J. Electrostat. 53:(2):17182
    [Crossref] [Google Scholar]
  46. 46.
    Ndour A, Holé S, Leblanc P, Paillat T. 2021.. Direct observation of electric charges at solid/liquid interfaces with the pressure-wave-propagation method. . J. Electrostat. 109::103527
    [Crossref] [Google Scholar]
  47. 47.
    Berry V, Leblanc P, Holé S, Paillat T. 2024.. Space charge measurement at solid/liquid interface by PWP method. . J. Electrostat. 128::103894
    [Crossref] [Google Scholar]
  48. 48.
    Ataka Ki, Yotsuyanagi T, Osawa M. 1996.. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. . J. Phys. Chem. 100:(25):1066472
    [Crossref] [Google Scholar]
  49. 49.
    Fleischmann M, Hendra P, Hill I, Pemble M. 1981.. Enhanced Raman spectra from species formed by the coadsorption of halide ions and water molecules on silver electrodes. . J. Electroanal. Chem. Interfacial Electrochem. 117:(2):24355
    [Crossref] [Google Scholar]
  50. 50.
    Li CY, Le JB, Wang YH, Chen S, Yang ZL, et al. 2019.. In situ probing electrified interfacial water structures at atomically flat surfaces. . Nat. Mater. 18:(7):697701
    [Crossref] [Google Scholar]
  51. 51.
    Bonn M, Nagata Y, Backus EH. 2015.. Molecular structure and dynamics of water at the water–air interface studied with surface-specific vibrational spectroscopy. . Angew. Chem. Int. Ed. 54:(19):556076
    [Crossref] [Google Scholar]
  52. 52.
    Kolb P, Rath D, Wille R, Hansen W. 1983.. An ESCA study on the electrochemical double layer of emersed electrodes. . Berichte Bunsengesellschaft Phys. Chem. 87:(12):110813
    [Crossref] [Google Scholar]
  53. 53.
    Kolb DM. 2001.. Electrochemical surface science. . Angew. Chem. Int. Ed. 40:(7):116281
    [Crossref] [Google Scholar]
  54. 54.
    Brown MA, Abbas Z, Kleibert A, Green RG, Goel A, et al. 2016.. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface. . Phys. Rev. X 6:(1):011007
    [Google Scholar]
  55. 55.
    Brown MA, Goel A, Abbas Z. 2016.. Effect of electrolyte concentration on the Stern layer thickness at a charged interface. . Angew. Chem. 128:(11):385458
    [Crossref] [Google Scholar]
  56. 56.
    Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, et al. 2016.. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. . Nat. Commun. 7:(1):12695
    [Crossref] [Google Scholar]
  57. 57.
    Bedzyk MJ, Bommarito GM, Caffrey M, Penner TL. 1990.. Diffuse-double layer at a membrane-aqueous interface measured with X-ray standing waves. . Science 248:(4951):5256
    [Crossref] [Google Scholar]
  58. 58.
    Duke CB. 1994.. Surface Science: The First Thirty Years. Amsterdam:: North-Holland
    [Google Scholar]
  59. 59.
    Somorjai GA, Li Y. 2010.. Introduction to Surface Chemistry and Catalysis. Hoboken, NJ:: Wiley
    [Google Scholar]
  60. 60.
    Liu WT, Shen YR. 2014.. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. . PNAS 111:(4):129397
    [Crossref] [Google Scholar]
  61. 61.
    Rey NG, Dlott DD. 2017.. Studies of electrochemical interfaces by broadband sum frequency generation. . J. Electroanal. Chem. 800::11425
    [Crossref] [Google Scholar]
  62. 62.
    Lu G, Lagutchev A, Dlott DD, Wieckowski A. 2005.. Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode. . Surface Sci. 585:(1–2):316
    [Crossref] [Google Scholar]
  63. 63.
