1932

Abstract

Experimental studies of the collision phenomena of submicrometer particles is a developing field. This review examines the range of phenomena that can be observed with new experimental approaches. The primary focus is on single-particle impact studies enabled by charge detection mass spectrometry (CDMS) implemented using the Aerosol Impact Spectrometer (AIS) at the University of California, San Diego. The AIS combines electrospray ionization, aerodynamic lens techniques, CDMS, and an electrostatic linear accelerator to study the dynamics of particle impact over a wide range of incident velocities. The AIS has been used for single-particle impact experiments on positively charged particles of diverse composition, including polystyrene latex spheres, tin particles, and ice grains, over a wide range of impact velocities. Detection schemes based on induced charge measurements and time-of-flight mass spectrometry have enabled measurements of the impact inelasticity through the determination of the coefficient of restitution, measurements of the angular distributions of scattered submicrometer particles, and the chemical composition and dissociation of solute molecules in hypervelocity ice grain impacts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-122157
2024-06-28
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-083122-122157.html?itemId=/content/journals/10.1146/annurev-physchem-083122-122157&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    IPCC (Intergov. Panel Clim. Chang.). 2021.. Climate Change 2021: The Physical Science Basis. Contributions of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, et al. 2017.. Aerosol health effects from molecular to global scales. . Environ. Sci. Technol. 51::1354567
    [Crossref] [Google Scholar]
  3. 3.
    Huynh E, Olinger A, Woolley D, Kaur R, Choczynski JM, Davies JF. 2022.. Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. . PNAS 119:(4):e2109750119
    [Crossref] [Google Scholar]
  4. 4.
    Wang CC, Prather KA, Sznitman J, Jimenez JL, Lakdawala SS, et al. 2021.. Airborne transmission of respiratory viruses. . Science 373:(6558):eabd9149
    [Crossref] [Google Scholar]
  5. 5.
    Riemer N, Ault AP, West M, Craig RL, Curtis JH. 2019.. Aerosol mixing state: measurements, modeling, and impacts. . Rev. Geophys. 57:(2):187249
    [Crossref] [Google Scholar]
  6. 6.
    Caldwell J, Taladriz-Blanco P, Lehner R, Lubskyy A, Ortuso RD, et al. 2022.. The micro-, submicron-, and nanoplastic hunt: a review of detection methods for plastic particles. . Chemosphere 293::133514
    [Crossref] [Google Scholar]
  7. 7.
    Miller MEC, Mezher M, De Dea S, Continetti RE. 2022a.. Size-dependent phenomena in angle-resolved measurements of submicron Sn particle scattering from a molybdenum surface. . J. Phys. Chem. C 126:(1):35664
    [Crossref] [Google Scholar]
  8. 8.
    Brandt D, Fomenkov I, Lercel M, La B, Myers D, et al. 2012.. Laser produced plasma EUV sources for device development and HVM. . Proc. SPIE 8322::832211
    [Crossref] [Google Scholar]
  9. 9.
    Brownlee DE. 1985.. Cosmic dust: collection and research. . Annu. Rev. Earth Planet. Sci. 13::14773
    [Crossref] [Google Scholar]
  10. 10.
    Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J, et al. 2006.. Cassini observes the active south pole of Enceladus. . Science 311:(5766):1393401
    [Crossref] [Google Scholar]
  11. 11.
    Jia X, Kivelson MG, Khurana KK, Kurth WS. 2018.. Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. . Nat. Astron. 2:(6):45964
    [Crossref] [Google Scholar]
  12. 12.
    Adamson BD, Miller MEC, Continetti RE. 2017.. The aerosol impact spectrometer: a versatile platform for studying the velocity dependence of nanoparticle-surface impact phenomena. . EPJ Tech. Instrum. 4:(1):2
    [Crossref] [Google Scholar]
  13. 13.
    Burke SE, Miller MEC, Continetti RE. 2023a.. Velocity dependence of submicron ice grain rebound, sticking, particle fragmentation, and impact ionization up to 2.4 km/s. . ACS Earth Space Chem. 7:(4):76473
    [Crossref] [Google Scholar]
  14. 14.
