1932

Abstract

With markedly different reaction conditions compared to the chemistry of the outside atmosphere, indoor air chemistry poses new challenges to the scientific community that require combined experimental and computational efforts. Here, we review molecular dynamics simulations that have contributed to the mechanistic understanding of the complex dynamics of organic compounds at indoor surfaces and their interplay with experiments and indoor air models. We highlight the rich interactions between volatile organic compounds and silica and titanium dioxide surfaces, serving as proxies for glasses and paints, as well as the dynamics of skin oil lipids and their oxidation products, which sensitively affect the quality of indoor air in crowded environments. As the studies we review here are pioneering in the rapidly emerging field of indoor chemistry, we provide suggestions for increasing the potentially important role that molecular simulations can continue to play.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-123017
2025-04-21
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/76/1/annurev-physchem-083122-123017.html?itemId=/content/journals/10.1146/annurev-physchem-083122-123017&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Weschler CJ. 2011.. Chemistry in indoor environments: 20 years of research. . Indoor Air 21:(3):20518
    [Crossref] [Google Scholar]
  2. 2.
    Morrison G. 2015.. Recent advances in indoor chemistry. . Curr. Sustain. Renew. Ener. Rep. 2:(2):3340
    [Google Scholar]
  3. 3.
    Nazaroff WW, Goldstein AH. 2015.. Indoor chemistry: research opportunities and challenges. . Indoor Air 25::35761
    [Crossref] [Google Scholar]
  4. 4.
    Abbatt JPD, Wang C. 2020.. The atmospheric chemistry of indoor environments. . Environ. Sci. Process. Impacts 22:(1):2548
    [Crossref] [Google Scholar]
  5. 5.
    Bekö G, Carslaw N, Fauser P, Kauneliene V, Nehr S, et al. 2020.. The past, present, and future of indoor air chemistry. . Indoor Air 30:(3):37376
    [Crossref] [Google Scholar]
  6. 6.
    Habre R, Dorman DC, Abbatt J, Bahnfleth WP, Carter E, et al. 2022.. Why indoor chemistry matters: a national academies consensus report. . Environ. Sci. Technol. 56:(15):1056063
    [Crossref] [Google Scholar]
  7. 7.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT. 2002.. Measurement of emissions from air pollution sources. 4. C1–C27 organic compounds from cooking with seed oils. . Environ. Sci. Technol. 36:(4):56775
    [Crossref] [Google Scholar]
  8. 8.
    Potera C. 2011.. Indoor air quality: scented products emit a bouquet of VOCs. . Environ. Health Persp. 119:(1):A16
    [Google Scholar]
  9. 9.
    Steinemann AC, MacGregor IC, Gordon SM, Gallagher LG, Davis AL, et al. 2011.. Fragranced consumer products: chemicals emitted, ingredients unlisted. . Environ. Impact Assess. 31:(3):32833
    [Crossref] [Google Scholar]
  10. 10.
    Carslaw N, Shaw D. 2022.. Modification of cleaning product formulations could improve indoor air quality. . Indoor Air 32:(3):e13021
    [Crossref] [Google Scholar]
  11. 11.
    Aksenov AA, Koelmel JP, Lin EZ, Melnik AV, Vance ME, et al. 2023.. Human activities shape indoor volatile chemistry. . Environ. Sci. Technol. Lett. 10:(11):96575
    [Crossref] [Google Scholar]
  12. 12.
    Lebel ED, Finnegan CJ, Ouyang Z, Jackson RB. 2022.. Methane and NOx emissions from natural gas stoves, cooktops, and ovens in residential homes. . Environ. Sci. Technol. 56:(4):252939
    [Crossref] [Google Scholar]
  13. 13.
    Ault AP, Grassian VH, Carslaw N, Collins DB, Destaillats H, et al. 2020.. Indoor surface chemistry: developing a molecular picture of reactions on indoor interfaces. . Chemistry 6:(12):320318
    [Crossref] [Google Scholar]
  14. 14.
    Rivas I, Fussell JC, Kelly FJ, Querol X. 2019.. Indoor sources of air pollutants. . In Indoor Air Pollution, ed. RM Harrison, RE Hester , pp. 134. Cambridge, UK:: R. Soc. Chem.