    Israelachvili JN, Pashley RM. 1983.. Molecular layering of water at surfaces and origin of repulsive hydration forces. . Nature 306:(5940):24950
    [Crossref] [Google Scholar]
  64. 64.
    Suzuki K, Oyabu N, Kobayashi K, Matsushige K, Yamada H. 2011.. Atomic-resolution imaging of graphite–water interface by frequency modulation atomic force microscopy. . Appl. Phys. Express 4:(12):125102
    [Crossref] [Google Scholar]
  65. 65.
    Smith AM, Lee AA, Perkin S. 2016.. The electrostatic screening length in concentrated electrolytes increases with concentration. . J. Phys. Chem. Lett. 7:(12):215763
    [Crossref] [Google Scholar]
  66. 66.
    Gebbie MA, Smith AM, Dobbs HA, Warr GG, Banquy X, et al. 2017.. Long range electrostatic forces in ionic liquids. . Chem. Commun. 53:(7):121424
    [Crossref] [Google Scholar]
  67. 67.
    Butt HJ, Jaschke M, Ducker W. 1995.. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. . Bioelectrochem. Bioenerg. 38:(1):191201
    [Crossref] [Google Scholar]
  68. 68.
    May S. 2019.. Differential capacitance of the electric double layer: mean-field modeling approaches. . Curr. Opin. Electrochem. 13::12531
    [Crossref] [Google Scholar]
  69. 69.
    Ojha K, Doblhoff-Dier K, Koper MTM. 2022.. Double-layer structure of the Pt(111)–aqueous electrolyte interface. . PNAS 119:(3):e2116016119
    [Crossref] [Google Scholar]
  70. 70.
    Doblhoff-Dier K, Koper MTM. 2023.. Electric double layer of Pt(111): known unknowns and unknown knowns. . Curr. Opin. Electrochem. 39::101258
    [Crossref] [Google Scholar]
  71. 71.
    Bard AJ, Faulkner LR, White HS. 2022.. Electrochemical Methods: Fundamentals and Applications. Hoboken, NJ:: Wiley
    [Google Scholar]
  72. 72.
    Stern HA, Feller SE. 2003.. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation. . J. Chem. Phys. 118:(7):340112
    [Crossref] [Google Scholar]
  73. 73.
    Netz R, Orland H. 2000.. Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. . Eur. Phys. J. E 1:(2):20314
    [Crossref] [Google Scholar]
  74. 74.
    Zhuang B, Wang ZG. 2018.. Statistical field theory for polar fluids. . J. Chem. Phys. 149:(12):124108
    [Crossref] [Google Scholar]
  75. 75.
    Berthoumieux H, Monet G, Blossey R. 2021.. Dipolar Poisson models in a dual view. . J. Chem. Phys. 155:(2):024112
    [Crossref] [Google Scholar]
  76. 76.
    Blossey R, Podgornik R. 2023.. A comprehensive continuum theory of structured liquids. . J. Phys. A Math. Theor. 56:(2):025002
    [Crossref] [Google Scholar]
  77. 77.
    Blossey R, Podgornik R. 2022.. Field theory of structured liquid dielectrics. . Phys. Rev. Res. 4:(2):023033
    [Crossref] [Google Scholar]
  78. 78.
    Jeanmairet G, Rotenberg B, Borgis D, Salanne M. 2019.. Study of a water-graphene capacitor with molecular density functional theory. . J. Chem. Phys. 151:(12):124111
    [Crossref] [Google Scholar]
  79. 79.
    Borgis D, Laage D, Belloni L, Jeanmairet G. 2023.. Dielectric response of confined water films from a classical density functional theory perspective. . Chem. Sci. 14:(40):1114150
    [Crossref] [Google Scholar]
  80. 80.
    Su M, Wang Y. 2020.. A brief review of continuous models for ionic solutions: the Poisson–Boltzmann and related theories. . Commun. Theor. Phys. 72::067601
    [Crossref] [Google Scholar]
  81. 81.
