1932

Abstract

α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-121428
2021-04-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-121428.html?itemId=/content/journals/10.1146/annurev-physchem-090419-121428&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dilley KJ, Harding JJ. 1975. Changes in proteins of the human lens in development and aging. Biochem. Biophys. Acta Protein Struct. 386:391–408
    [Google Scholar]
  2. 2. 
    Khago D, Bierma JC, Roskamp KW, Kozlyuk N, Martin RW 2018. Protein refractive index increment is determined by conformation as well as composition. J. Phys. Condens. Matter 30:435101
    [Google Scholar]
  3. 3. 
    Delaye M, Tardieu A. 1983. Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–17
    [Google Scholar]
  4. 4. 
    Kröger RHH, Campbell MCW, Munger R, Fernald RD 1994. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Vis. . Res 34:1815–22
    [Google Scholar]
  5. 5. 
    Dawson CR, Schwab IR. 1981. Epidemiology of cataract—a major cause of preventable blindness. Bull. World Health Organ. 59:493–501
    [Google Scholar]
  6. 6. 
    Berzelius J. 1830. Lärobok i Kemien Stockholm: P.A. Norstedt & Söner
  7. 7. 
    Simon JF. 1846. Animal Chemistry: With Reference to the Physiology and Pathology of Man Philadelphia: Lea & Blanchard
  8. 8. 
    Mörner C. 1894. Untersuchung der Proteïnsubstanzen in den lichtbrechenden Medien des Auges. Ztschr. Physiol. Chem. 18:61–106
    [Google Scholar]
  9. 9. 
    de Jong WW, Caspers GJ, Leunissen JAM 1998. Genealogy of the α-crystallin—small heat-shock protein superfamily. Int. J. Biol. Macromol. 22:151–62
    [Google Scholar]
  10. 10. 
    Slingsby C, Wistow GJ, Clark AR 2013. Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367–80
    [Google Scholar]
  11. 11. 
    Horwitz J. 1992. Alpha-crystallin can function as a molecular chaperone. PNAS 89:10449–53
    [Google Scholar]
  12. 12. 
    Haslbeck M, Vierling E. 2015. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 427:1537–48
    [Google Scholar]
  13. 13. 
    Runkle S, Hill J, Kantorow M, Horwitz J, Posner M 2002. Sequence and spatial expression of zebrafish (Danio rerio) αA-crystallin. Mol. Vis. 8:45–50
    [Google Scholar]
  14. 14. 
    Chepelinsky A, Piatigorsky J, Pisano M, Dubin R, Wistow G et al. 1991. Lens protein gene expression: alpha-crystallins and MIP. Lens Eye Toxic. Res. 8:319–44
    [Google Scholar]
  15. 15. 
    Srinivasan A, Nagineni C, Bhat S 1992. Alpha A-crystallin is expressed in non-ocular tissues. J. Biol. Chem. 267:23337–41
    [Google Scholar]
  16. 16. 
    Hayashi J, Carver JA. 2020. The multifaceted nature of αB-crystallin. Cell Stress Chaperones 25:639–54
    [Google Scholar]
  17. 17. 
    Dahlman JM, Margot KL, Ding L, Horwitz J, Posner M 2005. Zebrafish α-crystallins: protein structure and chaperone-like activity compared to their mammalian orthologs. Mol. Vis. 11:88–96
    [Google Scholar]
  18. 18. 
    Posner M, Hawke M, Lacava C, Prince CJ, Bellanco NR, Corbin RW 2008. A proteome map of the zebrafish (Danio rerio) lens reveals similarities between zebrafish and mammalian crystallin expression. Mol. Vis. 14:806–14
    [Google Scholar]
  19. 19. 
    Greiling T, Aose M, Clark J 2010. Cell fate and differentiation of the developing ocular lens. Investig. Ophthalmol. Vis. Sci. 51:1540–46
    [Google Scholar]
  20. 20. 
    Posner M, Murray KL, McDonald MS, Eighinger H, Andrew B et al. 2017. The zebrafish as a model system for analyzing mammalian and native α-crystallin promoter function. PeerJ 5:e4093
    [Google Scholar]
  21. 21. 
    Mishra S, Wu SY, Fuller AW, Wang Z, Rose KL et al. 2018. Loss of αB-crystallin function in zebrafish reveals critical roles in the development of the lens and stress resistance of the heart. J. Biol. Chem. 293:740–53
    [Google Scholar]
  22. 22. 
