1932

Abstract

Lung inflammation, infection, and injury can lead to critical illness and death. The current means to pharmacologically treat excessive uncontrolled lung inflammation needs improvement because many treatments are or will become immunosuppressive. The inflammatory response evolved to protect the host from microbes, injury, and environmental insults. This response brings phagocytes from the bloodstream to the tissue site to phagocytize and neutralize bacterial invaders and enables airway antimicrobial functions. This physiologic response is ideally self-limited with initiation and resolution phases. Polyunsaturated essential fatty acids are precursors to potent molecules that govern both phases. In the initiation phase, arachidonic acid is converted to prostaglandins and leukotrienes that activate leukocytes to transmigrate from postcapillary venules. The omega-3 fatty acids (e.g., DHA and EPA) are precursors to resolvins, protectins, and maresins, which are families of chemically distinct mediators with potent functions in resolution of acute and chronic inflammation in the respiratory system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020924-033209
2025-02-10
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-020924-033209.html?itemId=/content/journals/10.1146/annurev-physiol-020924-033209&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Samuelsson B. 1983.. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. . Science 220::56875
    [Crossref] [Google Scholar]
  2. 2.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. 1987.. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. . Science 237::117176
    [Crossref] [Google Scholar]
  3. 3.
    Haeggström JZ, Newcomer ME. 2023.. Structures of leukotriene biosynthetic enzymes and development of new therapeutics. . Annu. Rev. Pharmacol. Toxicol. 63::40728
    [Crossref] [Google Scholar]
  4. 4.
    Calder PC. 2020.. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. . Biochimie 178::10523
    [Crossref] [Google Scholar]
  5. 5.
    Soehnlein O, Libby P. 2021.. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. . Nat. Rev. Drug Discov. 20::589610
    [Crossref] [Google Scholar]
  6. 6.
    Carracedo M, Artiach G, Arnardottir H, Bäck M. 2019.. The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. . Semin. Immunopathol. 41::75766
    [Crossref] [Google Scholar]
  7. 7.
    Patchen BK, Balte P, Bartz TM, Barr RG, Fornage M, et al. 2023.. Investigating associations of omega-3 fatty acids, lung function decline, and airway obstruction. . Am. J. Respir. Crit. Care Med. 208::84657
    [Crossref] [Google Scholar]
  8. 8.
    Eivazi A, Akbari B, Falahi S, Gorgin Karaji A, Rezaiemanesh A, et al. 2023.. Association of Rs7217186 polymorphism of arachidonic acid 15-lipoxygenase (ALOX15) gene with susceptibility to allergic rhinitis. . Rep. Biochem. Mol. Biol. 12::26976
    [Crossref] [Google Scholar]
  9. 9.
    Bisgaard H, Stokholm J, Chawes BL, Vissing NH, Bjarnadottir E, et al. 2016.. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. . N. Engl. J. Med. 375::253039
    [Crossref] [Google Scholar]
  10. 10.
    Hu Y, Hu FB, Manson JE. 2019.. Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127 477 participants. . J. Am. Heart Assoc. 8::e013543
    [Crossref] [Google Scholar]
  11. 11.
    Robbins SL, Cotran R. 1979.. Pathologic Basis of Disease. Philadelphia:: W.B. Saunders
    [Google Scholar]
  12. 12.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. 2000.. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. . J. Exp. Med. 192::1197204
    [Crossref] [Google Scholar]
  13. 13.
    Serhan CN, Savill J. 2005.. Resolution of inflammation: the beginning programs the end. . Nat. Immunol. 6::119197
    [Crossref] [Google Scholar]
  14. 14.
    Abdulnour RE, Sham HP, Douda DN, Colas RA, Dalli J, et al. 2016.. Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation. . Mucosal Immunol. 9::127887
    [Crossref] [Google Scholar]
  15. 15.
    Serhan CN. 2007.. Resolution phases of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. . Annu. Rev. Immunol. 25::10137
    [Crossref] [Google Scholar]
  16. 16.
