1932

Abstract

Due to the subtle interplay of site-to-site electronic couplings, exciton delocalization, nonadiabatic effects, and vibronic couplings, quantum dynamical studies are needed to elucidate the details of ultrafast photoinduced energy and charge transfer events in organic multichromophoric systems. In this vein, we review an approach that combines first-principles parameterized lattice Hamiltonians with accurate quantum dynamical simulations using advanced multiconfigurational methods. Focusing on the elementary transfer steps in organic functional materials, we address coherent exciton migration and creation of charge transfer excitons in homopolymers, notably representative of the poly(3-hexylthiophene) material, as well as exciton dissociation at polymer:fullerene heterojunctions. We emphasize the role of coherent transfer, trapping effects due to high-frequency phonon modes, and thermal activation due to low-frequency soft modes that drive a diffusive dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-040306
2021-04-20
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-040306.html?itemId=/content/journals/10.1146/annurev-physchem-090419-040306&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Davydov AS. 1971. Theory of Molecular Excitons New York: Plenum
    [Google Scholar]
  2. 2. 
    Frenkel J. 1931. On the transformation of light into heat in solids. I. Phys. Rev. 37:17–44
    [Google Scholar]
  3. 3. 
    May V, Kühn O. 2011. Charge and Energy Transfer Dynamics in Molecular Systems New York: Wiley. , 3rd ed..
    [Google Scholar]
  4. 4. 
    Scholes GD, Rumbles G. 2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96
    [Google Scholar]
  5. 5. 
    Bardeen CJ. 2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48
    [Google Scholar]
  6. 6. 
    Brixner T, Hildner R, Köhler J, Lambert C, Würthner F 2017. Exciton transport in molecular aggregates—from natural antennas to synthetic chromophore systems. Adv. Energy Mater. 7:1700236
    [Google Scholar]
  7. 7. 
    Jang SJ, Mennucci B. 2018. Delocalized excitons in light-harvesting complexes. Rev. Mod. Phys. 90:035003
    [Google Scholar]
  8. 8. 
    Barford W. 2013. Electronic and Optical Properties of Conjugated Polymers Oxford, UK: Clarendon. , 2nd ed..
    [Google Scholar]
  9. 9. 
    Köhler A, Bässler H. 2015. Electronic Processes in Organic Semiconductors Weinheim, Ger: Wiley
    [Google Scholar]
  10. 10. 
    Brédas J, Sargent EH, Scholes GD. 2017. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16:35–44
    [Google Scholar]
  11. 11. 
    Ginsberg NS, Cheng Y, Fleming GR. 2009. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42:1352–63
    [Google Scholar]
  12. 12. 
    Jonas DM. 2018. Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer. Annu. Rev. Phys. Chem. 69:327–52
    [Google Scholar]
  13. 13. 
    Lee H, Cheng YC, Fleming GR. 2007. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316:1462–65
    [Google Scholar]
  14. 14. 
    Engel GS, Calhoun TR, Read EL, Ahn T, Mančal T et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86
    [Google Scholar]
  15. 15. 
    Collini E, Scholes GD. 2009. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369–73
    [Google Scholar]
  16. 16. 
    De Sio A, Troiani FF, Maiuri M, Réhault J, Sommer E et al. 2016. Tracking the coherent generation of polaron pairs in conjugated polymers. Nat. Commun. 7:13742
    [Google Scholar]
  17. 17. 
    Song Y, Hellmann C, Stingelin N, Scholes GD. 2015. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. J. Chem. Phys. 142:212410
    [Google Scholar]
  18. 18. 
    Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M et al. 2014. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344:1001–5
    [Google Scholar]
  19. 19. 
    Song Y, Clafton S, Pensack R, Kee T, Scholes GD 2014. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun. 5:4833
    [Google Scholar]
  20. 20. 
    Brédas J, Silbey R. 2009. Excitons surf along conjugated polymer chains. Science 323:348–4920. Comments on the report in Reference 15 on coherent intrachain exciton migration in polymers.
    [Google Scholar]
  21. 21. 
    Scholes GD, Fleming GR, Chen LX, Aspuru-Guzik A, Buchleitner A et al. 2017. Using coherence to enhance function in chemical and biophysical systems. Nature 543:647–56
    [Google Scholar]
  22. 22. 
    Thyrhaug E, Tempelaar R, Alcocer M, Zidek K, Bina D et al. 2018. Identification and characterization of diverse coherences in the Fenna-Matthews-Olson complex. Nat. Chem. 10:780–86
    [Google Scholar]
  23. 23. 