    Zou P, Wu SY, Koteiche HA, Mishra S, Levic DS et al. 2015. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Exp. Eye Res. 138:104–13
    [Google Scholar]
  23. 23. 
    Sharma KK, Kaur H, Kester K 1997. Functional elements in molecular chaperone α-crystallin: identification of binding sites in β-crystallin. Biochem. Biophys. Res. Commun. 239:217–22
    [Google Scholar]
  24. 24. 
    Bhattacharyya J, Padmanabha Udupa EG, Wang J, Sharma KK 2006. Mini-αB-crystallin: a functional element of αB-crystallin with chaperone-like activity. Biochemistry 45:3069–76
    [Google Scholar]
  25. 25. 
    Raju M, Santhoshkumar P, Sharma KK 2016. Alpha-crystallin-derived peptides as therapeutic chaperones. Biochim. Biophys. Acta Gen. Subj. 1860:246–51
    [Google Scholar]
  26. 26. 
    Ghosh JG, Shenoy AKJ, Clark JI 2006. N- and C-terminal motifs in human αB crystallin play an important role in the recognition, selection, and solubilization of substrates. Biochemistry 45:13847–54
    [Google Scholar]
  27. 27. 
    McHaourab HS, Godar JA, Stewart PL 2009. Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–37
    [Google Scholar]
  28. 28. 
    Mainz A, Peschek J, Stavropoulou M, Back KC, Bardiaux B et al. 2015. The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat. Struct. Mol. Biol. 22:898–905
    [Google Scholar]
  29. 29. 
    Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR et al. 2010. Crystal structures of truncated αA- and αB-crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–43
    [Google Scholar]
  30. 30. 
    Clark JI, Muchowski PJ. 2000. Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10:52–59
    [Google Scholar]
  31. 31. 
    Delbecq SP, Klevit RE. 2013. One size does not fit all: the oligomeric states of αB crystallin. FEBS Lett 587:1073–80
    [Google Scholar]
  32. 32. 
    LeMaster DM. 1994. Isotope labeling in solution protein assignment and structural analysis. Prog. Nucl. Magn. Reson. Spectrosc. 26:371–419
    [Google Scholar]
  33. 33. 
    Suzuki R, Sakakura M, Mori M, Fujii M, Akashi S, Takahashi H 2018. Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system. J. Biomol. NMR 71:213–23
    [Google Scholar]
  34. 34. 
    Velyvis A, Ruschak AM, Kay LE 2012. An economical method for production of 2H,13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLOS ONE 7:e43725
    [Google Scholar]
  35. 35. 
    Aue WP, Bartholdi E, Ernst RR 1976. Two-dimensional spectroscopy: application to nuclear magnetic resonance. J. Chem. Phys. 64:2229–46
    [Google Scholar]
  36. 36. 
    Wüthrich K, Wider G, Wagner G, Braun W 1982. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution nuclear magnetic resonance. J. Mol. Biol. 155:311–19
    [Google Scholar]
  37. 37. 
    Kumar A, Ernst RR, Wüthrich K 1980. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 95:1–6
    [Google Scholar]
  38. 38. 
    Tjandra N, Bax A. 1997. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–14
    [Google Scholar]
  39. 39. 
    Cornilescu G, Delaglio F, Bax A 1999. Backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13:289–302
    [Google Scholar]
  40. 40. 
    Havel TF, Wüthrich K. 1984. A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular H-H proximities in solution. Bull. Math. Biol. 46:673–78
    [Google Scholar]
  41. 41. 
    Arthanari H, Takeuchi K, Dubey A, Wagner G 2019. Emerging solution NMR methods to illuminate the structural and dynamic properties of proteins. Curr. Opin. Struct. Biol. 58:294–304
    [Google Scholar]
  42. 42. 
    Aquilina JA, Benesch JLP, Bateman OA, Slingsby C, Robinson CV 2003. Polydispersity of a mammalian chaperone: Mass spectrometry reveals the population of oligomers in αB-crystallin. PNAS 100:10611–16
    [Google Scholar]
  43. 43. 
    Rabi I, Zacharias J, Millman S, Kusch P 1938. A new method of measuring nuclear magnetic moment. Phys. Rev. 53:318–27
    [Google Scholar]
  44. 44. 