    Bazant MZ, Storey BD, Kornyshev AA. 2011.. Double layer in ionic liquids: overscreening versus crowding. . Phys. Rev. Lett. 106:(4):046102
    [Crossref] [Google Scholar]
  82. 82.
    McEldrew M, Goodwin ZAH, Kornyshev AA, Bazant MZ. 2018.. Theory of the double layer in water-in-salt electrolytes. . J. Phys. Chem. Lett. 9:(19):584046
    [Crossref] [Google Scholar]
  83. 83.
    de Souza JP, Bazant MZ. 2020.. Continuum theory of electrostatic correlations at charged surfaces. . J. Phys. Chem. C 124:(21):1141421
    [Crossref] [Google Scholar]
  84. 84.
    de Souza J, Kornyshev AA, Bazant MZ. 2022.. Polar liquids at charged interfaces: a dipolar shell theory. . J. Chem. Phys. 156:(24):244705
    [Crossref] [Google Scholar]
  85. 85.
    Björneholm O, Hansen MH, Hodgson A, Liu LM, Limmer DT, et al. 2016.. Water at interfaces. . Chem. Rev. 116:(13):7698726
    [Crossref] [Google Scholar]
  86. 86.
    Sundararaman R, Vigil-Fowler D, Schwarz K. 2022.. Improving the accuracy of atomistic simulations of the electrochemical interface. . Chem. Rev. 122:(12):1065174
    [Crossref] [Google Scholar]
  87. 87.
    Santos E, Schmickler W. 2022.. Models of electron transfer at different electrode materials. . Chem. Rev. 122:(12):1058198
    [Crossref] [Google Scholar]
  88. 88.
    Jeanmairet G, Rotenberg B, Salanne M. 2022.. Microscopic simulations of electrochemical double-layer capacitors. . Chem. Rev. 122:(12):1086098
    [Crossref] [Google Scholar]
  89. 89.
    Groß A, Sakong S. 2022.. Ab initio simulations of water/metal interfaces. . Chem. Rev. 122:(12):1074676
    [Crossref] [Google Scholar]
  90. 90.
    Yang XH, Zhuang YB, Zhu JX, Le JB, Cheng J. 2022.. Recent progress on multiscale modeling of electrochemistry. . WIREs Comput. Mol. Sci. 12:(1):e1559
    [Crossref] [Google Scholar]
  91. 91.
    Zeng L, Peng J, Zhang J, Tan X, Ji X, et al. 2023.. Molecular dynamics simulations of electrochemical interfaces. . J. Chem. Phys. 159:(9):091001
    [Crossref] [Google Scholar]
  92. 92.
    Shin SJ, Kim DH, Bae G, Ringe S, Choi H, et al. 2022.. On the importance of the electric double layer structure in aqueous electrocatalysis. . Nat. Commun. 13:(1):174
    [Crossref] [Google Scholar]
  93. 93.
    Takahashi K, Nakano H, Sato H. 2022.. Accelerated constant-voltage quantum mechanical/molecular mechanical method for molecular systems at electrochemical interfaces. . J. Chem. Phys. 157:(23):234107
    [Crossref] [Google Scholar]
  94. 94.
    Farahvash A, Willard AP. 2024.. A theory of phonon-induced friction on molecular adsorbates. . PNAS 121:(31):e2400589121
    [Crossref] [Google Scholar]
  95. 95.
    Farahvash A, Agrawal M, Willard AP, Peterson AA. 2024.. The influence of solvent on surface adsorption and desorption. . arXiv:2405.18263 [physics.chem-ph]
  96. 96.
    Behler J, Parrinello M. 2007.. Generalized neural-network representation of high-dimensional potential-energy surfaces. . Phys. Rev. Lett. 98:(14):146401
    [Crossref] [Google Scholar]
  97. 97.