    [Google Scholar]
  15. 15.
    Eftekhari A, Won Y, Morrison G, Ng NL. 2023.. Chemistry of Indoor Air Pollution. Washington, DC:: Am. Chem. Soc.
    [Google Scholar]
  16. 16.
    Fahy WD, Wania F, Abbatt JPD. 2024.. When does multiphase chemistry influence indoor chemical fate?. Environ. Sci. Technol. 58:(9):425767
    [Google Scholar]
  17. 17.
    Arata C, Heine N, Wang N, Misztal PK, Wargocki P, et al. 2019.. Heterogeneous ozonolysis of squalene: gas-phase products depend on water vapor concentration. . Environ. Sci. Technol. 53:(24):1444148
    [Crossref] [Google Scholar]
  18. 18.
    Zannoni N, Li M, Wang N, Ernle L, Bekö G, et al. 2021.. Effect of ozone, clothing, temperature, and humidity on the total OH reactivity emitted from humans. . Environ. Sci. Technol. 55:(20):1361424
    [Crossref] [Google Scholar]
  19. 19.
    Abbatt JPD, Collins DB. 2021.. Indoor air quality through the lens of outdoor atmospheric chemistry. . In Handbook of Indoor Air Quality, ed. Y Zhang, PK Hopke, C Mandin . Singapore:: Springer. https://doi.org/10.1007/978-981-10-5155-5_28-1
    [Google Scholar]
  20. 20.
    Lee T, Gany F. 2013.. Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population. . J. Immigr. Minor. Health 15:(3):64652
    [Crossref] [Google Scholar]
  21. 21.
    Wolkoff P. 2018.. Indoor air humidity, air quality, and health – an overview. . Int. J. Hyg. Envir. Health 221:(3):37690
    [Crossref] [Google Scholar]
  22. 22.
    Farmer DK, Vance ME. 2019.. Indoor air: sources, chemistry and health effects. . Environ. Sci. Process. Impact 21:(8):122728
    [Crossref] [Google Scholar]
  23. 23.
    Wisthaler A, Tamás G, Wyon DP, Strøm-Tejsen P, Space D, et al. 2005.. Products of ozone-initiated chemistry in a simulated aircraft environment. . Environ. Sci. Technol. 39:(13):482332
    [Crossref] [Google Scholar]
  24. 24.
    Coleman BK, Destaillats H, Hodgson AT, Nazaroff WW. 2008.. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. . Atmos. Environ. 42:(4):64254
    [Crossref] [Google Scholar]
  25. 25.
    Rai AC, Guo B, Lin C, Zhang J, Pei J, Chen Q. 2014.. Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber. . Indoor Air 24:(1):4958
    [Crossref] [Google Scholar]
  26. 26.
    Bekö G, Wargocki P, Wang N, Li M, Weschler CJ, et al. 2020.. The Indoor Chemical Human Emissions and Reactivity (ICHEAR) project: overview of experimental methodology and preliminary results. . Indoor Air 30:(6):121328
    [Crossref] [Google Scholar]
  27. 27.
    Domich P, Pettit B, Fanney A, Healy W. 2015.. Research and development opportunities for the NIST net zero energy residential test facility. Tech. Note 1869 , Natl. Inst. Stand. Technol., Gaithersburg, MD:. https://doi.org/10.6028/NIST.TN.1869
    [Google Scholar]
  28. 28.
    Farmer DK, Vance ME, Abbatt JPD, Abeleira A, Alves MR, et al. 2019.. Overview of HOMEChem: house observations of microbial and environmental chemistry. . Environ. Sci. Process. Impacts 21:(8):1280300
    [Crossref] [Google Scholar]
  29. 29.
    Farmer DK, Vance ME, Poppendieck D, Abbatt J, Alves MR, et al. 2024.. The chemical assessment of surfaces and air (CASA) study: using chemical and physical perturbations in a test house to investigate indoor processes. . Environ. Sci. Process. Impacts. In press. https://doi.org/10.1039/D4EM00209A
    [Google Scholar]
  30. 30.