    Bloch F, Hansen WW, Packard M 1946. Nuclear induction. Phys. Rev. 69:127–74
    [Google Scholar]
  45. 45. 
    Purcell EM, Torrey HC, Pound RV 1946. Resonance absorption by nuclear moments in a solid. Phys. Rev. 69:37–38
    [Google Scholar]
  46. 46. 
    Pervushin K, Riek R, Wider G, Wüthrich K 1997. Attenuated T relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. PNAS 94:12366–71
    [Google Scholar]
  47. 47. 
    Tugarinov V, Kanelis V, Kay LE 2006. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1:749–54
    [Google Scholar]
  48. 48. 
    Baldwin AJ, Lioe H, Hilton GR, Baker LA, Rubinstein JL et al. 2011. The polydispersity of αB-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19:1855–63
    [Google Scholar]
  49. 49. 
    Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K et al. 2009. αB-Crystallin: A hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J. Mol. Biol. 385:1481–97
    [Google Scholar]
  50. 50. 
    Bagneris C, Bateman O, Naylor C, Cronin N, Boelens W et al. 2009. Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J. Mol. Biol. 392:1242–52
    [Google Scholar]
  51. 51. 
    Liu Z, Wang C, Li Y, Zhao C, Li T et al. 2018. Mechanistic insights into the switch of αB-crystallin chaperone activity and self-multimerization. J. Biol. Chem. 293:14880–90
    [Google Scholar]
  52. 52. 
    Delbecq SP, Jehle S, Klevit R 2012. Binding determinants of the small heat shock protein, αB-crystallin: recognition of the `IxI' motif. EMBO J 31:4587–94
    [Google Scholar]
  53. 53. 
    Martin RW. 2014. NMR studies of eye lens crystallins. eMagRes 3:2). https://doi.org/10.1002/9780470034590.emrstm1354
    [Crossref] [Google Scholar]
  54. 54. 
    Burmann BM, Hiller S. 2015. Chaperones and chaperone–substrate complexes: dynamic playgrounds for NMR spectroscopists. Prog. Nucl. Magn. Reson. Spectrosc. 86–87:41–64
    [Google Scholar]
  55. 55. 
    Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R et al. 2010. Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nat. Struct. Mol. Biol. 17:1037–42
    [Google Scholar]
  56. 56. 
    Henderson R. 1995. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28:171–93
    [Google Scholar]
  57. 57. 
    Andrew ER, Bradbury A, Eades RG 1958. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659
    [Google Scholar]
  58. 58. 
    Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H 2002. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:99–102
    [Google Scholar]
  59. 59. 
    Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M 2005. A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew. Chem. 44:2089–92
    [Google Scholar]
  60. 60. 
    Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM 2010. Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide bond forming enzyme DsbA. J. Mol. Biol. 399:268–82
    [Google Scholar]
  61. 61. 
    van der Wel PCA. 2018. New applications of solid-state NMR in structural biology. Emerg. Top. Life Sci. 2:57–67
    [Google Scholar]
  62. 62. 
    Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P et al. 2011. N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. PNAS 108:6409–14
    [Google Scholar]
  63. 63. 
    Braun N, Zacharias M, Peschek J, Kastenmüller A, Zou J et al. 2011. Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. PNAS 108:20491–96
    [Google Scholar]
  64. 64. 
    Baldwin AJ, Hilton GR, Lioe H, Bagnéris C, Benesch JLP, Kay LE 2011. Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. J. Mol. Biol. 413:310–20
    [Google Scholar]
  65. 65. 
    Inoue R, Takata T, Fujii N, Ishii K, Uchiyama S et al. 2016. New insight into the dynamical system of αB-crystallin oligomers. Sci. Rep. 6:29208
    [Google Scholar]
  66. 66. 
    Rajagopal P, Tse E, Borst AJ, Delbecq SP, Shi L et al. 2015. A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. eLife 4:e07304
    [Google Scholar]
  67. 67. 
    Alderson TR, Roche J, Gastall HY, Dias DM, Pritišanac I et al. 2019. Local unfolding of the HSP27 monomer regulates chaperone activity. Nat. Commun. 10:1068
    [Google Scholar]
  68. 68. 
