1932

Abstract

Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090722-124705
2024-06-28
2025-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/75/1/annurev-physchem-090722-124705.html?itemId=/content/journals/10.1146/annurev-physchem-090722-124705&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Babin V, Leforestier C, Paesani F. 2013.. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. . J. Chem. Theory Comput. 9::5395403
    [Crossref] [Google Scholar]
  2. 2.
    Babin V, Medders C, Paesani F. 2014.. Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters. . J. Chem. Theory Comput. 10::1599607
    [Crossref] [Google Scholar]
  3. 3.
    Cisneros GA, Wikfeldt KT, Ojamäe L, Lu J, Xu Y, et al. 2016.. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. . Chem. Rev. 116::750128
    [Crossref] [Google Scholar]
  4. 4.
    Cheng B, Engel EA, Behler J, Ceriotti M. 2019.. Ab initio thermodynamics of liquid and solid water. . PNAS 116::111015
    [Crossref] [Google Scholar]
  5. 5.
    Heindel JP, Xantheas SS. 2020.. The many-body expansion for aqueous systems revisited: I. Water–water interactions. . J. Chem. Theory Comput. 16::684355
    [Crossref] [Google Scholar]
  6. 6.
    Rossi M. 2021.. Progress and challenges in ab initio simulations of quantum nuclei in weakly bonded systems. . J. Chem. Phys. 154::170902
    [Crossref] [Google Scholar]
  7. 7.
    Yu Q, Qu C, Houston PL, Conte R, Nandi A, Bowman JM. 2022. q-AQUA: a many-body CCSD(T) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase. . J. Phys. Chem. Lett. 13::506874
    [Crossref] [Google Scholar]
  8. 8.
    Daru J, Forbert H, Behler J, Marx D. 2022.. Coupled cluster molecular dynamics of condensed phase systems enabled by machine learning potentials: liquid water benchmark. . Phys. Rev. Lett. 129::226001
    [Crossref] [Google Scholar]
  9. 9.
    Chen MS, Lee J, Ye H-Z, Berkelbach TC, Reichman DR, Markland TE. 2023.. Data-efficient machine learning potentials from transfer learning of periodic correlated electronic structure methods: liquid water at AFQMC, CCSD, and CCSD(T) accuracy. . J. Chem. Theory Comput. 19::451019
    [Crossref] [Google Scholar]
  10. 10.
    Miller WH. 2001.. The semiclassical initial value representation: a potentially practical way for adding quantum effects to classical molecular dynamics simulations. . J. Phys. Chem. A 105::294255
    [Crossref] [Google Scholar]
  11. 11.
    Liu J, Miller WH, Fanourgakis GS, Xantheas SS, Imoto S, Saito S. 2011.. Insights in quantum dynamical effects in the infrared spectroscopy of liquid water from a semiclassical study with an ab initio-based flexible and polarizable force field. . J. Chem. Phys. 135::244503
    [Crossref] [Google Scholar]
  12. 12.
    Liu J, Zhang Z. 2016.. Path integral Liouville dynamics: applications to infrared spectra of OH, water, ammonia, and methane. . J. Chem. Phys. 144::034307
    [Crossref] [Google Scholar]
  13. 13.
    Mauger N, Plé T, Lagardère L, Bonella S, Mangaud E, et al. 2021.. Nuclear quantum effects in liquid water at near classical computational cost using the adaptive quantum thermal bath. . J. Phys. Chem. Lett. 12::828591
    [Crossref] [Google Scholar]
  14. 14.
    Buchholz M, Fallacara E, Gottwald F, Ceotto M, Grossmann F, Ivanov SD. 2018.. Herman-Kluk propagator is free from zero-point energy leakage. . Chem. Phys. 515::23135
    [Crossref] [Google Scholar]
  15. 15.
    Antipov SV, Ye Z, Ananth N. 2015.. Dynamically consistent method for mixed quantum-classical simulations: a semiclassical approach. . J. Chem. Phys. 142::184102
    [Crossref] [Google Scholar]
  16. 16.