    Shiraiwa M, Carslaw N, Tobias DJ, Waring MS, Rim D, et al. 2019.. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. . Environ. Sci. Process. Impact 21:(8):124054
    [Crossref] [Google Scholar]
  31. 31.
    Waring MS, Shiraiwa M. 2022.. Indoor chemistry modeling of gas-, particle-, and surface-phase processes. . In Handbook of Indoor Air Quality, ed. Y Zhang, PK Hopke, C Mandin , pp. 95582. Singapore:: Springer
    [Google Scholar]
  32. 32.
    Allen MP, Tildesley DJ. 2017.. Computer Simulation of Liquids. Oxford, UK:: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  33. 33.
    Frazer L. 2001.. Titanium dioxide: environmental white knight?. Environ. Health Perspect. 109::A17477
    [Crossref] [Google Scholar]
  34. 34.
    Hagan EWS, Charalambides MN, Young CT, Learner TJS, Hackney S. 2009.. Tensile properties of latex paints with TiO2 pigment. . Mech. Time-Depend. Mater. 13::14961
    [Crossref] [Google Scholar]
  35. 35.
    Gopalan AI, Lee JC, Saianand G, Lee KP, Sonar P, et al. 2020.. Recent progress in the abatement of hazardous pollutants using photocatalytic TiO2-based building materials. . Nanomaterials 10::1854
    [Crossref] [Google Scholar]
  36. 36.
    Ravichandran C, Badgujar PC, Gundev P, Upadhyay A. 2018.. Review of toxicological assessment of d-limonene, a food and cosmetics additive. . Food Chem. Toxicol. 120::66880
    [Crossref] [Google Scholar]
  37. 37.
    Nguyen TD, Riordan-Short S, Dang TTT, O'Brien R, Noestheden M. 2020.. Quantitation of select terpenes/terpenoids and nicotine using gas chromatography–mass spectrometry with high-temperature headspace sampling. . ACS Omega 5::556573
    [Crossref] [Google Scholar]
  38. 38.
    Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, et al. 2022.. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. . Food Chem. X 13::100217
    [Crossref] [Google Scholar]
  39. 39.
    Ho J, Psciuk BT, Chase HM, Rudshteyn B, Upshur MA, et al. 2016.. Sum frequency generation spectroscopy and molecular dynamics simulations reveal a rotationally fluid adsorption state of ∝-pinene on silica. . J. Phys. Chem. C 120::1257889
    [Crossref] [Google Scholar]
  40. 40.
    Chase HM, Ho J, Upshur MA, Fu L, Thomson RJ, et al. 2017.. Unanticipated stickiness of ∝-pinene. . J. Phys. Chem. A 121::323946
    [Crossref] [Google Scholar]
  41. 41.
    Liu Y, Chase HM, Geiger FM. 2019.. Partially (resp. fully) reversible adsorption of monoterpenes (resp. alkanes and cycloalkanes) to fused silica. . J. Chem. Phys. 150::074701
    [Crossref] [Google Scholar]
  42. 42.
    Fang Y, Riahi S, McDonald AT, Shrestha M, Tobias DJ, et al. 2019.. What is the driving force behind the adsorption of hydrophobic molecules on hydrophilic surfaces?. J. Phys. Chem. Lett. 10::46873
    [Crossref] [Google Scholar]
  43. 43.
    Fang Y, Lakey PSJ, Riahi S, McDonald AT, Shrestha M, et al. 2019.. A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: limonene adsorption on SiO2. . Chem. Sci. 10::290614
    [Crossref] [Google Scholar]
  44. 44.
    Huang L, Frank ES, Riahi S, Tobias DJ, Grassian VH. 2021.. Adsorption of constitutional isomers of cyclic monoterpenes of cyclic monoterpenes on hydroxylated silica surfaces. . J. Chem. Phys. 154::124703
    [Crossref] [Google Scholar]
  45. 45.
    Uhde E, Schulz N. 2015.. Impact of room fragrance products on indoor air quality. . Atmos. Environ. 106::492502
    [Crossref] [Google Scholar]
  46. 46.
    Waring MS, Wells JR. 2015.. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources. . Atmos. Environ. 106::38291
    [Crossref] [Google Scholar]
  47. 47.