    Garvey M, Ecroyd H, Ray NJ, Gerrard JA, Carver JA 2017. Functional amyloid protection in the eye lens: retention of α-crystallin molecular chaperone activity after modification into amyloid fibrils. Biomolecules 7:67
    [Google Scholar]
  69. 69. 
    Kaiser CJ, Peters C, Schmid PW, Stavropoulou M, Zou J et al. 2019. The structure and oxidation of the eye lens chaperone αA-crystallin. Nat. Struct. Mol. Biol. 26:1141–50
    [Google Scholar]
  70. 70. 
    Thampi P, Abraham EC. 2003. Influence of the C-terminal residues on oligomerization of αA-crystallin. Biochemistry 42:11857–63
    [Google Scholar]
  71. 71. 
    Aziz A, Santhoshkumar P, Sharma KK, Abraham EC 2007. Cleavage of the C-terminal serine of human αA-crystallin produces αA1-172 with increased chaperone activity and oligomeric size. Biochemistry 46:2510–19
    [Google Scholar]
  72. 72. 
    Treweek TM, Rekas A, Walker MJ, Carver JA 2010. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Exp. Eye Res. 91:691–99
    [Google Scholar]
  73. 73. 
    Bova MP, McHaourab HS, Han Y, Fung BKK 2000. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275:1035–42
    [Google Scholar]
  74. 74. 
    Kundu M, Sen PC, Das KP 2007. Structure, stability and chaperone function of αA-crystallin: role of N-terminal region. Biopolymers 86:177–92
    [Google Scholar]
  75. 75. 
    Laganowsky A, Eisenberg D. 2010. Non-3D domain swapped crystal structure of truncated zebrafish αA crystallin. Protein Sci 19:1978–84
    [Google Scholar]
  76. 76. 
    Preis W, Bestehorn A, Buchner J, Haslbeck M 2017. An alternative splice variant of human αA-crystallin modulates the oligomer ensemble and the chaperone activity of α-crystallins. Cell Stress Chaperones 22:541–52
    [Google Scholar]
  77. 77. 
    Koteiche HA, Claxton DP, Mishra S, Stein RA, McDonald ET, McHaourab HS 2015. Species-specific structural and functional divergence of α-crystallins: Zebrafish Ba- and rodent αA-crystallin encode activated chaperones. Biochemistry 54:5949–58
    [Google Scholar]
  78. 78. 
    Panda A, Nandi S, Chakraborty A, Nagaraj R, Biswas A 2015. Differential role of arginine mutations on the structure and functions of α-crystallin. Biochim. Biophys. Acta Gen. Subj. 1860:199–210
    [Google Scholar]
  79. 79. 
    Sacconi S, Féasson L, Antoine JC, Pécheux C, Bernard R et al. 2012. A novel CRYAB mutation resulting in multisystemic disease. Neuromuscul. Disord. 22:66–72
    [Google Scholar]
  80. 80. 
    Ghahramani M, Yousefi R, Krivandin A, Muranov K, Kurganov B, Moosavi-Movahedi AA 2020. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin: the biochemical pathomechanism underlying cataract and myopathy development. Int. J. Biol. Macromol. 146:1142–60
    [Google Scholar]
  81. 81. 
    Bova MP, Yaron O, Huang Q, Ding L, Haley DA et al. 1999. Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. PNAS 96:6137–42
    [Google Scholar]
  82. 82. 
    Saba S, Ghahramani M, Yousefi R 2017. A comparative study of the impact of calcium ion on structure, aggregation and chaperone function of human αA-crystallin and its cataract-causing R12C mutant. Protein Pept. Lett. 24:1048–58
    [Google Scholar]
  83. 83. 
    Phadte AS, Mahalingam S, Santhoshkumar P, Sharma KK 2019. Functional rescue of cataract-causing αA-G98R-crystallin by targeted compensatory suppressor mutations in human αA-crystallin. Biochemistry 58:4148–58
    [Google Scholar]
  84. 84. 
    Wu SY, Zou P, Mishra S, McHaourab HS 2018. Transgenic zebrafish models reveal distinct molecular mechanisms for cataract-linked αA-crystallin mutants. PLOS ONE 13:e0207540
    [Google Scholar]
  85. 85. 
    Andley UP, Malone JP, Hamilton PD, Ravi N, Townsend RR 2013. Comparative proteomic analysis identifies age-dependent increases in the abundance of specific proteins after deletion of the small heat shock proteins αA- and αB-crystallin. Biochemistry 52:2933–48
    [Google Scholar]
  86. 86. 