    Church MS, Antipov S, Ananth N. 2017.. Validating and implementing modified Filinov phase filtration in semiclassical dynamics. . J. Chem. Phys. 146::234104
    [Crossref] [Google Scholar]
  17. 17.
    Malpathak S, Ananth N. 2023.. Non-linear correlation functions and zero-point energy flow in mixed quantum–classical semiclassical dynamics. . J. Chem. Phys. 158::104106
    [Crossref] [Google Scholar]
  18. 18.
    Hasegawa T. 2023.. Nuclear quantum dynamics of three-dimensional condensed-phase systems by constant uncertainty molecular dynamics. . J. Phys. Chem. Lett. 14::804349
    [Crossref] [Google Scholar]
  19. 19.
    Kananenka AA, Skinner JL. 2018.. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer. . J. Chem. Phys. 148::244107
    [Crossref] [Google Scholar]
  20. 20.
    Liu H, Wang Y, Bowman JM. 2014.. Ab initio deconstruction of the vibrational relaxation pathways of dilute HOD in ice Ih. . J. Am. Chem. Soc. 136::588891
    [Crossref] [Google Scholar]
  21. 21.
    McCoy AB. 2014.. The role of electrical anharmonicity in the association band in the water spectrum. . J. Phys. Chem. B 118::828694
    [Crossref] [Google Scholar]
  22. 22.
    Takahashi H, Tanimura Y. 2023.. Discretized hierarchical equations of motion in mixed Liouville–Wigner space for two-dimensional vibrational spectroscopies of liquid water. . J. Chem. Phys. 158::044115
    [Crossref] [Google Scholar]
  23. 23.
    Kapil V, Kovács DP, Csányi G, Michaelides A. 2024.. First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. . Faraday Discuss. 249::5068
    [Crossref] [Google Scholar]
  24. 24.
    Feynman RP, Hibbs AR. 2010.. Quantum Mechanics and Path Integrals. Mineola, NY:: Dover Publ. Emended ed.
    [Google Scholar]
  25. 25.
    Tuckerman ME. 2010.. Statistical Mechanics: Theory and Molecular Simulation. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  26. 26.
    Chandler D, Wolynes PG. 1981.. Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. . J. Chem. Phys. 74::407895
    [Crossref] [Google Scholar]
  27. 27.
    Ceperley DM. 1995.. Path integrals in the theory of condensed helium. . Rev. Mod. Phys. 67::279355
    [Crossref] [Google Scholar]
  28. 28.
    Markland TE, Ceriotti M. 2018.. Nuclear quantum effects enter the mainstream. . Nat. Chem. Rev. 2::0109
    [Crossref] [Google Scholar]
  29. 29.
    Parrinello M, Rahman A. 1984.. Study of an F center in molten KCl. . J. Chem. Phys. 80::86067
    [Crossref] [Google Scholar]
  30. 30.
    Cao J, Voth GA. 1994.. The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. . J. Chem. Phys. 100::5093105
    [Crossref] [Google Scholar]
  31. 31.
    Cao J, Voth GA. 1994.. The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties. . J. Chem. Phys. 100::5106117
    [Crossref] [Google Scholar]
  32. 32.
    Cao J, Voth GA. 1994.. The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics. . J. Chem. Phys. 101::615767
    [Crossref] [Google Scholar]
  33. 33.
    Craig IR, Manolopoulos DE. 2004.. Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. . J. Chem. Phys. 121::336873
    [Crossref] [Google Scholar]
  34. 34.
    Craig IR, Manolopoulos DE. 2005.. Chemical reaction rates from ring polymer molecular dynamics. . J. Chem. Phys. 122::084106
    [Crossref] [Google Scholar]
  35. 35.
    Miller TF III, Manolopoulos DE. 2005.. Quantum diffusion in liquid water from ring polymer molecular dynamics. . J. Chem. Phys. 123::154504
    [Crossref] [Google Scholar]
  36. 36.