    Weschler CJ, Carslaw N. 2018.. Indoor chemistry. . Environ. Sci. Technol. 52:(5):241928
    [Crossref] [Google Scholar]
  48. 48.
    Wisthaler A, Weschler CJ. 2010.. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. . PNAS 107:(15):656875
    [Crossref] [Google Scholar]
  49. 49.
    Huang L, Frank ES, Tobias DJ, Grassian VH. 2021.. Heterogeneous interactions of prevalent indoor oxygenated organic compounds on hydroxylated SiO2 surfaces. . Environ. Sci. Technol. 55::662330
    [Crossref] [Google Scholar]
  50. 50.
    Colombo A, Bortoli MD, Knöppel H, Schauenburg H, Vissers H. 1991.. Small chamber tests and headspace analysis of volatile organic compounds emitted from household products. . Indoor Air 1::1321
    [Crossref] [Google Scholar]
  51. 51.
    Su HJ, Chao CJ, Chang HY, Wu PC. 2007.. The effects of evaporating essential oils on indoor air quality. . Atmos. Environ. 41::123036
    [Crossref] [Google Scholar]
  52. 52.
    Salthammer T, ed. 1999.. Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation. Wienheim, Ger:.: Wiley-VCH
    [Google Scholar]
  53. 53.
    Vejrup KV, Wolkoff P. 1994.. VOC emissions from some floor cleaning agents. . In Healthy Buildings '94, ed. L Bánhidi, I Farkas, Z Magyar, P Rudnai , pp. 24752. Budapest, Hungary:: Healthy Buildings '94
    [Google Scholar]
  54. 54.
    Nazaroff WW, Weschler CJ. 2004.. Cleaning products and air fresheners: exposure to primary and secondary air pollutants. . Atmos. Environ. 38::284165
    [Crossref] [Google Scholar]
  55. 55.
    Frank ES, Fan H, Shrestha M, Riahi S, Tobias DJ, Grassian VH. 2020.. Impact of adsorbed water on the interaction of limonene with hydroxylated SiO2: implication of π-hydrogen bonding for surfaces in humid environments. . J. Phys. Chem. A 124::1059299
    [Crossref] [Google Scholar]
  56. 56.
    Fan H, Frank ES, Lakey PSJ, Shiraiwa M, Tobias DJ, Grassian VH. 2022.. Heterogeneous interactions between carvone and hydroxylated SiO2. . J. Phys. Chem. C 126::626779
    [Crossref] [Google Scholar]
  57. 57.
    Fan H, Frank ES, Tobias DJ, Grassian VH. 2022.. Interactions of limonene and carvone on titanium dioxide surfaces. . Phys. Chem. Chem. Phys. 24::2387083
    [Crossref] [Google Scholar]
  58. 58.
    Frank ES, Fan H, Grassian VH, Tobias DJ. 2023.. Adsorption of 6-MHO on two indoor relevant surfaces: SiO2 and TiO2. . Phys. Chem. Chem. Phys. 25::393041
    [Crossref] [Google Scholar]
  59. 59.
    Lederer MR, Staniec AR, Fuente ZLC, Ry DAV, Hinrich RZ. 2016.. Heterogeneous reactions of limonene on mineral dust: impacts of adsorbed water and nitric acid. . J. Phys. Chem. A 120::954556
    [Crossref] [Google Scholar]
  60. 60.
    Karlberg AT, Magnusson K, Nilsson U. 1992.. Air oxidation of d-limonene (the citrus solvent) creates potent allergens. . Contact Dermat. 26::33240
    [Crossref] [Google Scholar]
  61. 61.
    Karlberg AT, Shao LP, Nilsson U. 1994.. Hydroperoxides in oxidized d-limonene identified as potent contact allergens. . Arch. Dermatol. Res. 286::97103
    [Crossref] [Google Scholar]
  62. 62.
    Clausen PA, Wilkins CK, Wolkoff P, Nielsen GD. 2001.. Chemical and biological evaluation of a reaction mixture of R-(+)-limonene/ozone: formation of strong airway irritants. . Environ. Int. 26::51122
    [Crossref] [Google Scholar]
  63. 63.