    Andley UP, Goldman JW. 2016. Autophagy and UPR in α-crystallin mutant knock-in mouse models of hereditary cataracts. Biochim. Biophys. Acta Gen. Subj. 1860:234–39
    [Google Scholar]
  87. 87. 
    Kashani MR, Yousefi R, Akbarian M, Alavianmehr MM, Ghasemi Y 2016. Structure, chaperone activity, and aggregation of wild-type and R12C mutant αB-crystallins in the presence of thermal stress and calcium ion—implications for role of calcium in cataract pathogenesis. Biochem. Biokhim. 81:122–34
    [Google Scholar]
  88. 88. 
    Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM 2008. Selective Cu binding, redox silencing, and cytoprotective effects of the small heat shock proteins αA- and αB-crystallin. J. Mol. Biol. 382:812–24
    [Google Scholar]
  89. 89. 
    Ganadu ML, Aru M, Mura GM, Coi A, Mlynarz P, Kozlowski H 2004. Effects of divalent metal ions on the αB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper(II) and protein. J. Inorg. Biochem. 98:1103–9
    [Google Scholar]
  90. 90. 
    Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC et al. 2012. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. J. Biol. Chem. 287:1128–38
    [Google Scholar]
  91. 91. 
    Quintanar L, Domínguez-Calva JA, Serebryany E, Rivillas-Acevedo L, Haase-Pettingell C et al. 2016. Copper and zinc ions specifically promote nonamyloid aggregation of the highly stable human γD-crystallin. ACS Chem. Biol. 11:263–72
    [Google Scholar]
  92. 92. 
    Ghosh KS, Pande A, Pande J 2011. Binding of γ-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone α-crystallin. Biochemistry 50:3279–81
    [Google Scholar]
  93. 93. 
    Chauhan P, Ghosh KS. 2019. Inhibition of copper-induced aggregation of human γD-crystallin by rutin and studies on its role in molecular level for enhancing the chaperone activity of human αA-crystallin by using multi-spectroscopic techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 218:229–36
    [Google Scholar]
  94. 94. 
    Chauhan P, Muralidharan SB, Velappan AB, Datta D, Pratihar S et al. 2017. Inhibition of copper-mediated aggregation of human γD-crystallin by Schiff bases. J. Biol. Inorg. Chem. 22:505–17
    [Google Scholar]
  95. 95. 
    Domínguez-Calva JA, Haase-Pettingell C, Serebryany E, King JA, Quintanar L 2018. A histidine switch for Zn-induced aggregation of γ-crystallins reveals a metal-bridging mechanism that is relevant to cataract disease. Biochemistry 57:4959–62
    [Google Scholar]
  96. 96. 
    Biswas A, Das KP. 2008. Zn enhances the molecular chaperone function and stability of α-crystallin. Biochemistry 47:804–16
    [Google Scholar]
  97. 97. 
    Biswas A, Karmakar S, Chowdhury A, Das K 2016. Interaction of α-crystallin with some small molecules and its effect on its structure and function. Biochim. Biophys. Acta Gen. Subj. 1860:211–21
    [Google Scholar]
  98. 98. 
    Barman S, Srinivasan K. 2019. Zinc supplementation ameliorates diabetic cataract through modulation of crystallin proteins and polyol pathway in experimental rats. Biol. Trace Element Res. 187:212–23
    [Google Scholar]
  99. 99. 
    Hawse JR, Cumming JR, Oppermann B, Sheets NL, Reddy VN, Kantorow M 2003. Activation of metallothioneins and α-crystallin/sHSPs in human lens epithelial cells by specific metals and the metal content of aging clear human lenses. Investig. Ophthalmol. Vis. Sci. 44:672–79
    [Google Scholar]
  100. 100. 
    Hanson SR, Hasan A, Smith DL, Smith JB 2000. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Exp. Eye Res. 71:195–207
    [Google Scholar]
  101. 101. 
    Truscott RJ, Friedrich MG. 2016. The etiology of human age-related cataract: Proteins don't last forever. Biochim. Biophys. Acta Gen. Subj. 1860:192–98
    [Google Scholar]
  102. 102. 
    Löfgren S. 2017. Solar ultraviolet radiation cataract. Exp. Eye Res. 156:112–16
    [Google Scholar]
  103. 103. 