    Habershon S, Manolopoulos DE, Markland TE, Miller TF III. 2013.. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. . Annu. Rev. Phys. Chem. 64::387413
    [Crossref] [Google Scholar]
  37. 37.
    Rossi M, Ceriotti M, Manolopoulos DE. 2014.. How to remove the spurious resonances from ring polymer molecular dynamics. . J. Chem. Phys. 140::234116
    [Crossref] [Google Scholar]
  38. 38.
    Rossi M, Kapil V, Ceriotti M. 2018.. Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation. . J. Chem. Phys. 148::102301
    [Crossref] [Google Scholar]
  39. 39.
    Rossi M, Liu H, Paesani F, Bowman J, Ceriotti M. 2014.. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase. . J. Chem. Phys. 141::181101
    [Crossref] [Google Scholar]
  40. 40.
    Rosa-Raíces JL, Sun J, Bou-Rabee N, Miller TF III 2021.. A generalized class of strongly stable and dimension-free T-RPMD integrators. . J. Chem. Phys. 154::024106
    [Crossref] [Google Scholar]
  41. 41.
    Begušić T, Tao X, Blake GA, Miller TF III 2022.. Equilibrium–nonequilibrium ring-polymer molecular dynamics for nonlinear spectroscopy. . J. Chem. Phys. 156::131102
    [Crossref] [Google Scholar]
  42. 42.
    Medders GR, Paesani F. 2015.. Infrared and Raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics. . J. Chem. Theory Comput. 11::114554
    [Crossref] [Google Scholar]
  43. 43.
    Reddy SK, Moberg DR, Straight SC, Paesani F. 2017.. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function. . J. Chem. Phys. 147::244504
    [Crossref] [Google Scholar]
  44. 44.
    Hele TJH, Willatt MJ, Muolo A, Althorpe SC. 2015.. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics. . J. Chem. Phys. 142::191101
    [Crossref] [Google Scholar]
  45. 45.
    Hele TJH, Willatt MJ, Muolo A, Althorpe SC. 2015.. Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics. ”. J. Chem. Phys. 142::134103
    [Crossref] [Google Scholar]
  46. 46.
    Trenins G, Althorpe SC. 2018.. Mean-field Matsubara dynamics: analysis of path-integral curvature effects in rovibrational spectra. . J. Chem. Phys. 149::014102
    [Crossref] [Google Scholar]
  47. 47.
    Jung KA, Videla PE, Batista VS. 2019.. Multi-time formulation of Matsubara dynamics. . J. Chem. Phys. 151::034108
    [Crossref] [Google Scholar]
  48. 48.
    Jung KA, Videla PE, Batista VS. 2020.. Ring-polymer, centroid, and mean-field approximations to multi-time Matsubara dynamics. . J. Chem. Phys. 153::124112
    [Crossref] [Google Scholar]
  49. 49.
    Karsten S, Ivanov SD, Bokarev SI, Kühn O. 2018.. Simulating vibronic spectra via Matsubara-like dynamics: coping with the sign problem. . J. Chem. Phys. 149::194103
    [Crossref] [Google Scholar]
  50. 50.
    Chowdhury SN, Huo P. 2021.. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. . J. Chem. Phys. 154::124124
    [Crossref] [Google Scholar]
  51. 51.
    Althorpe SC. 2021.. Path-integral approximations to quantum dynamics. . Eur. Phys. J. B 94::155
    [Crossref] [Google Scholar]
  52. 52.
    Prada A, Pós ES, Althorpe SC. 2023.. Comparison of Matsubara dynamics with exact quantum dynamics for an oscillator coupled to a dissipative bath. . J. Chem. Phys. 158::114106
    [Crossref] [Google Scholar]
  53. 53.
