1932

Abstract

The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-083122-125525
2024-06-28
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-083122-125525.html?itemId=/content/journals/10.1146/annurev-physchem-083122-125525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rayleigh L. 1910.. The problem of the whispering gallery. . Philos. Mag. 20:(120):10014
    [Crossref] [Google Scholar]
  2. 2.
    Wise WH. 1929.. Asymptotic dipole radiation formulas. . Bell Syst. Tech. J. 8:(4):66271
    [Crossref] [Google Scholar]
  3. 3.
    Shelby RA, Smith DR, Schultz S. 2001.. Experimental verification of a negative index of refraction. . Science 292:(5514):7779
    [Crossref] [Google Scholar]
  4. 4.
    Pendry JB, Schurig D, Smith DR. 2006.. Controlling electromagnetic fields. . Science 312:(5781):178082
    [Crossref] [Google Scholar]
  5. 5.
    Crommie M, Lutz C, Eigler D, Heller E. 1995.. Quantum corrals. . Physica D 83:(1):98108
    [Crossref] [Google Scholar]
  6. 6.
    Heller EJ. 1984.. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. . Phys. Rev. Lett. 53:(16):151518
    [Crossref] [Google Scholar]
  7. 7.
    Drexhage KH. 1966.. Optische Untersuchungen an neuartigen monomolekularen. Habilitationsschr., Univ. Marburg, Ger:.
    [Google Scholar]
  8. 8.
    Drexhage K. 1970.. Influence of a dielectric interface on fluorescence decay time. . J. Lumin. 1–2::693701
    [Crossref] [Google Scholar]
  9. 9.
    Kuhn H. 2003.. Classical aspects of energy transfer in molecular systems. . J. Chem. Phys. 53:(1):1018
    [Crossref] [Google Scholar]
  10. 10.
    Chance RR, Prock A, Silbey R. 1978.. Molecular fluorescence and energy transfer near interfaces. . Adv. Chem. Phys. 37::165
    [Google Scholar]
  11. 11.
    Purcell EM. 1946.. Spontaneous emission probabilities at radio frequencies. . Phys. Rev. 69:(11/12):67481
    [Google Scholar]
  12. 12.
    Ritchie RH. 1957.. Plasma losses by fast electrons in thin films. . Phys. Rev. 106:(5):87481
    [Crossref] [Google Scholar]
  13. 13.
    Bohm D, Pines D. 1953.. A collective description of electron interactions. III. Coulomb interactions in a degenerate electron gas. . Phys. Rev. 92:(3):60925
    [Crossref] [Google Scholar]
  14. 14.
    Vahala KJ. 2003.. Optical microcavities. . Nature 424:(6950):83946
    [Crossref] [Google Scholar]
  15. 15.
    Wang P, Wang Y, Yang Z, Guo X, Lin X, et al. 2015.. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod. . Nano Lett. 15:(11):758186
    [Crossref] [Google Scholar]
  16. 16.
    Wu Y, Hu Z, Kong XT, Idrobo JC, Nixon AG, et al. 2020.. Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires. . Phys. Rev. B 101:(8):085409
    [Crossref] [Google Scholar]
  17. 17.
    Barclay PE, Santori C, Fu KM, Beausoleil RG, Painter O. 2009.. Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. . Opt. Express 17:(10):8081197
    [Crossref] [Google Scholar]
  18. 18.
    Rattenbacher D, Shkarin A, Renger J, Utikal T, Götzinger S, Sandoghdar V. 2019.. Coherent coupling of single molecules to on-chip ring resonators. . New J. Phys. 21:(6):062002
    [Crossref] [Google Scholar]
  19. 19.
    Diddams SA, Vahala K, Udem T. 2020.. Optical frequency combs: coherently uniting the electromagnetic spectrum. . Science 369:(6501):eaay3676
    [Crossref] [Google Scholar]
  20. 20.