    Anbaraki A, Ghahramani M, Muranov KO, Kurganov BI, Yousefi R 2018. Structural and functional alteration of human αA-crystallin after exposure to full spectrum solar radiation and preventive role of lens antioxidants. Int. J. Biol. Macromol. 118:1120–30
    [Google Scholar]
  104. 104. 
    Santhoshkumar P, Raju M, Sharma KK 2011. αA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation. PLOS ONE 6:e19291
    [Google Scholar]
  105. 105. 
    Hooi MY, Truscott RJ. 2011. Racemisation and human cataract. D-Ser, D-Asp/Asn and D-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age 33:131–41
    [Google Scholar]
  106. 106. 
    Aswad DW, Paranandi MV, Schurter BT 2000. Isoaspartate in peptides and proteins: formation, significance, and analysis. J. Pharm. Biomed. Anal. 21:1129–36
    [Google Scholar]
  107. 107. 
    Noguchi S. 2010. Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers 93:1003–10
    [Google Scholar]
  108. 108. 
    Lyon YA, Sabbah GM, Julian RR 2018. Differences in α-crystallin isomerization reveal the activity of protein isoaspartyl methyltransferase (PIMT) in the nucleus and cortex of human lenses. Exp. Eye Res. 171:131–41
    [Google Scholar]
  109. 109. 
    Takata T, Fujii N. 2016. Isomerization of Asp residues plays an important role in αA-crystallin dissociation. FEBS J 283:850–59
    [Google Scholar]
  110. 110. 
    Lyon YA, Collier MP, Riggs DL, Degiacomi MT, Benesch JLP, Julian RR 2019. Structural and functional consequences of age-related isomerization in α-crystallins. J. Biol. Chem. 294:7546–55
    [Google Scholar]
  111. 111. 
    Stevens VJ, Rouzer CA, Monnier VM, Cerami A 1978. Diabetic cataract formation: potential role of glycosylation of lens crystallins. PNAS 75:2918–22
    [Google Scholar]
  112. 112. 
    Bahmani F, Bathaie SZ, Aldavood SJ, Ghahghaei A 2019. Prevention of α-crystallin glycation and aggregation using l-lysine results in the inhibition of in vitro catalase heat-induced aggregation and suppression of cataract formation in the diabetic rat. Int. J. Biol. Macromol. 132:1200–7
    [Google Scholar]
  113. 113. 
    Nandi SK, Nahomi RB, Harris PS, Michel CR, Fritz KS, Nagaraj RH 2019. The absence of SIRT3 and SIRT5 promotes the acetylation of lens proteins and improves the chaperone activity of α-crystallin in mouse lenses. Exp. Eye Res. 182:1–9
    [Google Scholar]
  114. 114. 
    Muranova LK, Sudnitsyna MV, Gusev NB 2018. αB-Crystallin phosphorylation: advances and problems. Biochemistry 83:1196–206
    [Google Scholar]
  115. 115. 
    Ahmad MF, Raman B, Ramakrishna T, Rao CM 2008. Effect of phosphorylation on αB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of αB-crystallin and its phosphorylation-mimicking mutant. J. Mol. Biol. 375:1040–51
    [Google Scholar]
  116. 116. 
    Smith JB, Sun Y, Smith DL, Green B 1992. Identification of the posttranslational modifications of bovine lens αB-crystallins by mass spectrometry. Protein Sci 1:601–8
    [Google Scholar]
  117. 117. 
    Ciano M, Allocca S, Ciardulli MC, Della Volpe L, Bonatti S, D'Agostino M 2016. Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins. Biochem. Biophys. Res. Commun. 479:325–30
    [Google Scholar]
  118. 118. 
    Baboolall KD, Kaudeer YB, Gershenson A, O'Hara PB 2020. pH dependence of oligomerization and functional activity of αB crystallin. Biophys. J. 118:510a
    [Google Scholar]
  119. 119. 
    Bakthisaran R, Akula KK, Tangirala R, Rao CM 2016. Phosphorylation of αB-crystallin: role in stress, aging and patho-physiological conditions. Biochim. Biophys. Acta Gen. Subj. 1860:167–82
    [Google Scholar]
  120. 120. 