    Klinkov SV, Kosarev VF, Rein M. 2005.. Cold spray deposition: significance of particle impact phenomena. . Aerosp. Sci. Technol. 9:(7):58291
    [Crossref] [Google Scholar]
  15. 15.
    Miyakawa T, Matsuzawa R, Katayama M, Takegawa N. 2013.. Reconsidering adhesion and bounce of submicron particles upon high-velocity impact. . Aerosol Sci. Technol. 47:(5):47281
    [Crossref] [Google Scholar]
  16. 16.
    Marzbali M, Dolatabadi A. 2020.. High-speed droplet impingement on dry and wetted substrates. . Phys. Fluids 32:(11):112101
    [Crossref] [Google Scholar]
  17. 17.
    Millán EN, Tramontina DR, Urbassek HM, Bringa EM. 2016.. The elastic-plastic transition in nanoparticle collisions. . Phys. Chem. Chem. Phys. 18:(5):342329
    [Crossref] [Google Scholar]
  18. 18.
    Daneshian B, Assadi H. 2014.. Impact behavior of intrinsically brittle nanoparticles: a molecular dynamics perspective. . J. Therm. Spray Technol. 23:(3):54150
    [Crossref] [Google Scholar]
  19. 19.
    Andres RP. 1995.. Inelastic energy transfer in particle/surface collisions. . Aerosol Sci. Technol. 23:(1):4050
    [Crossref] [Google Scholar]
  20. 20.
    Rennecke S, Weber AP. 2014.. Charge transfer to metal nanoparticles bouncing from conductive surfaces. . Aerosol Sci. Technol. 48:(10):105969
    [Crossref] [Google Scholar]
  21. 21.
    Ayesh AI, Brown SA, Awasthi A, Hendy SC, Convers PY, Nichol K. 2010.. Coefficient of restitution for bouncing nanoparticles. . Phys. Rev. B 81::195422
    [Crossref] [Google Scholar]
  22. 22.
    Rennecke S, Weber AP. 2013.. The critical velocity for nanoparticle rebound measured in a low pressure impactor. . J. Aerosol Sci. 58::13547
    [Crossref] [Google Scholar]
  23. 23.
    Keskinen J, Pietarinen K, Lehtimäki M. 1992.. Electrical low pressure impactor. . J. Aerosol Sci. 23:(4):35360
    [Crossref] [Google Scholar]
  24. 24.
    Schöner C, Rennecke S, Weber AP, Pöschel T. 2014.. Introduction of a new technique to measure the coefficient of restitution for nanoparticles. . Chem. Ing. Tech. 86:(3):36574
    [Crossref] [Google Scholar]
  25. 25.
    Virtanen A, Kannosto J, Kuuluvainen H, Arffman A, Joutsensaari J, et al. 2011.. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. . Atmos. Chem. Phys. 11::875966
    [Crossref] [Google Scholar]
  26. 26.
    Bateman AP, Belassein H, Martin ST. 2014.. Impactor apparatus for the study of particle rebound: relative humidity and capillary forces. . Aerosol Sci. Technol. 48::4252
    [Crossref] [Google Scholar]
  27. 27.
    Jain S, Petrucci GA. 2015.. A new method to measure aerosol particle bounce using a cascade electrical low pressure impactor. . Aerosol Sci. Technol. 49::39099
    [Crossref] [Google Scholar]
  28. 28.
    Slade JH, Ault AP, Bui AT, Ditto JC, Lei Z, et al. 2019.. Bouncier particles at night: biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. . Environ. Sci. Technol. 53::497787
    [Crossref] [Google Scholar]
  29. 29.
    Dahneke B. 1971.. The capture of aerosol particles by surfaces. . J. Colloid Interface Sci. 37:(2):34253
    [Crossref] [Google Scholar]
  30. 30.