    Serhan CN, Yacoubian S, Yang R. 2008.. Anti-inflammatory and pro-resolving lipid mediators. . Annu. Rev. Pathol. Mech. Dis. 3::279312
    [Crossref] [Google Scholar]
  17. 17.
    Levy BD, Serhan CN. 2014.. Resolution of acute inflammation in the lung. . Annu. Rev. Physiol. 76::46792
    [Crossref] [Google Scholar]
  18. 18.
    Zhang MJ, Spite M. 2012.. Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids. . Annu. Rev. Nutr. 32::20327
    [Crossref] [Google Scholar]
  19. 19.
    Serhan CN, Levy BD. 2018.. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. . J. Clin. Investig. 128::265769
    [Crossref] [Google Scholar]
  20. 20.
    Perretti M, Dalli J. 2023.. Resolution pharmacology: focus on pro-resolving annexin A1 and lipid mediators for therapeutic innovation in inflammation. . Annu. Rev. Pharmacol. Toxicol. 63::44969
    [Crossref] [Google Scholar]
  21. 21.
    Godson C, Guiry P, Brennan E. 2023.. Lipoxin mimetics and the resolution of inflammation. . Annu. Rev. Pharmacol. Toxicol. 63::42948
    [Crossref] [Google Scholar]
  22. 22.
    Ji RR. 2023.. Specialized pro-resolving mediators as resolution pharmacology for the control of pain and itch. . Annu. Rev. Pharmacol. Toxicol. 63::27393
    [Crossref] [Google Scholar]
  23. 23.
    Centanni D, Henricks PAJ, Engels F. 2023.. The therapeutic potential of resolvins in pulmonary diseases. . Eur. J. Pharmacol. 958::176047
    [Crossref] [Google Scholar]
  24. 24.
    Daly K, O'Sullivan K, O'Sullivan TP. 2022.. Major structure-activity relationships of resolvins, protectins, maresins and their analogues. . Fut. Med. Chem. 14:(24):194360
    [Crossref] [Google Scholar]
  25. 25.
    Fu X, Yin HH, Wu MJ, He X, Jiang Q, et al. 2022.. High sensitivity and wide linearity LC-MS/MS method for oxylipin quantification in multiple biological samples. . J. Lipid Res. 63::100302
    [Crossref] [Google Scholar]
  26. 26.
    Noureddine N, Hartling I, Wawrzyniak P, Srikanthan P, Lou PH, et al. 2022.. Lipid emulsion rich in n–3 polyunsaturated fatty acids elicits a pro-resolution lipid mediator profile in mouse tissues and in human immune cells. . Am. J. Clin. Nutr. 116::78697
    [Crossref] [Google Scholar]
  27. 27.
    Hartling I, Cremonesi A, Osuna E, Lou PH, Lucchinetti E, et al. 2021.. Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS. . Clin. Chem. Lab. Med. 59::181123
    [Crossref] [Google Scholar]
  28. 28.
    Barden A, Shinde S, Beilin LJ, Phillips M, Adams L, et al. 2024.. Adiposity associates with lower plasma resolvin E1 (Rve1): a population study. . Int. J. Obes. 48::72532
    [Crossref] [Google Scholar]
  29. 29.
    Barden AE, Moghaddami M, Mas E, Phillips M, Cleland LG, Mori TA. 2016.. Specialised pro-resolving mediators of inflammation in inflammatory arthritis. . Prostaglandins Leukot. Essent. Fatty Acids 107::2429
    [Crossref] [Google Scholar]
  30. 30.
    Schwarz B, Sharma L, Roberts L, Peng X, Bermejo S, et al. 2021.. Cutting edge: severe SARS-CoV-2 infection in humans is defined by a shift in the serum lipidome, resulting in dysregulation of eicosanoid immune mediators. . J. Immunol. 206::32934
    [Crossref] [Google Scholar]
  31. 31.
    Vickery TW, Armstrong M, Kofonow JM, Robertson CE, Kroehl ME, et al. 2021.. Altered tissue specialized pro-resolving mediators in chronic rhinosinusitis. . Prostaglandins Leukot. Essent. Fatty Acids 164::102218
    [Crossref] [Google Scholar]
  32. 32.