    Brumer P. 2018. Shedding (incoherent) light on quantum effects in light-induced biological processes. J. Phys. Chem. Lett. 9:2946–55
    [Google Scholar]
  24. 24. 
    Jang S, Newton MD, Silbey RJ. 2004. Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92:218301
    [Google Scholar]
  25. 25. 
    Bondarenko AS, Knoester J, Jansen T. 2020. Comparison of methods to study excitation energy transfer in molecular multichromophoric systems. Chem. Phys. 529:110478
    [Google Scholar]
  26. 26. 
    Moix JM, Khasin M, Cao J. 2013. Coherent quantum transport in disordered systems. I. The influence of dephasing on the transport properties and absorption spectra of one-dimensional systems. New J. Phys. 15:085010
    [Google Scholar]
  27. 27. 
    Novoderezhkin VI, van Grondelle R. 2017. Modeling of excitation dynamics in photosynthetic light-harvesting complexes: exact versus perturbative approaches. J. Phys. B 50:124003
    [Google Scholar]
  28. 28. 
    Kelly A, Montoya-Castillo A, Wang L, Markland TE 2016. Generalized quantum master equations in and out of equilibrium: When can one win?. J. Chem. Phys. 144:184105
    [Google Scholar]
  29. 29. 
    Kurt A, Rossi M, Piilo J. 2020. Efficient quantum transport in a multi-site system combining classical noise and quantum baths. New J. Phys. 22:013028
    [Google Scholar]
  30. 30. 
    Lee M, Huo P, Coker DF. 2016. Semiclassical path integral dynamics: photosynthetic energy transfer with realistic environment interactions. Annu. Rev. Phys. Chem. 67:639–68
    [Google Scholar]
  31. 31. 
    Cotton SJ, Miller WH. 2016. The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes. J. Chem. Theory Comput. 12:983–91
    [Google Scholar]
  32. 32. 
    Chen L, Borelli R, Zhao Y. 2017. Dynamics of coupled electron–boson systems with the multiple Davydov D1Ansatz and the generalized coherent state. J. Phys. Chem. A 121:8757–70
    [Google Scholar]
  33. 33. 
    Nalbach P, Mujica-Martinez CA, Thorwart M. 2015. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex. Phys. Rev. E 91:022706
    [Google Scholar]
  34. 34. 
    Tanimura Y. 2006. Stochastic Liouville, Langevin, Fokker-Planck, and Master Equation approaches to quantum dissipative dynamics. J. Phys. Soc. Jpn. 75:082001
    [Google Scholar]
  35. 35. 
    Chen L, Zhao Y, Tanimura Y. 2015. Dynamics of a one-dimensional Holstein polaron with the hierarchical equations of motion approach. J. Phys. Chem. Lett. 6:3110–15
    [Google Scholar]
  36. 36. 
    Kato A, Ishizaki A. 2018. Non-Markovian quantum-classical ratchet for ultrafast long-range electron–hole separation in condensed phases. Phys. Rev. Lett. 121:026001
    [Google Scholar]
  37. 37. 
    Yao Y, Xie X, Ma H. 2011. Ultrafast long-range charge separation in organic photovoltaics: promotion by off-diagonal vibronic couplings and entropy increase. Phys. Rev. E 84:030102(R)
    [Google Scholar]
  38. 38. 
    Beck MH, Jäckle A, Worth GA, Meyer HD. 2000. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324:1–10538. Reviews the MCTDH method.
    [Google Scholar]
  39. 39. 
    Wang H. 2015. Multilayer multiconfiguration time-dependent Hartree theory. J. Phys. Chem. A 119:7951–6539. Reviews the ML-MCTDH method.
    [Google Scholar]
  40. 40. 
    Schulze J, Shibl MF, Al-Marri MJ, Kühn O. 2016. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex. J. Chem. Phys. 144:185101
    [Google Scholar]
  41. 41. 
    Wang L, Long R, Prezhdo OV. 2015. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66:549–79
    [Google Scholar]
  42. 42. 
    Billing G. 1983. On the use of Ehrenfest's theorem in molecular scattering. Chem. Phys. Lett. 100:535–39
    [Google Scholar]
  43. 43. 
    Hammes-Schiffer S, Tully JC. 1994. Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101:4657–67
    [Google Scholar]
  44. 44. 
    Rozzi CA, Troiani F, Tavernelli I. 2018. Quantum modeling of ultrafast photoinduced charge separation. J. Phys. Condens. Matter 30:013002
    [Google Scholar]
  45. 45. 