    Hassani-Gangaraj M, Veysset D, Nelson KA, Schuh CA. 2018.. Melt-driven erosion in microparticle impact. . Nat. Commun. 9::5077
    [Crossref] [Google Scholar]
  31. 31.
    Wall S, John W, Wang HC, Goren SL. 1990.. Measurements of kinetic energy loss for particles impacting surfaces. . Aerosol Sci. Technol. 12:(4):92646
    [Crossref] [Google Scholar]
  32. 32.
    Xie W, Alizadeh-Dehkharghani A, Chen Q, Champagne VK, Wang X, et al. 2017.. Dynamics and extreme plasticity of metallic microparticles in supersonic collisions. . Sci. Rep. 7::5073
    [Crossref] [Google Scholar]
  33. 33.
    Palomba E, Poppe T, Colangeli L, Palumbo P, Perrin JM, et al. 2001.. The sticking efficiency of quartz crystals for cosmic sub-micron grain collection. . Planet. Space Sci. 49:(9):91926
    [Crossref] [Google Scholar]
  34. 34.
    Weir G, Tallon S. 2005.. The coefficient of restitution for normal incident, low velocity particle impacts. . Chem. Eng. Sci. 60:(13):363747
    [Crossref] [Google Scholar]
  35. 35.
    Mohammad Karim A. 2023.. Physics of droplet impact on various substrates and its current advancements in interfacial science: a review. . J. Appl. Phys. 133:(3):030701
    [Crossref] [Google Scholar]
  36. 36.
    Miller MEC, Burke SE, Continetti RE. 2022b.. Production and impact characterization of Enceladus ice grain analogues. . ACS Earth Space Chem. 6:(7):181322
    [Crossref] [Google Scholar]
  37. 37.
    Burke SE, Auvil ZA, Hanold KA, Continetti RE. 2023b.. Detection of intact amino acids with a hypervelocity ice grain impact mass spectrometer. . PNAS 120:(50):e2313447120
    [Crossref] [Google Scholar]
  38. 38.
    Newton I, Motte A, Chittenden NW. 1848.. Newton's Principia. The Mathematical Principles of Natural Philosophy. New York:: Daniel Adee
    [Google Scholar]
  39. 39.
    Hassani M, Veysset D, Nelson KA, Schuh CA. 2020.. Material hardness at strain rates beyond 106 s−1 via high velocity microparticle impact indentation. . Scr. Mater. 177::198202
    [Crossref] [Google Scholar]
  40. 40.
    Nowak JD, Beaber AR, Ugurlu O, Girshick SL, Gerberich WW. 2010.. Small size strength dependence on dislocation nucleation. . Scr. Mater. 62:(11):81922
    [Crossref] [Google Scholar]
  41. 41.
    Kim JY, Greer JR. 2009.. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. . Acta Mater. 57:(17):524553
    [Crossref] [Google Scholar]
  42. 42.
    Pharr GM, Oliver WC. 1992.. Measurement of thin film mechanical properties using nanoindentation. . MRS Bull. 17:(7):2833
    [Crossref] [Google Scholar]
  43. 43.
    Burchell MJ, Cole MJ, Ratcliff PR. 1995.. Light flash and ionization from hypervelocity impacts on ice. . Icarus 122::35965
    [Crossref] [Google Scholar]
  44. 44.
    Veysset D, Lee J, Hassani M, Kooi SE, Thomas EL, et al. 2021.. High-velocity micro-projectile impact testing. . Appl. Phys. Rev. 8::011319
    [Crossref] [Google Scholar]
  45. 45.
    Price MC, Solscheid C, Burchell MJ, Josse L, Adamek N, Cole MJ. 2013.. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s−1. . Icarus 222:(1):26372
    [Crossref] [Google Scholar]
  46. 46.
    New JS, Mathies RA, Price MC, Cole MJ, Golozar M, et al. 2020.. Characterizing organic particle impacts on inert metal surfaces: foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes. . Meteor. Planet. Sci. 55:(3):46579
    [Crossref] [Google Scholar]
  47. 47.