    Fortenberry C, Walker M, Dang A, Loka A, Date G, et al. 2019.. Analysis of indoor particles and gases and their evolution with natural ventilation. . Indoor Air 29::76179
    [Crossref] [Google Scholar]
  64. 64.
    Fruekilde P, Hjorth J, Jensen NR, Kotzias D, Larsen B. 1998.. Ozonolysis at vegetation surfaces: a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one and geranyl acetone in the troposphere. . Atmos. Environ. 32::1893902
    [Crossref] [Google Scholar]
  65. 65.
    Forester CB, Wells JR. 2009.. Yields of carbonyl products from gas-phase reactions of fragrance compounds with OH radical and ozone. . Environ. Sci. Technol. 43::356168
    [Crossref] [Google Scholar]
  66. 66.
    Wolkoff P, Larsen ST, Hammer M, Kofoed-Sørensen V, Clausen PA, Nielsen GD. 2013.. Human reference values for acute airway effects of five common ozone-initiated terpene reaction products in indoor air. . Toxicol. Lett. 216:(1):5464
    [Crossref] [Google Scholar]
  67. 67.
    Munuera G, Stone FS. 1971.. Adsorption of water and organic vapours on hydroxylated rutile. . Discuss. Faraday Soc. 52::20514
    [Crossref] [Google Scholar]
  68. 68.
    Lindan PJD, Harrison NM, Gillan MJ. 1998.. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. . Phys. Rev. Lett. 80::086105
    [Crossref] [Google Scholar]
  69. 69.
    Zhang C, Lindan PJD. 2004.. A density functional theory study of the coadsorption of water and oxygen on TiO2 (110). . J. Chem. Phys. 121::381115
    [Crossref] [Google Scholar]
  70. 70.
    Harris LA, Quong AA. 2004.. Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110). . Phys. Rev. Lett. 93::086105
    [Crossref] [Google Scholar]
  71. 71.
    Liu LM, Zhang C, Thornton G, Michaelides A. 2010.. Structure and dynamics of liquid water on rutile TiO2 (110). . Phys. Rev. B 82::161415
    [Crossref] [Google Scholar]
  72. 72.
    Margineda J, English NJ. 2020.. Dynamical and structural properties of adsorbed water molecules and the TiO2 anatase-(101) surface: importance of interfacial hydrogen-bond rearrangements. . Chem. Phys. Lett. 743::137164
    [Crossref] [Google Scholar]
  73. 73.
    Fan H, Lakey PSJ, Frank ES, Tobias DJ, Shiraiwa M, Grassian VH. 2022.. Comparison of the adsorption-desorption kinetics of limonene and carvone on TiO2 and SiO2 surfaces under different relative humidity conditions. . J. Phys. Chem. C 126::2125362
    [Crossref] [Google Scholar]
  74. 74.
    Picardo M, Ottaviani M, Camera E, Mastrofrancesco A. 2009.. Sebaceous gland lipids. . Dermato-Endocrinol. 1:(2):6871
    [Crossref] [Google Scholar]
  75. 75.
    Anderson SE, Franko J, Jackson LG, Wells JR, Ham JE, Meade BJ. 2012.. Irritancy and allergic responses induced by exposure to the indoor air chemical 4-oxopentanal. . Toxicol. Sci. 127:(2):37181
    [Crossref] [Google Scholar]
  76. 76.
    Bekö G, Allen JG, Weschler CJ, Vallarino J, Spengler JD. 2015.. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft. . PLOS ONE 10:(5):e0128454
    [Crossref] [Google Scholar]
  77. 77.
    Weschler CJ. 2016.. Roles of the human occupant in indoor chemistry. . Indoor Air 26:(1):624
    [Crossref] [Google Scholar]
  78. 78.
    Lakey PSJ, Wisthaler A, Berkemeier T, Mikoviny T, Pöschl U, Shiraiwa M. 2017.. Chemical kinetics of multiphase reactions between ozone and human skin lipids: implications for indoor air quality and health effects. . Indoor Air 27:(4):81628
    [Crossref] [Google Scholar]
  79. 79.