    Isopi E, Mattoscio D, Codagnone M, Mari VC, Lamolinara A, et al. 2020.. Resolvin D1 reduces lung infection and inflammation activating resolution in cystic fibrosis. . Front. Immunol. 11::581
    [Crossref] [Google Scholar]
  33. 33.
    Recchiuti A, Patruno S, Mattoscio D, Isopi E, Pomilio A, et al. 2021.. Resolvin D1 and D2 reduce SARS-CoV-2-induced inflammatory responses in cystic fibrosis macrophages. . FASEB J. 35::e21441
    [Crossref] [Google Scholar]
  34. 34.
    Eickmeier O, Fussbroich D, Mueller K, Serve F, Smaczny C, et al. 2017.. Pro-resolving lipid mediator Resolvin D1 serves as a marker of lung disease in cystic fibrosis. . PLOS ONE 12::e0171249
    [Crossref] [Google Scholar]
  35. 35.
    Briottet M, Shum M, Urbach V. 2020.. The role of specialized pro-resolving mediators in cystic fibrosis airways disease. . Front. Pharmacol. 11::1290
    [Crossref] [Google Scholar]
  36. 36.
    Serhan CN, De la Rosa X, Jouvene CC. 2018.. Cutting edge: human vagus produces specialized pro-resolving mediators of inflammation with electrical stimulation reducing pro-inflammatory eicosanoids. . J. Immunol. 201::316165
    [Crossref] [Google Scholar]
  37. 37.
    Dalli J, Kraft BD, Colas RA, Shinohara M, Fredenburgh LE, et al. 2015.. The regulation of proresolving lipid mediator profiles in baboon pneumonia by inhaled carbon monoxide. . Am. J. Respir. Cell Mol. Biol. 53::31425
    [Crossref] [Google Scholar]
  38. 38.
    Serhan CN, Chiang N. 2023.. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. . Prostaglandins Other Lipid Mediat. 166::106718
    [Crossref] [Google Scholar]
  39. 39.
    Levy BD, Abdulnour RE, Tavares A, Brüggemann TR, Norris PC, et al. 2020.. Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes. . J. Allergy Clin. Immunol. 145::33544
    [Crossref] [Google Scholar]
  40. 40.
    Godson C. 2020.. Balancing the effect of leukotrienes in asthma. . N. Engl. J. Med. 382::147275
    [Crossref] [Google Scholar]
  41. 41.
    Chiang N, Dalli J, Colas RA, Serhan CN. 2015.. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. . J. Exp. Med. 212::120317
    [Crossref] [Google Scholar]
  42. 42.
    Trilleaud C, Gauttier V, Biteau K, Girault I, Belarif L, et al. 2021.. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. . Sci. Adv. 7::eabd1453
    [Crossref] [Google Scholar]
  43. 43.
    Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. 2023.. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis?. Pharmacol. Ther. 247::108460
    [Crossref] [Google Scholar]
  44. 44.
    Fredman G, Serhan CN. 2024.. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. . Nat. Rev. Cardiol. 21::80823
    [Crossref] [Google Scholar]
  45. 45.
    Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, et al. 2005.. Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. . J. Exp. Med. 201::71322
    [Crossref] [Google Scholar]
  46. 46.
    Tjonahen E, Oh SF, Siegelman J, Elangovan S, Percarpio KB, et al. 2006.. Resolvin E2: identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. . Chem. Biol. 13::1193202
    [Crossref] [Google Scholar]
  47. 47.
    Oh SF, Pillai PS, Recchiuti A, Yang R, Serhan CN. 2011.. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. . J. Clin. Investig. 121::56981
    [Crossref] [Google Scholar]
  48. 48.
    Cebrián-Prats A, Pinto A, González-Lafont À, Fernandes PA, Lluch JM. 2022.. The role of acetylated cyclooxygenase-2 in the biosynthesis of resolvin precursors derived from eicosapentaenoic acid. . Org. Biomol. Chem. 20::126074
    [Crossref] [Google Scholar]
  49. 49.