    Kazemi B, New JS, Golozar M, Casto LD, Butterworth AL, Mathies RA. 2021.. Method for detecting and quantitating capture of organic molecules in hypervelocity impacts. . MethodsX 8::101239
    [Crossref] [Google Scholar]
  48. 48.
    Stradling GL, Idzorek GC, Shafer BP, Curling HL, Collopy MT, et al. 1993.. Ultra-high velocity impacts: cratering studies of microscopic impacts from 3 km/s to 30 km/s. . Int. J. Impact Eng. 14::71927
    [Crossref] [Google Scholar]
  49. 49.
    Richards LG, Holloway LS. 1960.. Study of Hypervelocity Micro-Particle Cratering. Aberdeen Proving Ground, MD:: Ballist. Res. Lab.
    [Google Scholar]
  50. 50.
    Vickerman JC. 2001.. ToF-SIMS—an overview. . In ToF-SIMS: Surface Analysis by Mass Spectrometry, ed. JC Vickerman, D Briggs , pp. 140. Chichester, UK:: IM
    [Google Scholar]
  51. 51.
    Friichtenicht JF, Slattery JC. 1963.. Ionization associated with hypervelocity impact. . In Proceedings of the Sixth Symposium on Hypervelocity Impact, Vol. II, Part 2 , pp. 591612. Washington, DC:: US Army/US Air Force/US Navy
    [Google Scholar]
  52. 52.
    Auer S, Sitte K. 1968.. Detection technique for micrometeoroids using impact ionization. . Earth Planet. Sci. Lett. 4::17883
    [Crossref] [Google Scholar]
  53. 53.
    Grun E, Fechtig H, Giese RH, Kissel J, Linkert D, et al. 1992.. The Ulysses dust experiment. . Astron. Astrophys. Suppl. Ser. 92::41123
    [Google Scholar]
  54. 54.
    Dietzel H, Eichhorn G, Fechtig H, Grun E, Hoffmann H-J, Kissel J. 1973.. The HEOS 2 and HELIOS micrometeoroid experiments. . J. Phys. E 6:(3):20917
    [Crossref] [Google Scholar]
  55. 55.
    Srama R, Ahrens TJ, Altobelli N, Auer S, Bradley JG. 2004.. The Cassini Cosmic Dust Analyzer. . Space Sci. Rev. 114::465518
    [Crossref] [Google Scholar]
  56. 56.
    Grün E, Fechtig H, Hanner MS, Kissel J, Lindblad B-A, et al. 1992.. The Galileo Dust Detector. . Space Sci. Rev. 60::31740
    [Crossref] [Google Scholar]
  57. 57.
    Goode W, Kempf S, Schmidt J. 2021.. Detecting the surface composition of geological features on Europa and Ganymede using a surface dust analyzer. . Planet. Space Sci. 208::105343
    [Crossref] [Google Scholar]
  58. 58.
    Auer S, Grün E, Srama R, Kempf S, Auer R. 2002.. The charge and velocity detector of the cosmic dust analyzer on Cassini. . Planet. Space Sci. 50:(7–8):77379
    [Crossref] [Google Scholar]
  59. 59.
    Friichtenicht JF. 2004.. Two-million-volt electrostatic accelerator for hypervelocity research. . Rev. Sci. Instrum. 33:(2):20912
    [Crossref] [Google Scholar]
  60. 60.
    Friichtenicht JF. 1964.. Micrometeroid simulation using nuclear accelerator techniques. . Nucl. Instrum. Methods 28:(1):7078
    [Crossref] [Google Scholar]
  61. 61.
    Shu A, Collette A, Drake K, Grün E, Horányi M, et al. 2012.. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. . Rev. Sci. Instrum. 83::175108
    [Crossref] [Google Scholar]
  62. 62.
    Mocker A, Bugiel S, Auer S, Baust G, Colette A, et al. 2012.. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research. . Rev. Sci. Instrum. 82::095111
    [Crossref] [Google Scholar]
  63. 63.