    Nitzan A. 2006.. Chemical Dynamics in Condensed Phases. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  21. 21.
    Cortes CL, Otten M, Gray SK. 2020.. Non-Hermitian approach for quantum plasmonics. . J. Chem. Phys. 152:(8):084105
    [Crossref] [Google Scholar]
  22. 22.
    Novotny L, Hecht B. 2012.. Principles of Nano-Optics. Cambridge, UK:: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  23. 23.
    Anger P, Bharadwaj P, Novotny L. 2006.. Enhancement and quenching of single-molecule fluorescence. . Phys. Rev. Lett. 96:(11):113002
    [Crossref] [Google Scholar]
  24. 24.
    Munechika K, Chen Y, Tillack AF, Kulkarni AP, Jen-La Plante I, et al. 2011.. Quantum dot/plasmonic nanoparticle metachromophores with quantum yields that vary with excitation wavelength. . Nano Lett. 11:(7):272530
    [Crossref] [Google Scholar]
  25. 25.
    ElKabbash M, Miele E, Fumani AK, Wolf MS, Bozzola A, et al. 2019.. Cooperative energy transfer controls the spontaneous emission rate beyond field enhancement limits. . Phys. Rev. Lett. 122:(20):203901
    [Crossref] [Google Scholar]
  26. 26.
    Shahbazyan TV. 2016.. Local density of states for nanoplasmonics. . Phys. Rev. Lett. 117:(20):207401
    [Crossref] [Google Scholar]
  27. 27.
    Shahbazyan TV. 2018.. Spontaneous decay of a quantum emitter near a plasmonic nanostructure. . Phys. Rev. B 98:(11):115401
    [Crossref] [Google Scholar]
  28. 28.
    Bigelow NW, Vaschillo A, Camden JP, Masiello DJ. 2013.. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers. . ACS Nano 7:(5):451119
    [Crossref] [Google Scholar]
  29. 29.
    Thakkar N, Rea MT, Smith KC, Heylman KD, Quillin SC, et al. 2017.. Sculpting Fano resonances to control photonic–plasmonic hybridization. . Nano Lett. 17:(11):692734
    [Crossref] [Google Scholar]
  30. 30.
    Smith KC, Olafsson A, Hu X, Quillin SC, Idrobo JC, et al. 2019.. Direct observation of infrared plasmonic Fano antiresonances by a nanoscale electron probe. . Phys. Rev. Lett. 123:(17):177401
    [Crossref] [Google Scholar]
  31. 31.
    Pan F, Smith KC, Nguyen HL, Knapper KA, Masiello DJ, Goldsmith RH. 2019.. Elucidating energy pathways through simultaneous measurement of absorption and transmission in a coupled plasmonic-photonic cavity. . Nano Lett. 20:(1):5058
    [Crossref] [Google Scholar]
  32. 32.
    Luk'Yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, et al. 2010.. The Fano resonance in plasmonic nanostructures and metamaterials. . Nat. Mater. 9:(9):70715
    [Crossref] [Google Scholar]
  33. 33.
    Sheikholeslami SN, García-Etxarri A, Dionne JA. 2011.. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. . Nano Lett. 11:(9):392734
    [Crossref] [Google Scholar]
  34. 34.
    Collins SM, Nicoletti O, Rossouw D, Ostasevicius T, Midgley PA. 2014.. Excitation dependent Fano-like interference effects in plasmonic silver nanorods. . Phys. Rev. B 90:(15):155419
    [Crossref] [Google Scholar]
  35. 35.
    Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, et al. 2009.. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. . J. Am. Chem. Soc. 131:(2):84954
    [Crossref] [Google Scholar]
  36. 36.
    Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, et al. 2008.. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. . J. Am. Chem. Soc. 130:(38):1261617
    [Crossref] [Google Scholar]
  37. 37.