    Plé T, Huppert S, Finocchi F, Depondt P, Bonella S. 2021.. Anharmonic spectral features via trajectory-based quantum dynamics: a perturbative analysis of the interplay between dynamics and sampling. . J. Chem. Phys. 155::104108
    [Crossref] [Google Scholar]
  54. 54.
    Benson RL, Althorpe SC. 2021.. On the “Matsubara heating” of overtone intensities and Fermi splittings. . J. Chem. Phys. 155::104107
    [Crossref] [Google Scholar]
  55. 55.
    Witt A, Ivanov SD, Shiga M, Forbert H, Marx D. 2009.. On the applicability of centroid and ring polymer path integral molecular dynamics for vibrational spectroscopy. . J. Chem. Phys. 130::194510
    [Crossref] [Google Scholar]
  56. 56.
    Ivanov SD, Witt A, Shiga M, Marx D. 2010.. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: quantum liquid water. . J. Chem. Phys. 132::031101
    [Crossref] [Google Scholar]
  57. 57.
    Trenins G, Willatt MJ, Althorpe SC. 2019.. Path-integral dynamics of water using curvilinear centroids. . J. Chem. Phys. 151::054109
    [Crossref] [Google Scholar]
  58. 58.
    Benson RL, Trenins G, Althorpe SC. 2020.. Which quantum statistics–classical dynamics method is best for water?. Faraday Discuss. 221::35066
    [Crossref] [Google Scholar]
  59. 59.
    Haggard C, Sadhasivam VG, Trenins G, Althorpe SC. 2021.. Testing the quasicentroid molecular dynamics method on gas-phase ammonia. . J. Chem. Phys. 155::174120
    [Crossref] [Google Scholar]
  60. 60.
    Trenins G, Haggard C, Althorpe SC. 2022.. Improved torque estimator for condensed-phase quasicentroid molecular dynamics. . J. Chem. Phys. 157::174108
    [Crossref] [Google Scholar]
  61. 61.
    Fletcher T, Zhu A, Lawrence JE, Manolopoulos DE. 2021.. Fast quasi-centroid molecular dynamics. . J. Chem. Phys. 155::231101
    [Crossref] [Google Scholar]
  62. 62.
    Lawrence JE, Lieberherr AZ, Fletcher T, Manolopoulos DE. 2023.. Fast quasi-centroid molecular dynamics for water and ice. . J. Phys. Chem. B 42::917280
    [Crossref] [Google Scholar]
  63. 63.
    Musil F, Zaporozhets I, Noé F, Clementi C, Kapil V. 2022.. Quantum dynamics using path integral coarse-graining. . J. Chem. Phys. 157::181102
    [Crossref] [Google Scholar]
  64. 64.
    Habershon S, Markland TE, Manolopoulos DE. 2009.. Competing quantum effects in the dynamics of a flexible water model. . J. Chem. Phys. 131::024501
    [Crossref] [Google Scholar]
  65. 65.
    Hirshberg B, Rizzia V, Parrinello M. 2019.. Path integral molecular dynamics for bosons. . PNAS 116::2144549
    [Crossref] [Google Scholar]
  66. 66.
    Lin L, Morrone JA, Car R, Parrinello M. 2010.. Displaced path integral formulation for the momentum distribution of quantum particles. . Phys. Rev. Lett. 105::110602
    [Crossref] [Google Scholar]
  67. 67.
    Kapil V, Rossi M, Marsalek O, Petraglia R, Litman Y, et al. 2019.. i-PI 2.0: a universal force engine for advanced molecular simulations. . Comput. Phys. Commun. 236::21423
    [Crossref] [Google Scholar]
  68. 68.
    Buxton SJ, Quigley D, Habershon S. 2019.. The role of nuclear quantum effects in the relative stability of hexagonal and cubic ice. . J. Chem. Phys. 151::144503
    [Crossref] [Google Scholar]
  69. 69.
    Bore SL, Paesani F. 2023.. Realistic phase diagram of water from “first principles” data-driven quantum simulations. . Nat. Commun. 14::3349
    [Crossref] [Google Scholar]
  70. 70.