    Unke OT, Chmiela S, Sauceda HE, Gastegger M, Poltavsky I, et al. 2021.. Machine learning force fields. . Chem. Rev. 121:(16):1014286
    [Crossref] [Google Scholar]
  98. 98.
    Vandermause J, Torrisi SB, Batzner S, Xie Y, Sun L, et al. 2020.. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. . NPJ Comput. Mater. 6:(1):20
    [Crossref] [Google Scholar]
  99. 99.
    Anstine DM, Isayev O. 2023.. Machine learning interatomic potentials and long-range physics. . J. Phys. Chem. A 127:(11):241731
    [Crossref] [Google Scholar]
  100. 100.
    Musaelian A, Batzner S, Johansson A, Sun L, Owen CJ, et al. 2023.. Learning local equivariant representations for large-scale atomistic dynamics. . Nat. Commun. 14:(1):579
    [Crossref] [Google Scholar]
  101. 101.
    Izvekov S, Mazzolo A, VanOpdorp K, Voth GA. 2001.. Ab initio molecular dynamics simulation of the Cu(110)–water interface. . J. Chem. Phys. 114:(7):324857
    [Crossref] [Google Scholar]
  102. 102.
    Izvekov S, Voth GA. 2001.. Ab initio molecular dynamics simulation of the Ag(111)-water interface. . J. Chem. Phys. 115:(15):7196206
    [Crossref] [Google Scholar]
  103. 103.
    Magnussen OM, Groß A. 2019.. Toward an atomic-scale understanding of electrochemical interface structure and dynamics. . J. Am. Chem. Soc. 141:(12):477790
    [Crossref] [Google Scholar]
  104. 104.
    Sánchez VM, Sued M, Scherlis DA. 2009.. First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent. . J. Chem. Phys. 131:(17):174108
    [Crossref] [Google Scholar]
  105. 105.
    Yang XH, Zhuang YB, Zhu JX, Le JB, Cheng J. 2022.. Recent progress on multiscale modeling of electrochemistry. . WIREs Comput. Mol. Sci. 12:(1):e1559
    [Crossref] [Google Scholar]
  106. 106.
    Le JB, Yang XH, Zhuang YB, Jia M, Cheng J. 2021.. Recent progress toward ab initio modeling of electrocatalysis. . J. Phys. Chem. Lett. 12:(37):892431
    [Crossref] [Google Scholar]
  107. 107.
    Schwarz K, Sundararaman R. 2020.. The electrochemical interface in first-principles calculations. . Surface Sci. Rep. 75:(2):100492
    [Crossref] [Google Scholar]
  108. 108.
    Melander MM. 2021.. Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians. . Curr. Opin. Electrochem. 29::100749
    [Crossref] [Google Scholar]
  109. 109.
    Lindgren P, Kastlunger G, Peterson AA. 2022.. Electrochemistry from the atomic scale, in the electronically grand-canonical ensemble. . J. Chem. Phys. 157:(18):180902
    [Crossref] [Google Scholar]
  110. 110.
    Zhang C, Sayer T, Hutter J, Sprik M. 2020.. Modelling electrochemical systems with finite field molecular dynamics. . J. Phys. Energy 2:(3):032005
    [Crossref] [Google Scholar]
  111. 111.
    Siepmann JI, Sprik M. 1995.. Influence of surface topology and electrostatic potential on water/electrode systems. . J. Chem. Phys. 102:(1):51124
    [Crossref] [Google Scholar]
  112. 112.
    Reed SK, Lanning OJ, Madden PA. 2007.. Electrochemical interface between an ionic liquid and a model metallic electrode. . J. Chem. Phys. 126:(8):084704
    [Crossref] [Google Scholar]
  113. 113.
    Reed SK, Madden PA, Papadopoulos A. 2008.. Electrochemical charge transfer at a metallic electrode: a simulation study. . J. Chem. Phys. 128:(12):124701
    [Crossref] [Google Scholar]
  114. 114.