    Jeanmaire DL, Van Duyne RP. 1977.. Surface Raman spectroelectrochemistry. Part I: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. . J. Electroanal. Chem. 84:(1):120
    [Crossref] [Google Scholar]
  38. 38.
    Nie S, Emory SR. 1997.. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. . Science 275:(5303):11026
    [Crossref] [Google Scholar]
  39. 39.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. 1997.. Single molecule detection using surface-enhanced Raman scattering (SERS). . Phys. Rev. Lett. 78:(9):166770
    [Crossref] [Google Scholar]
  40. 40.
    Leung PT, Liu SY, Young K. 1994.. Completeness and orthogonality of quasinormal modes in leaky optical cavities. . Phys. Rev. A 49:(4):305767
    [Crossref] [Google Scholar]
  41. 41.
    Gérard JM. 2003.. Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. . In Single Quantum Dots: Fundamentals, Applications and New Concepts, ed. P Michler , pp. 269314. Berlin:: Springer
    [Google Scholar]
  42. 42.
    Sauvan C, Hugonin JP, Maksymov IS, Lalanne P. 2013.. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. . Phys. Rev. Lett. 110:(23):237401
    [Crossref] [Google Scholar]
  43. 43.
    Kristensen PT, Hughes S. 2014.. Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators. . ACS Photon. 1:(1):210
    [Crossref] [Google Scholar]
  44. 44.
    Ren J, Franke S, Hughes S. 2021.. Quasinormal modes, local density of states, and classical Purcell factors for coupled loss-gain resonators. . Phys. Rev. X 11:(4):041020
    [Google Scholar]
  45. 45.
    Sauvan C, Wu T, Zarouf R, Muljarov EA, Lalanne P. 2022.. Normalization, orthogonality, and completeness of quasinormal modes of open systems: the case of electromagnetism [Invited]. . Opt. Express 30:(5):684685
    [Crossref] [Google Scholar]
  46. 46.
    Koenderink AF. 2010.. On the use of Purcell factors for plasmon antennas. . Opt. Lett. 35:(24):420810
    [Crossref] [Google Scholar]
  47. 47.
    Jackson JD. 1999.. Classical Electrodynamics. Hoboken, NJ:: Wiley. , 3rd ed..
    [Google Scholar]
  48. 48.
    Lassettre E, Krasnow M, Silverman S. 1964.. Inelastic scattering of electrons by helium. . J. Chem. Phys. 40:(5):124248
    [Crossref] [Google Scholar]
  49. 49.
    Fano U. 1961.. Effects of configuration interaction on intensities and phase shifts. . Phys. Rev. 124:(6):186678
    [Crossref] [Google Scholar]
  50. 50.
    Pan F, Karlsson K, Nixon AG, Hogan LT, Ward JM, et al. 2022.. Active control of plasmonic–photonic interactions in a microbubble cavity. . J. Phys. Chem. C 126:(48):2047079
    [Crossref] [Google Scholar]
  51. 51.
    Heylman KD, Thakkar N, Horak EH, Quillin SC, Cherqui C, et al. 2016.. Optical microresonators as single-particle absorption spectrometers. . Nat. Photon. 10:(12):78895
    [Crossref] [Google Scholar]
  52. 52.
    Doeleman HM, Verhagen E, Koenderink AF. 2016.. Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. . ACS Photon. 3:(10):194351
    [Crossref] [Google Scholar]
  53. 53.
    Frimmer M, Coenen T, Koenderink AF. 2012.. Signature of a Fano resonance in a plasmonic metamolecule's local density of optical states. . Phys. Rev. Lett. 108:(7):077404
    [Crossref] [Google Scholar]
  54. 54.
    Losquin A, Kociak M. 2015.. Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. . ACS Photon. 2:(11):161927
    [Crossref] [Google Scholar]
  55. 55.
    Moerner WE, Kador L. 1989.. Optical detection and spectroscopy of single molecules in a solid. . Phys. Rev. Lett. 62:(21):253538
    [Crossref] [Google Scholar]
  56. 56.
    Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M. 2010.. Room-temperature detection of a single molecule's absorption by photothermal contrast. . Science 330:(6002):35356
    [Crossref] [Google Scholar]
  57. 57.
    Kukura P, Celebrano M, Renn A, Sandoghdar V. 2010.. Single-molecule sensitivity in optical absorption at room temperature. . J. Phys. Chem. Lett. 1:(23):332327
    [Crossref] [Google Scholar]
  58. 58.
    Cognet L, Berciaud S, Lasne D, Lounis B. 2008.. Photothermal methods for single nonluminescent nano-objects. . Anal. Chem. 80:(7):228894
    [Crossref] [Google Scholar]
  59. 59.
    Yorulmaz M, Nizzero S, Hoggard A, Wang LY, Cai YY, et al. 2015.. Single-particle absorption spectroscopy by photothermal contrast. . Nano Lett. 15:(5):304147
    [Crossref] [Google Scholar]
  60. 60.
    Yorulmaz M, Hoggard A, Zhao H, Wen F, Chang WS, et al. 2016.. Absorption spectroscopy of an individual Fano cluster. . Nano Lett. 16:(10):6497503
    [Crossref] [Google Scholar]
  61. 61.
    Joplin A, Chang WS, Link S. 2018.. Imaging and spectroscopy of single metal nanostructure absorption. . Langmuir 34:(13):377586
    [Crossref] [Google Scholar]
  62. 62.
    West CA, Lee SA, Shooter J, Searles EK, Goldwyn HJ, et al. 2023.. Nonlinear effects in single-particle photothermal imaging. . J. Chem. Phys. 158:(2):024202
    [Crossref] [Google Scholar]
  63. 63.
    Heylman KD, Knapper KA, Goldsmith RH. 2014.. Photothermal microscopy of nonluminescent single particles enabled by optical microresonators. . J. Phys. Chem. Lett. 5:(11):191723
    [Crossref] [Google Scholar]
  64. 64.
    Knapper KA, Heylman KD, Horak EH, Goldsmith RH. 2016.. Chip-scale fabrication of high-Q all-glass toroidal microresonators for single-particle label-free imaging. . Adv. Mater. 28:(15):294550
    [Crossref] [Google Scholar]
  65. 65.
    Knapper KA, Pan F, Rea MT, Horak EH, Rogers JD, Goldsmith RH. 2018.. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. . Opt. Express 26:(19):2502030
    [Crossref] [Google Scholar]
  66. 66.
    Hogan LT, Horak EH, Ward JM, Knapper KA, Nic Chormaic S, Goldsmith RH. 2019.. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer. . ACS Nano 13:(11):1274357
    [Crossref] [Google Scholar]
  67. 67.
    Horak EH, Rea MT, Heylman KD, Gelbwaser-Klimovsky D, Saikin SK, et al. 2018.. Exploring electronic structure and order in polymers via single-particle microresonator spectroscopy. . Nano Lett. 18:(3):16007
    [Crossref] [Google Scholar]
  68. 68.
    Rea MT, Pan F, Horak EH, Knapper KA, Nguyen HL, et al. 2019.. Investigating the mechanism of post-treatment on PEDOT/PSS via single-particle absorption spectroscopy. . J. Phys. Chem. C 123:(51):3078190
    [Crossref] [Google Scholar]
  69. 69.
    Huang Q, Cunningham BT. 2019.. Microcavity-mediated spectrally tunable amplification of absorption in plasmonic nanoantennas. . Nano Lett. 19:(8):5297303
    [Crossref] [Google Scholar]
  70. 70.
    Ruesink F, Doeleman HM, Hendrikx R, Koenderink AF, Verhagen E. 2015.. Perturbing open cavities: anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system. . Phys. Rev. Lett. 115:(20):203904
    [Crossref] [Google Scholar]
  71. 71.