    Cheng B, Ceriotti M. 2014.. Direct path integral estimators for isotope fractionation ratios. . J. Chem. Phys. 141::244112
    [Crossref] [Google Scholar]
  71. 71.
    Fanourgakis GS, Markland TE, Manolopoulos DE. 2009.. A fast path integral method for polarizable force fields. . J. Chem. Phys. 131::094102
    [Crossref] [Google Scholar]
  72. 72.
    Geng HY. 2015.. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface. . J. Comput. Phys. 283::299311
    [Crossref] [Google Scholar]
  73. 73.
    John C, Spura T, Habershon S, Kühne TD. 2016.. Quantum ring-polymer contraction method: including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics. . Phys. Rev. E 93::043305
    [Crossref] [Google Scholar]
  74. 74.
    Marsalek O, Markland TE. 2016.. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory. . J. Chem. Phys. 144::054112
    [Crossref] [Google Scholar]
  75. 75.
    Marsalek O, Markland TE. 2017.. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. . J. Phys. Chem. Lett. 8::154551
    [Crossref] [Google Scholar]
  76. 76.
    Tuckerman M, Berne BJ, Martyna GJ. 1992.. Reversible multiple time scale molecular dynamics. . J. Chem. Phys. 97::19902001
    [Crossref] [Google Scholar]
  77. 77.
    Hone TD, Izvekov S, Voth GA. 2005.. Fast centroid molecular dynamics: a force-matching approach for the predetermination of the effective centroid forces. . J. Chem. Phys. 122::054105
    [Crossref] [Google Scholar]
  78. 78.
    Paesani F, Zhang W, Case DA, Cheatham TE, Voth GA. 2006.. An accurate and simple quantum model for liquid water. . J. Chem. Phys. 125::184507
    [Crossref] [Google Scholar]
  79. 79.
    Ceriotti M, Parrinello M, Markland TE, Manolopoulos DE. 2010.. Efficient stochastic thermostatting of path integral molecular dynamics. . J. Chem. Phys. 133::124104
    [Crossref] [Google Scholar]
  80. 80.
    Ceriotti M, Manolopoulos DE, Parrinello M. 2011.. Accelerating the convergence of path integral dynamics with a generalized Langevin equation. . J. Chem. Phys. 134::084104
    [Crossref] [Google Scholar]
  81. 81.
    Ceriotti M, Manolopoulos DE. 2012.. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. . Phys. Rev. Lett. 109::100604
    [Crossref] [Google Scholar]
  82. 82.
    Brieuc F, Dammak H, Hayoun M. 2016.. Quantum thermal bath for path integral molecular dynamics simulation. . J. Chem. Theory Comput. 12::135159
    [Crossref] [Google Scholar]
  83. 83.
    Kapil V, Wilkins DM, Lan J, Ceriotti M. 2020.. Inexpensive modeling of quantum dynamics using path integral generalized Langevin equation thermostats. . J. Chem. Phys. 152::124104
    [Crossref] [Google Scholar]
  84. 84.
    Shepherd S, Lan J, Wilkins DM, Kapil V. 2021.. Efficient quantum vibrational spectroscopy of water with high-order path integrals: from bulk to interfaces. . J. Phys. Chem. Lett. 12::910814
    [Crossref] [Google Scholar]
  85. 85.
    Topaler M, Makri N. 1994.. Quantum rates for a double well coupled to a dissipative bath: accurate path integral results and comparison with approximate theories. . J. Chem. Phys. 101::750019
    [Crossref] [Google Scholar]
  86. 86.
    Banerjee T, Makri N. 2013.. Quantum-classical path integral with self-consistent solvent-driven reference propagators. . J. Phys. Chem. B 117::1335766
    [Crossref] [Google Scholar]
  87. 87.
    Rognoni A, Conte R, Ceotto M. 2021.. Caldeira–Leggett model versus ab initio potential: a vibrational spectroscopy test of water solvation. . J. Chem. Phys. 154::094106
    [Crossref] [Google Scholar]
  88. 88.