    Lakey PSJ, Morrison GC, Won Y, Parry KM, von Domaros M, et al. 2019.. The impact of clothing on ozone and squalene ozonolysis products in indoor environments. . Commun. Chem. 2:(1):56
    [Crossref] [Google Scholar]
  80. 80.
    von Domaros M, Lakey PSJ, Shiraiwa M, Tobias DJ. 2020.. Multiscale modeling of human skin oil-induced indoor air chemistry: combining kinetic models and molecular dynamics. . J. Phys. Chem. B 124::383643
    [Crossref] [Google Scholar]
  81. 81.
    Hénin J, Lelièvre T, Shirts MR, Valsson O, Delemotte L. 2022.. Enhanced sampling methods for molecular dynamics simulations [article v1.0]. . Living J. Comp. Mol. Sci. 4:(1):1583
    [Crossref] [Google Scholar]
  82. 82.
    Vieceli J, Ma OL, Tobias DJ. 2004.. Uptake and collision dynamics of gas phase ozone at unsaturated organic interfaces. . J. Phys. Chem. A 108:(27):580614
    [Crossref] [Google Scholar]
  83. 83.
    Venable RM, Krämer A, Pastor RW. 2019.. Molecular dynamics simulations of membrane permeability. . Chem. Rev. 119:(9):595497
    [Crossref] [Google Scholar]
  84. 84.
    Gupta KM, Das S, Chow PS. 2021.. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. . Nanoscale 13:(30):1291628
    [Crossref] [Google Scholar]
  85. 85.
    Lundborg M, Wennberg C, Lidmar J, Hess B, Lindahl E, Norlén L. 2022.. Skin permeability prediction with MD simulation sampling spatial and alchemical reaction coordinates. . Biophys. J. 121:(20):383749
    [Crossref] [Google Scholar]
  86. 86.
    von Domaros M, Liu Y, Butman JL, Perlt E, Geiger FM, Tobias DJ. 2021.. Molecular orientation at the squalene/air interface from sum frequency generation spectroscopy and atomistic modeling. . J. Phys. Chem. B 125:(15):393241
    [Crossref] [Google Scholar]
  87. 87.
    Patočka J, Kuça K. 2014.. Irritant compounds: aldehydes. . Milit. Med. Sci. Lett. 83:(4):15164
    [Crossref] [Google Scholar]
  88. 88.
    Jarvis J, Seed MJ, Elton R, Sawyer L, Agius R. 2005.. Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds. . Occup. Environ. Med. 62:(4):24350
    [Crossref] [Google Scholar]
  89. 89.
    Aldred JR, Darling E, Morrison G, Siegel J, Corsi RL. 2016.. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes. . Indoor Air 26:(3):50112
    [Crossref] [Google Scholar]
  90. 90.
    Zhou Z, Zhou S, Abbatt JPD. 2019.. Kinetics and condensed-phase products in multiphase ozonolysis of an unsaturated triglyceride. . Environ. Sci. Technol. 53:(21):1246775
    [Crossref] [Google Scholar]
  91. 91.
    Zhou Z, Lakey PSJ, von Domaros M, Wise N, Tobias DJ, et al. 2022.. Multiphase ozonolysis of oleic acid-based lipids: quantitation of major products and kinetic multilayer modeling. . Environ. Sci. Technol. 56:(12):771628
    [Crossref] [Google Scholar]
  92. 92.
    Pleik S, Spengler B, Bhandari DR, Luhn S, Schäfer T, et al. 2018.. Ambient-air ozonolysis of triglycerides in aged fingerprint residues. . Analyst 143:(5):1197209
    [Crossref] [Google Scholar]
  93. 93.
    Weschler CJ. 2006.. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. . Environ. Health Perspect. 114:(10):148996
    [Crossref] [Google Scholar]
  94. 94.
    Cakmak S, Dales RE, Liu L, Kauri LM, Lemieux CL, et al. 2014.. Residential exposure to volatile organic compounds and lung function: results from a population-based cross-sectional survey. . Environ. Pollut. 194::14551
    [Crossref] [Google Scholar]
  95. 95.
    Shiraiwa M, Pfrang C, Koop T, Pöschl U. 2012.. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. . Atmos. Chem. Phys. 12:(5):277794
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-123017
Loading
/content/journals/10.1146/annurev-physchem-083122-123017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error