    Liu JN, Huang Q, Liu KK, Singamaneni S, Cunningham BT. 2017.. Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling. . Nano Lett. 17:(12):756977
    [Crossref] [Google Scholar]
  72. 72.
    Ruesink F, Doeleman HM, Verhagen E, Koenderink AF. 2018.. Controlling nanoantenna polarizability through backaction via a single cavity mode. . Phys. Rev. Lett. 120:(20):206101
    [Crossref] [Google Scholar]
  73. 73.
    Cognée KG, Doeleman HM, Lalanne P, Koenderink A. 2019.. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. . Light Sci. Appl. 8:(1):115
    [Crossref] [Google Scholar]
  74. 74.
    Doeleman HM, Dieleman CD, Mennes C, Ehrler B, Koenderink AF. 2020.. Observation of cooperative Purcell enhancements in antenna–cavity hybrids. . ACS Nano 14:(9):1202736
    [Crossref] [Google Scholar]
  75. 75.
    Auad Y, Hamon C, Tencé M, Lourenço-Martins H, Mkhitaryan V, et al. 2021.. Unveiling the coupling of single metallic nanoparticles to whispering-gallery microcavities. . Nano Lett. 22:(1):31927
    [Crossref] [Google Scholar]
  76. 76.
    Liu C, Wu Y, Hu Z, Busche JA, Beutler EK, et al. 2019.. Continuous wave resonant photon stimulated electron energy-gain and electron energy-loss spectroscopy of individual plasmonic nanoparticles. . ACS Photon. 6:(10):2499508
    [Crossref] [Google Scholar]
  77. 77.
    Pelton M. 2015.. Modified spontaneous emission in nanophotonic structures. . Nat. Photon. 9:(7):42735
    [Crossref] [Google Scholar]
  78. 78.
    Fleischmann M, Hendra PJ, McQuillan AJ. 1974.. Raman spectra of pyridine adsorbed at a silver electrode. . Chem. Phys. Lett. 26:(2):16366
    [Crossref] [Google Scholar]
  79. 79.
    Albrecht MG, Creighton JA. 1977.. Anomalously intense Raman spectra of pyridine at a silver electrode. . J. Am. Chem. Soc. 99:(15):521517
    [Crossref] [Google Scholar]
  80. 80.
    Moskovits M. 1978.. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. . J. Chem. Phys. 69:(9):415961
    [Crossref] [Google Scholar]
  81. 81.
    Le Ru E, Etchegoin P. 2008.. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Amsterdam:: Elsevier
    [Google Scholar]
  82. 82.
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, et al. 2019.. Present and future of surface-enhanced Raman scattering. . ACS Nano 14:(1):28117
    [Crossref] [Google Scholar]
  83. 83.
    Roelli P, Galland C, Piro N, Kippenberg TJ. 2016.. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. . Nat. Nanotechnol. 11:(2):16469
    [Crossref] [Google Scholar]
  84. 84.
    Schmidt MK, Esteban R, Benz F, Baumberg JJ, Aizpurua J. 2017.. Linking classical and molecular optomechanics descriptions of SERS. . Faraday Discuss. 205::3165
    [Crossref] [Google Scholar]
  85. 85.
    Gersten J, Nitzan A. 1980.. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. . J. Chem. Phys. 73:(7):302337
    [Crossref] [Google Scholar]
  86. 86.
    Zhao, Jensen L, Schatz GC. 2006.. Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. . J. Am. Chem. Soc. 128:(9):291119
    [Crossref] [Google Scholar]
  87. 87.
    Jensen L, Aikens CM, Schatz GC. 2008.. Electronic structure methods for studying surface-enhanced Raman scattering. . Chem. Soc. Rev. 37:(5):106173
    [Crossref] [Google Scholar]
  88. 88.
    Masiello DJ, Schatz GC. 2008.. Many-body theory of surface-enhanced Raman scattering. . Phys. Rev. A 78:(4):042505
    [Crossref] [Google Scholar]
  89. 89.