    Aquilina JA, Benesch JLP, Ding LL, Yaron O, Horwitz J, Robinson CV 2004. Phosphorylation of αB-crystallin alters chaperone function through loss of dimeric substructure. J. Biol. Chem. 279:28675–80
    [Google Scholar]
  121. 121. 
    Haslbeck M, Peschek J, Buchner J, Weinkauf S 2016. Structure and function of α-crystallins: traversing from in vitro to in vivo. Biochim. Biophys. Acta Gen. Subj. 1860:149–66
    [Google Scholar]
  122. 122. 
    Basha E, Lee GJ, Breci LA, Hausrath AC, Buan NR et al. 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279:7566–75
    [Google Scholar]
  123. 123. 
    Das P, Kang SG, Temple S, Belfort G 2014. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations. PLOS ONE 9:e113041
    [Google Scholar]
  124. 124. 
    Smulders RH, Merck KB, Aendekerk J, Horwitz J, Takemoto L et al. 1995. The mutation Asp69Ser affects the chaperone-like activity of αA-crystallin. Eur. J. Biochem. 232:834–38
    [Google Scholar]
  125. 125. 
    Santhoshkumar P, Sharma KK. 2001. Phe71 is essential for chaperone-like function in αA-crystallin. J. Biol. Chem. 276:47094–99
    [Google Scholar]
  126. 126. 
    Takemoto L, Emmons T, Horwitz J 1993. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation. Biochem. J. 294:435–38
    [Google Scholar]
  127. 127. 
    Plater ML, Goode D, Crabbe MJ 1996. Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J. Biol. Chem. 271:28558–66
    [Google Scholar]
  128. 128. 
    Sharma KK, Kumar RS, Kumar GS, Quinn PT 2000. Synthesis and characterization of a peptide identified as a functional element in αA-crystallin. J. Biol. Chem. 275:3767–71
    [Google Scholar]
  129. 129. 
    Banerjee PR, Pande A, Shekhtman A, Pande J 2015. Molecular mechanism of the chaperone function of mini-α-crystallin, a 19-residue peptide of human α-crystallin. Biochemistry 54:505–15
    [Google Scholar]
  130. 130. 
    Mishra S, Stein RA, McHaourab HS 2012. Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins. FEBS Lett 586:330–36
    [Google Scholar]
  131. 131. 
    Sprague-Piercy MA, Wong E, Roskamp KW, Fakhoury JN, Freites JA et al. 2020. Human αB-crystallin discriminates between aggregation-prone and function-preserving variants of a client protein. Biochim. Biophys. Acta Gen. Subj. 1864:129502
    [Google Scholar]
  132. 132. 
    Ramirez LM, Shekhtman A, Pande J 2020. Hydrophobic residues of melittin mediate its binding to αA-crystallin. Protein Sci 29:572–88
    [Google Scholar]
  133. 133. 
    Clark JI. 2016. Functional sequences in human αB crystallin. Biochim. Biophys. Acta Gen. Subj. 1860:240–45
    [Google Scholar]
  134. 134. 
    Muranov KO, Poliansky NB, Chebotareva NA, Kleimenov SY, Bugrova AE et al. 2019. The mechanism of the interaction of α-crystallin and UV-damaged β-crystallin. Int. J. Biol. Macromol. 140:736–48
    [Google Scholar]
  135. 135. 
    Carver JA, Grosas AB, Ecroyd H, Quinlan RA 2017. The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress Chaperones 22:627–38
    [Google Scholar]
  136. 136. 
    Kiss AJ, Mirarefi AY, Ramakrishnan S, Zukoski CF, DeVries AL, Cheng CHC 2004. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman. J. Exp. Biol. 207:4633–49
    [Google Scholar]
  137. 137. 
    Kiss AJ, Cheng CHC. 2008. Molecular diversity and genomic organisation of the α, β, and γ eye lens crystallins from the Antarctic toothfish Dissostichus mawsoni. . Comp. Biochem. Physiol. D Genom. Proteom 3:155–71
    [Google Scholar]
  138. 138. 
    Posner M, Kiss AJ, Skiba J, Drossman A, Dolinska MB et al. 2012. Functional validation of hydrophobic adaptation to physiological temperature in the small heat shock protein αA-crystallin. PLOS ONE 7:e34438
    [Google Scholar]
  139. 139. 