    Burchell MJ, Cole MJ, McDonnell JAM, Zarnecki JC. 1999.. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury. . Meas. Sci. Technol. 10::4150
    [Crossref] [Google Scholar]
  64. 64.
    Della Corte V, Ferretti S, Piccirillo AM, Zakharov V, Di Paolo F. 2023.. DISC—the dust impact sensor and counter on-board Comet Interceptor: characterization of the dust coma of a dynamically new comet. . Adv. Space Res. 71:(8):345767
    [Crossref] [Google Scholar]
  65. 65.
    Hendell E, Even U. 1994.. Tabletop linear accelerator for massive molecules. . Rev. Sci. Instrum. 66:(7):39012
    [Crossref] [Google Scholar]
  66. 66.
    Hsu YF, Lin JL, Chu ML, Wang YS, Chen CH. 2013.. Macromolecular ion accelerator mass spectrometer. . Analyst 138:(24):738491
    [Crossref] [Google Scholar]
  67. 67.
    Hibbert R, Cole MJ, Price MC, Burchell MJ. 2017.. The hypervelocity impact facility at the University of Kent: recent upgrades and specialized capabilities. . Procedia Eng. 204::20814
    [Crossref] [Google Scholar]
  68. 68.
    Veysset D, Sun Y, Kooi SE, Lem J, Nelson KA. 2020.. Laser-driven high-velocity microparticle launcher in atmosphere and under vacuum. . Int. J. Impact Eng. 137::103465
    [Crossref] [Google Scholar]
  69. 69.
    Carado A, Passarelli MK, Kozole J, Wingate JE, Winograd N, Loboda AV. 2008.. C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. . Anal. Chem. 80:(21):792129
    [Crossref] [Google Scholar]
  70. 70.
    Mahoney CM. 2010.. Cluster secondary ion mass spectrometry of polymers and related materials. . Mass Spectrom. Rev. 29:(2):24793
    [Crossref] [Google Scholar]
  71. 71.
    Shelton H, Hendricks CD, Wuerker RF. 1960.. Electrostatic acceleration of microparticles to hypervelocities. . J. Appl. Phys. 31:(7):124346
    [Crossref] [Google Scholar]
  72. 72.
    Fuerstenau SD, Benner WH. 1995.. Molecular weight determination of megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. . Rapid Commun. Mass Spectrom. 9:(15):152838
    [Crossref] [Google Scholar]
  73. 73.
    Schultz JC, Hack CA, Benner WH. 1998.. Mass determination of megadalton-DNA Electrospray ions using charge detection mass spectrometry. . J. Am. Soc. Mass Spectrom. 9:(4):30513
    [Crossref] [Google Scholar]
  74. 74.
    Jarrold MF. 2022.. Applications of charge detection mass spectrometry in molecular biology and biotechnology. . Chem. Rev. 122:(8):741541
    [Crossref] [Google Scholar]
  75. 75.
    Keifer DZ, Pierson EE, Jarrold MF. 2017.. Charge detection mass spectrometry: weighing heavier things. . Analyst 142:(10):165471
    [Crossref] [Google Scholar]
  76. 76.
    Ring S, Pedersen HB, Heber O, Rappaport ML, Witte PD, et al. 2000.. Fourier transform time-of-flight mass spectrometry in an electrostatic ion beam trap. . Anal. Chem. 72:(17):404146
    [Crossref] [Google Scholar]
  77. 77.
    Rayleigh L. 1882.. On the equilibrium of liquid conducting masses charged with electricity. . Philos. Mag. 14:(87):18486
    [Crossref] [Google Scholar]
  78. 78.
    Miller MEC, Mezher M, Continetti RE. 2020.. Tapered image charge detector for measuring velocity distributions of submicrometer particle scattering. . Rev. Sci. Instrum. 91::063305
    [Crossref] [Google Scholar]
  79. 79.
    Belousov A, Miller M, Continetti R, Madzunkov S, Simcic J, et al. 2021.. Sampling accelerated micron scale ice particles with a quadrupole ion trap mass spectrometer. . J. Am. Soc. Mass Spectrom. 32::116268
    [Crossref] [Google Scholar]
  80. 80.