    Schmidt MK, Esteban R, González-Tudela A, Giedke G, Aizpurua J. 2016.. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. . ACS Nano 10:(6):629198
    [Crossref] [Google Scholar]
  90. 90.
    Aspelmeyer M, Kippenberg TJ, Marquardt F. 2014.. Cavity optomechanics. . Rev. Mod. Phys. 86:(4):1391452
    [Crossref] [Google Scholar]
  91. 91.
    Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, et al. 2016.. Single-molecule optomechanics in “picocavities. .” Science 354:(6313):72629
    [Crossref] [Google Scholar]
  92. 92.
    Zhang Y, Aizpurua J, Esteban R. 2020.. Optomechanical collective effects in surface-enhanced Raman scattering from many molecules. . ACS Photon. 7:(7):167688
    [Crossref] [Google Scholar]
  93. 93.
    Xu Y, Hu H, Chen W, Suo P, Zhang Y, et al. 2022.. Phononic cavity optomechanics of atomically thin crystal in plasmonic nanocavity. . ACS Nano 16:(8):1271119
    [Crossref] [Google Scholar]
  94. 94.
    Mueller NS, Arul R, Jakob LA, Blunt MO, Földes T, et al. 2022.. Collective mid-infrared vibrations in surface-enhanced Raman scattering. . Nano Lett. 22:(17):725460
    [Crossref] [Google Scholar]
  95. 95.
    Quillin SC, Cherqui C, Montoni NP, Li G, Camden JP, Masiello DJ. 2016.. Imaging plasmon hybridization in metal nanoparticle aggregates with electron energy-loss spectroscopy. . J. Phys. Chem. C 120:(37):2085259
    [Crossref] [Google Scholar]
  96. 96.
    Cherqui C, Bigelow NW, Vaschillo A, Goldwyn H, Masiello DJ. 2014.. Combined tight-binding and numerical electrodynamics understanding of the STEM/EELS magneto-optical responses of aromatic plasmon-supporting metal oligomers. . ACS Photon. 1:(10):101324
    [Crossref] [Google Scholar]
  97. 97.
    Cherqui C, Thakkar N, Li G, Camden JP, Masiello DJ. 2016.. Characterizing localized surface plasmons using electron energy-loss spectroscopy. . Annu. Rev. Phys. Chem. 67::33157
    [Crossref] [Google Scholar]
  98. 98.
    Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. 1997.. Photons and Atoms: Introduction to Quantum Electrodynamics. Hoboken, NJ:: Wiley
    [Google Scholar]
  99. 99.
    Smith KC, Chen Y, Majumdar A, Masiello DJ. 2020.. Active tuning of hybridized modes in a heterogeneous photonic molecule. . Phys. Rev. Appl. 13:(4):044041
    [Crossref] [Google Scholar]
  100. 100.
    Anyanwu CP, Pakeltis G, Rack PD, Masiello DJ. 2023.. Nanoscale characterization of individual three-dimensional split ring resonator systems. . ACS Appl. Opt. Mater. 1:(2):60714
    [Crossref] [Google Scholar]
  101. 101.
    Jaynes ET, Cummings FW. 1963.. Comparison of quantum and semiclassical radiation theories with application to the beam maser. . Proc. IEEE 51:(1):89109
    [Crossref] [Google Scholar]
  102. 102.
    Smith KC, Bhattacharya A, Masiello DJ. 2021.. Exact k-body representation of the Jaynes-Cummings interaction in the dressed basis: insight into many-body phenomena with light. . Phys. Rev. A 104:(1):013707
    [Crossref] [Google Scholar]
  103. 103.
    Barnes B, García Vidal F, Aizpurua J. 2018.. Special issue on “strong coupling of molecules to cavities. .” ACS Photon. 5:(1):1
    [Crossref] [Google Scholar]
  104. 104.