    Smith AA, Wyatt K, Vacha J, Vihtelic TS, Zigler JJ et al. 2006. Gene duplication and separation of functions in αB-crystallin from zebrafish (Danio rerio). FEBS J 273:481–90
    [Google Scholar]
  140. 140. 
    Hochberg GKA, Ecroyd H, Liu C, Cox D, Cascio D et al. 2014. The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. PNAS 111:E1562–70
    [Google Scholar]
  141. 141. 
    van Noort JM, Bsibsi M, Nacken PJ, Verbeek R, Venneker EGH 2015. Therapeutic intervention in multiple sclerosis with αB-crystallin: a randomized controlled phase IIA trial. PLOS ONE 10:e0143366
    [Google Scholar]
  142. 142. 
    Droho S, Keener ME, Mueller NH 2018. Heparan sulfate mediates cell uptake of αB-crystallin fused to the glycoprotein C cell penetration peptide. Biochim. Biophys. Acta Mol. Cell Res. 1865:598–604
    [Google Scholar]
  143. 143. 
    Bisht A, Sharma M, Sharma S, Ali ME, Panda JJ 2019. Carrier-free self-built aspirin nanorods as anti-aggregation agents towards α-crystallin-derived peptide aggregates: potential implications in non-invasive cataract therapy. J. Mater. Chem. B 7:6945–54
    [Google Scholar]
  144. 144. 
    Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN et al. 2015. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 350:674–77
    [Google Scholar]
  145. 145. 
    Mallik PK, Shi H, Pande J 2017. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain. Biochem. Biophys. Res. Commun. 491:423–28
    [Google Scholar]
  146. 146. 
    Karplus M, McCammon JA. 2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 9:646–52
    [Google Scholar]
  147. 147. 
    Karplus M, Kuriyan J. 2005. Molecular dynamics and protein function. PNAS 102:6679–85
    [Google Scholar]
  148. 148. 
    Brunger AT, Adams PD. 2002. Molecular dynamics applied to X-ray structure refinement. Acc. Chem. Res. 35:404–12
    [Google Scholar]
  149. 149. 
    Chen JH, Won HS, Im W, Dyson HJ, Brooks CL III 2005. Generation of native-like protein structures from limited NMR data, modern force fields and advanced conformational sampling. J. Biomol. NMR 31:59–64
    [Google Scholar]
  150. 150. 
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–92
    [Google Scholar]
  151. 151. 
    Kurut A, Persson BA, Åkesson T, Forsman J, Lund M 2012. Anisotropic interactions in protein mixtures: self assembly and phase behavior in aqueous solution. J. Phys. Chem. Lett. 3:731–34
    [Google Scholar]
  152. 152. 
    Prytkova V, Heyden M, Khago D, Freites JA, Butts CT et al. 2016. Multi-conformation Monte Carlo: a method for introducing flexibility in efficient simulations of many-protein systems. J. Phys. Chem. B 120:8115–26
    [Google Scholar]
  153. 153. 
    Grazioli G, Yu Y, Unhelkar MH, Martin RW, Butts CT 2019. Network-based classification and modeling of amyloid fibrils. J. Phys. Chem. B 123:5452–62
    [Google Scholar]
  154. 154. 
    Grazioli G, Yu Y, Unhelkar MH, Martin R, Butts CT 2020. Network Hamiltonian models reveal pathways to amyloid fibril formation. Sci. Rep. 10:15668
    [Google Scholar]
  155. 155. 
    Biswas A, Goshe J, Miller A, Santhoshkumar P, Luckey C et al. 2007. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human αB-crystallin. Biochemistry 46:1117–27
    [Google Scholar]
  156. 156. 
    Treweek TM, Rekas A, Lindner RA, Walker MJ, Aquilina JA et al. 2005. R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable. FEBS J 272:711–24
    [Google Scholar]
  157. 157. 
    Gerasimovich ES, Strelkov SV, Gusev NB 2017. Some properties of three αB-crystallin mutants carrying point substitutions in the C-terminal domain and associated with congenital diseases. Biochimie 142:168–78
    [Google Scholar]
  158. 158. 
    Droho S, Keener ME, Mueller NH 2018. Changes in function but not oligomeric size are associated with αB-crystallin lysine substitution. Biochem. Biophys. Rep. 14:1–6
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-121428
Loading
/content/journals/10.1146/annurev-physchem-090419-121428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error