    Nelson T, White AJ, Bjorgaard JA, Sifain AE, Zhang Y et al. 2020. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 120:2215–87
    [Google Scholar]
  46. 46. 
    Meyer HD, Manthe U, Cederbaum LS. 1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165:73–78
    [Google Scholar]
  47. 47. 
    Wang H, Thoss M. 2003. Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119:1289–99
    [Google Scholar]
  48. 48. 
    Polkehn M, Eisenbrandt P, Tamura H, Burghardt I. 2018. Quantum dynamical studies of ultrafast charge separation in nanostructured organic polymer materials: effects of vibronic interactions and molecular packing. Int. J. Quant. Chem. 118:e25502
    [Google Scholar]
  49. 49. 
    Hou J, Inganäs O, Friend RH, Gao F. 2018. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12:131–42
    [Google Scholar]
  50. 50. 
    Zhang G, Zhao J, Chow P, Jiang K, Zhang J et al. 2018. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 118:3447–507
    [Google Scholar]
  51. 51. 
    Holstein T. 1959. Studies of polaron motion. Part I. The molecular crystal model. Ann. Phys. 8:325–42
    [Google Scholar]
  52. 52. 
    Merrifield RE. 1961. Ionized states in a one-dimensional molecular crystal. J. Chem. Phys. 34:1835–3952. Introduces a generalized eh basis in the context of molecular crystals.
    [Google Scholar]
  53. 53. 
    Hoffmann M, Schmidt K, Fritz T, Hasche T, Agranovich VM, Leo K 2000. The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals. Chem. Phys 258:73–96
    [Google Scholar]
  54. 54. 
    Smith MB, Michl J. 2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86
    [Google Scholar]
  55. 55. 
    Tamura H, Huix-Rotllant M, Burghardt I, Olivier Y, Beljonne D. 2015. First-principles quantum dynamics of singlet fission: coherent versus thermally activated mechanisms governed by molecular π-stacking. Phys. Rev. Lett. 115:107401
    [Google Scholar]
  56. 56. 
    Köppel H, Domcke W, Cederbaum LS 1984. Multimode molecular dynamics beyond the Born–Oppenheimer approximation. Advances in Chemical Physics I Prigogine, SA Rice , Vol. 5759–246 New York: Wiley
    [Google Scholar]
  57. 57. 
    Spano FC, Silva C. 2014. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 65:477–50057. Reviews the H- and -aggregate character of polymer assemblies.
    [Google Scholar]
  58. 58. 
    Hestand NJ, Spano FC. 2017. Molecular aggregate photophysics beyond the Kasha model: novel design principles for organic materials. Acc. Chem. Res. 50:341–50
    [Google Scholar]
  59. 59. 
    Popp W, Polkehn M, Burghardt I. 2019. Coherent charge transfer exciton formation in regioregular P3HT: a quantum dynamical study. J. Phys. Chem. Lett. 10:3326–32
    [Google Scholar]
  60. 60. 
    Hsu CP. 2009. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42:509–18
    [Google Scholar]
  61. 61. 
    Li SL, Truhlar DG, Schmidt MW, Gordon MS. 2015. Model space diabatization for quantum photochemistry. J. Chem. Phys. 142:064106
    [Google Scholar]
  62. 62. 
    Blancafort L, Voityuk AA. 2014. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study. J. Chem. Phys. 140:095102
    [Google Scholar]
  63. 63. 
    Grofe A, Qu Z, Truhlar DG, Li H, Gao J. 2017. Diabatic-at-construction method for diabatic and adiabatic ground and excited states based on multistate density functional theory. J. Chem. Theor. Comput. 13:1176–87
    [Google Scholar]
  64. 64. 
    Tamura H, Burghardt I. 2013. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation. J. Am. Chem. Soc. 135:16364–67
    [Google Scholar]
  65. 65. 
    Tretiak S, Mukamel S. 2002. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102:3171–21265. Analyzes the excitonic states of aggregates and polymers in an eh representation.
    [Google Scholar]
  66. 66. 
    Plasser F, Lischka H. 2012. Analysis of excitonic and charge transfer interactions from quantum chemical calculations. J. Chem. Theory Comput. 8:2777–89
    [Google Scholar]
  67. 67. 
    Plasser F. 2020. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 152:084108
    [Google Scholar]
  68. 68. 
    Binder R, Lauvergnat D, Burghardt I. 2018. Conformational dynamics guides coherent exciton migration in conjugated polymer materials: first-principles quantum dynamical study. Phys. Rev. Lett. 120:227401
    [Google Scholar]
  69. 69. 
    Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A. 2009. Environment-assisted quantum transport. New J. Phys. 11:033003
    [Google Scholar]
  70. 70. 
    Plenio MB, Huelga SF. 2008. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10:113019
    [Google Scholar]
  71. 71. 
    Hughes KH, Christ CD, Burghardt I. 2009. Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics. J. Chem. Phys. 131:124108
    [Google Scholar]
  72. 72. 
    Popp W, Polkehn M, Hughes KH, Martinazzo R, Burghardt I. 2019. Vibronic coupling models for donor–acceptor aggregates using an effective-mode scheme: application to mixed Frenkel and charge-transfer excitons in oligothiophene aggregates. J. Chem. Phys. 150:244114
    [Google Scholar]
  73. 73. 
    Polkehn M, Tamura H, Burghardt I. 2018. Impact of charge transfer excitons in regioregular polythiophene on the charge separation at polythiophene–fullerene heterojunctions. J. Phys. B 51:014003
    [Google Scholar]
  74. 74. 
    Weiss U. 2008. Quantum Dissipative Systems Singapore: World Sci. , 3rd ed..
    [Google Scholar]
  75. 75. 
    Binder R, Römer S, Wahl J, Burghardt I. 2014. An analytic mapping of oligomer potential energy surfaces to an effective Frenkel model. J. Chem. Phys. 141:014101
    [Google Scholar]
  76. 76. 
    Binder R, Bonfanti M, Lauvergnat D, Burghardt I. 2020. First-principles description of intra-chain exciton migration in an oligo(para-phenylene vinylene) chain. I. Generalized Frenkel-Holstein Hamiltonian. J. Chem. Phys. 152:204119
    [Google Scholar]
  77. 77. 
    Cederbaum LS, Gindensperger E, Burghardt I. 2005. Short-time dynamics through conical intersections in macrosystems. Phys. Rev. Lett. 94:113003
    [Google Scholar]
  78. 78. 
    Tamura H, Ramon JGS, Bittner ER, Burghardt I. 2008. Phonon-driven ultrafast exciton dissociation at donor–acceptor polymer heterojunctions. Phys. Rev. Lett. 100:107402
    [Google Scholar]
  79. 79. 
    Worth GA, Beck MH, Jäckle A, Meyer H-D. 2000. MCTDH, version 8.2; Meyer H-D. 2007. MCTDH, version 8.4, version 8.4.14 (used in this review). Software Package http://mctdh.uni-hd.de
    [Google Scholar]
  80. 80. 
    Worth GA, Meyer H, Köppel H, Cederbaum LS, Burghardt I. 2008. Using the MCTDH wavepacket propagation method to describe multi-mode nonadiabatic dynamics. Int. Rev. Phys. Chem. 27:569–606
    [Google Scholar]
  81. 81. 
    Wootters WK. 1998. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80:2245–48
    [Google Scholar]
  82. 82. 
    Wüster S, Ates C, Eisfeld A, Rost JM. 2010. Newton's cradle and entanglement transport in a flexible Rydberg chain. Phys. Rev. Lett. 105:053004
    [Google Scholar]
  83. 83. 
    Binder R, Burghardt I 2020. First-principles quantum simulations of exciton diffusion on a minimal oligothiophene chain at finite temperature. Faraday Discuss 221:406–27
    [Google Scholar]
  84. 84. 
    Binder R, Burghardt I. 2020. First-principles description of intra-chain exciton migration in an oligo(para-phenylene vinylene) chain. II. ML-MCTDH simulations of exciton dynamics at a torsional defect. J. Chem. Phys. 152:204120
    [Google Scholar]
  85. 85. 
    Di Maiolo F, Brey D, Binder R, Burghardt I. 2020. Quantum dynamical simulations of intra-chain exciton diffusion in an oligo(para-phenylene vinylene) chain at finite temperature. J. Chem. Phys. 153:184107
    [Google Scholar]
  86. 86. 
    Hegger R, Binder R, Burghardt I. 2020. First-principles quantum and quantum-classical simulations of exciton diffusion in semiconducting polymer chains at finite temperature. J. Chem. Theor. Comput. 16:5441–55
    [Google Scholar]
  87. 87. 
    Mikhnenko OV, Blom P, Nguyen T. 2015. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8:1867–88
    [Google Scholar]
  88. 88. 