    Rozsa J, Song Y, Kerr A, Debaene N, Austin D, et al. 2021.. Optimizing the noise performance of multielectrode image charge detectors constructed on printed circuit boards. . IEEE Trans. Instrum. Meas. 70::1503308
    [Crossref] [Google Scholar]
  81. 81.
    Gustafson EL, Murray HV, Caldwell T, Austin DE. 2020.. Accurately mapping image charge and calibrating ion velocity in charge detection mass spectrometry. . J. Am. Soc. Mass Spectrom. 31:(10):216170
    [Crossref] [Google Scholar]
  82. 82.
    Smith JW, Siegel EE, Maze JT, Jarrold MF. 2011.. Image charge detection mass spectrometry: pushing the envelope with sensitivity and accuracy. . Anal. Chem. 83:(3):95056
    [Crossref] [Google Scholar]
  83. 83.
    Taylor GI. 1964.. Disintegration of water drops in an electric field. . Proc. R. Soc. A 280::38397
    [Google Scholar]
  84. 84.
    Wilm M. 2011.. Principles of electrospray ionization. . Mol. Cell. Proteom. 10:(7):M111.009407
    [Crossref] [Google Scholar]
  85. 85.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989.. Electrospray ionization for mass spectrometry of large biomolecules. . Science 246::6471
    [Crossref] [Google Scholar]
  86. 86.
    Fuerstenau SD. 2003.. Whole virus mass analysis by electrospray ionization. . J. Mass Spectrom. Soc. Jpn. 51:(1):5053
    [Crossref] [Google Scholar]
  87. 87.
    De Juan L, Fernández de la Mora J. 1996.. On-line sizing of colloidal nanoparticles via electrospray and aerosol techniques. . Nanotechnology 622::2041
    [Google Scholar]
  88. 88.
    Daly RT, Kerby JD, Austin DE. 2013.. Electrospray charging of minerals and ices for hypervelocity impact research. . Planet. Space Sci. 75:(1):18287
    [Crossref] [Google Scholar]
  89. 89.
    Spesyvyi A, Žabka J, Polášek M, Charvat A, Schmidt J, et al. 2022.. Charged ice particle beams with selected narrow mass and kinetic energy distributions. . J. Am. Soc. Mass Spectrom. 34::87892
    [Crossref] [Google Scholar]
  90. 90.
    Zhang Z, Gao J, Zhang S. 2016.. Heat and mass transfer of the droplet vacuum freezing process based on the diffusion-controlled evaporation and phase transition mechanism. . Sci. Rep. 6:(1):35324
    [Crossref] [Google Scholar]
  91. 91.
    Murphy DM, Koop T. 2005.. Review of the vapour pressures of ice and supercooled water for atmospheric applications. . Q. J. R. Meteorol. Soc. 131:(608):153965
    [Crossref] [Google Scholar]
  92. 92.
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH. 1995.. Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. . Aerosol Sci. Technol. 22:(3):293313
    [Crossref] [Google Scholar]
  93. 93.
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH. 1995.. Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. . Aerosol Sci. Technol. 22:(3):31424
    [Crossref] [Google Scholar]
  94. 94.
    Wang X, McMurry PH. 2006.. A design tool for aerodynamic lens systems. . Aerosol Sci. Technol. 40:(5):32034
    [Crossref] [Google Scholar]
  95. 95.
    Wang X, McMurry PH. 2006.. Instruction manual for the aerodynamic lens calculator. . Aerosol Sci. Technol. 40:(5):110
    [Crossref] [Google Scholar]
  96. 96.
    Zeman HD. 1977.. Deflection of an ion beam in the two-dimensional electrostatic quadrupole field. . Rev. Sci. Instrum. 48:(8):107985
    [Crossref] [Google Scholar]
  97. 97.
    Benner WH. 1997.. A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. . Anal. Chem. 69:(20):416268
    [Crossref] [Google Scholar]
  98. 98.