    Habershon S, Fanourgakis GS, Manolopoulos DE. 2008.. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water. . J. Chem. Phys. 129::074501
    [Crossref] [Google Scholar]
  89. 89.
    Cao J, Voth GA. 1994.. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. . J. Chem. Phys. 101::616883
    [Crossref] [Google Scholar]
  90. 90.
    Hone TD, Voth GA. 2004.. A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium. . J. Chem. Phys. 121::641222
    [Crossref] [Google Scholar]
  91. 91.
    Hone TD, Rossky PJ, Voth GA. 2006.. A comparative study of imaginary time path integral based methods for quantum dynamics. . J. Chem. Phys. 124::154103
    [Crossref] [Google Scholar]
  92. 92.
    Habershon S, Manolopoulos DE. 2009.. Zero point energy leakage in condensed phase dynamics: an assessment of quantum simulation methods for liquid water. . J. Chem. Phys. 131::244518
    [Crossref] [Google Scholar]
  93. 93.
    Shi Q, Geva E. 2003.. A relationship between semiclassical and centroid correlation functions. . J. Chem. Phys. 118::817384
    [Crossref] [Google Scholar]
  94. 94.
    Matsubara T. 1955.. A new approach to quantum-statistical mechanics. . Prog. Theor. Phys. 14::35178
    [Crossref] [Google Scholar]
  95. 95.
    Freeman DL, Doll JD. 1984.. A Monte Carlo method for quantum Boltzmann statistical mechanics using Fourier representations of path integrals. . J. Chem. Phys. 80::570918
    [Crossref] [Google Scholar]
  96. 96.
    Krasnoshchekov SV, Isayeva EV, Stepanov NF. 2014.. Determination of the Eckart molecule-fixed frame by use of the apparatus of quaternion algebra. . J. Chem. Phys. 140::154104
    [Crossref] [Google Scholar]
  97. 97.
    Reith D, Pütz M, Müller-Plathe F. 2003.. Deriving effective mesoscale potentials from atomistic simulations. . J. Comput. Chem. 24::162436
    [Crossref] [Google Scholar]
  98. 98.
    Lieberherr AZ, Furniss STE, Lawrence JE, Manolopoulos DE. 2023.. Vibrational strong coupling in liquid water from cavity molecular dynamics. . J. Chem. Phys. 158::234106
    [Crossref] [Google Scholar]
  99. 99.
    Wang J, Olsson S, Wehmeyer C, Pérez A, Charron NE, et al. 2019.. Machine learning of coarse-grained molecular dynamics force fields. . ACS Central Sci. 5::75567
    [Crossref] [Google Scholar]
  100. 100.
    Bertie JE, Lan Z. 1996.. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(I) at 25°C between 15,000 and 1 cm−1. . Appl. Spect. 50::104757
    [Crossref] [Google Scholar]
  101. 101.
    Sun S, Liang R, Xu X, Zhu H, Shen YR, Tian C. 2016.. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy. . J. Chem. Phys. 144::244711
    [Crossref] [Google Scholar]
  102. 102.
    Yu Q, Bowman JM. 2019.. Classical, thermostated ring polymer, and quantum VSCF/VCI calculations of IR spectra of and (eigen) and comparison with experiment. . J. Phys. Chem. A 123::1399409
    [Crossref] [Google Scholar]
  103. 103.
    Benson RL. 2021.. Path-integral studies of quantum statistical effects in vibrational spectroscopy. PhD Thesis , Univ. Cambridge, Cambridge, UK:
    [Google Scholar]
  104. 104.
    Yao SJ, Overend J. 1976.. Vibrational intensities—XXIII. The effect of anharmonicity on the temperature dependence of integrated band intensities. . Spectrochim. Acta A 32::105965
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-090722-124705
Loading
/content/journals/10.1146/annurev-physchem-090722-124705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error