    Tamai Y, Ohkita H, Benten H, Ito S. 2015. Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency. J. Phys. Chem. Lett. 6:3417–28
    [Google Scholar]
  89. 89. 
    Reid OG, Pensack RD, Song Y, Scholes GD, Rumbles G. 2013. Charge photogeneration in neat conjugated polymers. Chem. Mater. 26:561–7589. Reviews the formation of charge-separated species in neat polymer materials.
    [Google Scholar]
  90. 90. 
    Magnanelli TJ, Bragg AE. 2015. Time-resolved Raman spectroscopy of polaron pair formation in poly(3-hexylthiophene) aggregates. J. Phys. Chem. Lett. 6:438–45
    [Google Scholar]
  91. 91. 
    Huix-Rotllant M, Tamura H, Burghardt I. 2015. Concurrent effects of delocalization and internal conversion tune charge separation at regioregular polythiophene–fullerene heterojunctions. J. Phys. Chem. Lett. 6:1702–8
    [Google Scholar]
  92. 92. 
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. 1992. Photoinduced electron transfer from a conducting polymer to Buckminsterfullerene. Science 258:1474–76
    [Google Scholar]
  93. 93. 
    Brabec CJ, Zerza G, Cerullo G, De Silvestri S, Luzzati S et al. 2001. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 340:232–3693. Presents the first report of subpicosecond, coherent charge separation in polymer:fullerene blends.
    [Google Scholar]
  94. 94. 
    Kahle F, Saller C, Olthof S, Li C, Lebert J et al. 2018. Does electron delocalization influence charge separation at donor–acceptor interfaces in organic photovoltaic cells?. J. Phys. Chem. C 122:21792
    [Google Scholar]
  95. 95. 
    Grancini G, Maiuri M, Fazzil D, Petrozzal A, Egelhaaf H et al. 2013. Hot exciton dissociation in polymer solar cells. Nat. Mater. 12:29–33
    [Google Scholar]
  96. 96. 
    De Sio A, Camargo F, Winte K, Sommer E, Branchi F et al. 2018. Ultrafast relaxation dynamics in a polymer: fullerene blend for organic photovoltaics probed by two-dimensional electronic spectroscopy. Eur. Phys. J. B 91:236
    [Google Scholar]
  97. 97. 
    Bian Q, Ma F, Chen S, Wei Q, Su X et al. 2020. Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes. Nat. Commun. 11:617
    [Google Scholar]
  98. 98. 
    Gélinas S, Rao A, Kumar A, Smith SL, Chin AW et al. 2014. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343:512–1698. Shows evidence for ultrafast, long-range charge separation at a polymer:fullerene interface.
    [Google Scholar]
  99. 99. 
    Causá M, De Jonghe-Risse J, Scarongella M, Brauer JC, Buchaca-Domingo E et al. 2016. The fate of electron–hole pairs in polymer:fullerene blends for organic photovoltaics. Nat. Commun. 7:12556
    [Google Scholar]
  100. 100. 
    Kurpiers J, Ferron T, Roland S, Jakoby M, Thiede T et al. 2018. Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nat. Commun. 9:2038
    [Google Scholar]
  101. 101. 
    Fratini S, Mayou D, Ciuchi S. 2015. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26:2292–315
    [Google Scholar]
  102. 102. 
    Zhu T, Snaider JM, Yuan L, Huang L. 2019. Ultrafast dynamic microscopy of carrier and exciton transport. Annu. Rev. Phys. Chem. 70:219–44
    [Google Scholar]
  103. 103. 
    Ginsberg NS, Tisdale WA. 2020. Spatially resolved photogenerated exciton and charge transport in emerging semiconductors. Annu. Rev. Phys. Chem. 71:1–30
    [Google Scholar]
  104. 104. 
    Richings G, Polyak I, Spinlove K, Worth G, Burghardt I, Lasorne B. 2015. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 34:269–308
    [Google Scholar]
  105. 105. 
    Eisenbrandt P, Ruckenbauer M, Burghardt I. 2018. Gaussian-based multiconfiguration time-dependent Hartree: a two-layer approach. III. Application to nonadiabatic dynamics in a charge transfer complex. J. Chem. Phys. 149:174102
    [Google Scholar]
  106. 106. 
    Bartók AP, De S, Poelking C, Bernstein N, Kermode JR et al. 2017. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 12:e1701816
    [Google Scholar]
  107. 107. 
    Noé F, Tkatchenko A, Müller K, Clementi C. 2020. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71:361–90
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-040306
Loading
/content/journals/10.1146/annurev-physchem-090419-040306
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error