    León I, Yang Z, Liu HT, Wang LS. 2014.. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. . Rev. Sci. Instrum. 85::083106
    [Crossref] [Google Scholar]
  99. 99.
    Wiley WC, McLaren IH. 1955.. Time-of-flight mass spectrometer with improved resolution. . Rev. Sci. Instrum. 26::115057
    [Crossref] [Google Scholar]
  100. 100.
    Madzunkov SM, Nikoli D. 2014.. Accurate Xe isotope measurement using JPL ion trap. . J. Am. Soc. Mass Spectrom. 25::184152
    [Crossref] [Google Scholar]
  101. 101.
    Waller SE, Belousov A, Kidd RD, Nikolic D, Madzunkov SM, et al. 2019.. Chemical ionization mass spectrometry: applications for the in situ measurement of nonvolatile organics at ocean worlds. . Astrobiology 19:(10):1196210
    [Crossref] [Google Scholar]
  102. 102.
    Jaramillo-Botero A, Cable ML, Hofmann AE, Malaska M, Hodyss R, Lunine J. 2021.. Understanding hypervelocity sampling of biosignatures in space missions. . Astrobiology 21:(4):42142
    [Crossref] [Google Scholar]
  103. 103.
    Khawaja N, Postberg F, Hillier J, Klenner F, Kempf S, et al. 2019.. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. . Mon. Not. R. Astron. Soc. 489:(4):523143
    [Crossref] [Google Scholar]
  104. 104.
    Postberg F, Khawaja N, Abel B, Choblet G, Glein CR, et al. 2018.. Macromolecular organic compounds from the depths of Enceladus. . Nature 558:(7711):56468
    [Crossref] [Google Scholar]
  105. 105.
    Postberg F, Kempf S, Hillier JK, Srama R, Green SF, et al. 2008.. The E-ring in the vicinity of Enceladus: II. Probing the moon's interior—The composition of E-ring particles. . Icarus 193:(2):43854
    [Crossref] [Google Scholar]
  106. 106.
    Postberg F, Kempf S, Schmidt J, Brilliantov N, Beinsen A, et al. 2009.. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. . Nature 459:(7250):1098101
    [Crossref] [Google Scholar]
  107. 107.
    Postberg F, Sekine Y, Klenner F, Glein CR, Zou Z, et al. 2023.. Detection of phosphates originating from Enceladus's ocean. . Nature 618::48993
    [Crossref] [Google Scholar]
  108. 108.
    Klenner F, Postberg F, Hillier J, Khawaja N, Reviol R, et al. 2020.. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. . Astrobiology 20:(2):17989
    [Crossref] [Google Scholar]
  109. 109.
    Piwowar AM, Lockyer NP, Vickerman JC. 2009.. Salt effects on ion formation in desorption mass spectrometry: an investigation into the role of alkali chlorides on peak suppression in time-of-flight-secondary ion mass spectrometry. . Anal. Chem. 81:(3):104048
    [Crossref] [Google Scholar]
  110. 110.
    Napoleoni M, Klenner F, Khawaja N, Hillier JK, Postberg F. 2023.. Mass spectrometric fingerprints of organic compounds in NaCl-rich ice grains from Europa and Enceladus. . ACS Earth Space Chem. 7::73552
    [Crossref] [Google Scholar]
  111. 111.
    Klenner F, Postberg F, Hillier J, Khawaja N, Cable ML, et al. 2020.. Discriminating abiotic and biotic fingerprints of amino acids and fatty acids in ice grains relevant to ocean worlds. . Astrobiology 20:(12):116884
    [Crossref] [Google Scholar]
  112. 112.
    Schulze JA, Yilmaz DE, Cable ML, Malaska M, Hofmann AE, et al. 2023.. Effect of salts on the formation and hypervelocity-induced fragmentation of icy clusters with embedded amino acids. . ACS Earth Space Chem. 7:(1):16881
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-122157
Loading
/content/journals/10.1146/annurev-physchem-083122-122157
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error