    Willard AP, Reed SK, Madden PA, Chandler D. 2009.. Water at an electrochemical interface—a simulation study. . Faraday Discuss. 141::42341
    [Crossref] [Google Scholar]
  115. 115.
    Marin-Laflèche A, Haefele M, Scalfi L, Coretti A, Dufils T, et al. 2020.. MetalWalls: a classical molecular dynamics software dedicated to the simulation of electrochemical systems. . J. Open Source Softw. 5:(53):2373
    [Crossref] [Google Scholar]
  116. 116.
    Jeanmairet G, Rotenberg B, Borgis D, Salanne M. 2019.. Study of a water-graphene capacitor with molecular density functional theory. . J. Chem. Phys. 151:(12):124111
    [Crossref] [Google Scholar]
  117. 117.
    Scalfi L, Limmer DT, Coretti A, Bonella S, Madden PA, et al. 2020.. Charge fluctuations from molecular simulations in the constant-potential ensemble. . Phys. Chem. Chem. Phys. 22:(19):1048089
    [Crossref] [Google Scholar]
  118. 118.
    Zhang Y, de Aguiar HB, Hynes JT, Laage D. 2020.. Water structure, dynamics, and sum-frequency generation spectra at electrified graphene interfaces. . J. Phys. Chem. Lett. 11:(3):62431
    [Crossref] [Google Scholar]
  119. 119.
    Zhang Y, Stirnemann G, Hynes JT, Laage D. 2020.. Water dynamics at electrified graphene interfaces: a jump model perspective. . Phys. Chem. Chem. Phys. 22:(19):1058191
    [Crossref] [Google Scholar]
  120. 120.
    Scalfi L, Dufils T, Reeves KG, Rotenberg B, Salanne M. 2020.. A semiclassical Thomas–Fermi model to tune the metallicity of electrodes in molecular simulations. . J. Chem. Phys. 153:(17):174704
    [Crossref] [Google Scholar]
  121. 121.
    Gingrich TR, Wilson M. 2010.. On the Ewald summation of Gaussian charges for the simulation of metallic surfaces. . Chem. Phys. Lett. 500:(1–3):17883
    [Crossref] [Google Scholar]
  122. 122.
    Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, et al. 2022.. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. . Comput. Phys. Commun. 271::108171
    [Crossref] [Google Scholar]
  123. 123.
    Berendsen HJ, Grigera JR, Straatsma TP. 1987.. The missing term in effective pair potentials. . J. Phys. Chem. 91:(24):626971
    [Crossref] [Google Scholar]
  124. 124.
    Mao AH, Pappu RV. 2012.. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. . J. Chem. Phys. 137:(6):064104
    [Crossref] [Google Scholar]
  125. 125.
    Willard AP, Reed SK, Madden PA, Chandler D. 2008.. Water at an electrochemical interface—a simulation study. . Faraday Discuss. 141::42341
    [Crossref] [Google Scholar]
  126. 126.
    Limaye A, Suvlu D, Willard AP. 2024.. Water molecules mute the dependence of the double-layer potential profile on ionic strength. . Faraday Discuss. 249::26788
    [Crossref] [Google Scholar]
  127. 127.
    Dinpajooh M, Matyushov DV. 2016.. Dielectric constant of water in the interface. . J. Chem. Phys. 145:(1):014504
    [Crossref] [Google Scholar]
  128. 128.
    Tran B, Zhou Y, Janik MJ, Milner ST. 2023.. Negative dielectric constant of water at a metal interface. . Phys. Rev. Lett. 131:(24):248001
    [Crossref] [Google Scholar]
  129. 129.
    Ghosh S, Soudackov AV, Hammes-Schiffer S. 2016.. Electrochemical electron transfer and proton-coupled electron transfer: effects of double layer and ionic environment on solvent reorganization energies. . J. Chem. Theory Comput. 12:(6):291725
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-082820-112101
Loading
/content/journals/10.1146/annurev-physchem-082820-112101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error