    Hensen M, Heilpern T, Gray SK, Pfeiffer W. 2018.. Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity. . ACS Photon. 5:(1):24048
    [Crossref] [Google Scholar]
  105. 105.
    Garcia-Vidal FJ, Ciuti C, Ebbesen TW. 2021.. Manipulating matter by strong coupling to vacuum fields. . Science 373:(6551):eabd0336
    [Crossref] [Google Scholar]
  106. 106.
    Wersäll M, Cuadra J, Antosiewicz TJ, Balci S, Shegai T. 2017.. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. . Nano Lett. 17:(1):55158
    [Crossref] [Google Scholar]
  107. 107.
    Leng H, Szychowski B, Daniel MC, Pelton M. 2018.. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. . Nat. Commun. 9:(1):4012
    [Crossref] [Google Scholar]
  108. 108.
    Park KD, May MA, Leng H, Wang J, Kropp JA, et al. 2019.. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. . Sci. Adv. 5:(7):eaav5931
    [Crossref] [Google Scholar]
  109. 109.
    Groß H, Hamm JM, Tufarelli T, Hess O, Hecht B. 2018.. Near-field strong coupling of single quantum dots. . Sci. Adv. 4:(3):eaar4906
    [Crossref] [Google Scholar]
  110. 110.
    Dolado I, Maciel-Escudero C, Nikulina E, Modin E, Calavalle F, et al. 2022.. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. . Nat. Commun. 13:(1):6850
    [Crossref] [Google Scholar]
  111. 111.
    Konečná A, Neuman T, Aizpurua J, Hillenbrand R. 2018.. Surface-enhanced molecular electron energy loss spectroscopy. . ACS Nano 12:(5):477586
    [Crossref] [Google Scholar]
  112. 112.
    Yankovich AB, Munkhbat B, Baranov DG, Cuadra J, Olsén E, et al. 2019.. Visualizing spatial variations of plasmon-exciton polaritons at the nanoscale using electron microscopy. . Nano Lett. 19:(11):817181
    [Crossref] [Google Scholar]
  113. 113.
    Bourgeois MR, Beutler EK, Khorasani S, Panek N, Masiello DJ. 2022.. Nanometer-scale spatial and spectral mapping of exciton polaritons in structured plasmonic cavities. . Phys. Rev. Lett. 128:(19):197401
    [Crossref] [Google Scholar]
  114. 114.
    Wang K, Dahan R, Shentcis M, Kauffmann Y, Ben Hayun A, et al. 2020.. Coherent interaction between free electrons and a photonic cavity. . Nature 582:(7810):5054
    [Crossref] [Google Scholar]
  115. 115.
    Karnieli A, Tsesses S, Yu R, Rivera N, Zhao Z, et al. 2023.. Quantum sensing of strongly coupled light-matter systems using free electrons. . Sci. Adv. 9:(1):eadd2349
    [Crossref] [Google Scholar]
  116. 116.
    Nelayah J, Kociak M, Stéphan O, García de Abajo FJ, Tencé M, et al. 2007.. Mapping surface plasmons on a single metallic nanoparticle. . Nat. Phys. 3:(5):34853
    [Crossref] [Google Scholar]
  117. 117.
    Polman A, Kociak M, García de Abajo FJ. 2019.. Electron-beam spectroscopy for nanophotonics. . Nat. Mater. 18:(11):115871
    [Crossref] [Google Scholar]
  118. 118.
    Hachtel JA, Huang J, Popovs I, Jansone-Popova S, Keum JK, et al. 2019.. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. . Science 363:(6426):52528
    [Crossref] [Google Scholar]
  119. 119.
    García de Abajo FJ, Di Giulio V. 2021.. Optical excitations with electron beams: challenges and opportunities. . ACS Photon. 8:(4):94574
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-083122-125525
Loading
/content/journals/10.1146/annurev-physchem-083122-125525
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error