    Serhan CN, Libreros S, Nshimiyimana R. 2022.. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. . Semin. Immunol. 59::101597
    [Crossref] [Google Scholar]
  50. 50.
    Oh SF, Dona M, Fredman G, Krishnamoorthy S, Irimia D, Serhan CN. 2012.. Resolvin E2 formation and impact in inflammation resolution. . J. Immunol. 188::452734
    [Crossref] [Google Scholar]
  51. 51.
    Arita M, Oh S, Chonan T, Hong S, Elangovan S, et al. 2006.. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. . J. Biol. Chem. 281::2284754
    [Crossref] [Google Scholar]
  52. 52.
    Norris PC, Libreros S, Serhan CN. 2019.. Resolution metabolomes activated by hypoxic environment. . Sci. Adv. 5::eaax4895
    [Crossref] [Google Scholar]
  53. 53.
    Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, et al. 2021.. A new E-series resolvin: RvE4 stereochemistry and function in efferocytosis of inflammation-resolution. . Front. Immunol. 11::631319
    [Crossref] [Google Scholar]
  54. 54.
    Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M. 2021.. Stereoselective synthesis and structural confirmation of the specialized pro-resolving mediator resolvin E4. . J. Org. Chem. 86::353545
    [Crossref] [Google Scholar]
  55. 55.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, et al. 2002.. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter pro-inflammation signals. . J. Exp. Med. 196::102537
    [Crossref] [Google Scholar]
  56. 56.
    Endo J, Sano M, Isobe Y, Fukuda K, Kang JX, et al. 2014.. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. . J. Exp. Med. 211::167387
    [Crossref] [Google Scholar]
  57. 57.
    Ramon S, Baker SF, Sahler JM, Kim N, Feldsott EA, et al. 2014.. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: A new class of adjuvant?. J. Immunol. 193::603140
    [Crossref] [Google Scholar]
  58. 58.
    Hong S, Gronert K, Devchand P, Moussignac R-L, Serhan CN. 2003.. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. . J. Biol. Chem. 278::1467787
    [Crossref] [Google Scholar]
  59. 59.
    Werz O, Gerstmeier J, Libreros S, De la Rosa X, Werner M, et al. 2018.. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. . Nat. Commun. 9::59
    [Crossref] [Google Scholar]
  60. 60.
    Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. 2015.. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. . Biochim. Biophys. Acta 1851::397413
    [Crossref] [Google Scholar]
  61. 61.
    Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, et al. 2009.. Maresins: novel macrophage mediators with potent anti-inflammatory and pro-resolving actions. . J. Exp. Med. 206::1523
    [Crossref] [Google Scholar]
  62. 62.
    Serhan CN, Dalli J, Karamnov S, Choi A, Park CK, et al. 2012.. Macrophage pro-resolving mediator maresin 1 stimulates tissue regeneration and controls pain. . FASEB J. 26::175565
    [Crossref] [Google Scholar]
  63. 63.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. 2001.. Lipid mediator class switching during acute inflammation: signals in resolution. . Nat. Immunol. 2::61219
    [Crossref] [Google Scholar]
  64. 64.
    Dahlke P, Peltner LK, Jordan PM, Werz O. 2023.. Differential impact of 5-lipoxygenase-activating protein antagonists on the biosynthesis of leukotrienes and of specialized pro-resolving mediators. . Front. Pharmacol. 14::1219160
    [Crossref] [Google Scholar]
  65. 65.
    Röhn TA, Numao S, Otto H, Loesche C, Thoma G. 2021.. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. . Expert Opin. Drug Discov. 16::148395
    [Crossref] [Google Scholar]
  66. 66.
    Miki Y, Yamamoto K, Taketomi Y, Sato H, Shimo K, et al. 2013.. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators. . J. Exp. Med. 210::121734
    [Crossref] [Google Scholar]
  67. 67.
    Norling LV, Dalli J. 2013.. Microparticles are novel effectors of immunity. . Curr. Opin. Pharmacol. 13::57075
    [Crossref] [Google Scholar]
  68. 68.
    Dalli J, Serhan CN. 2012.. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. . Blood 120::e6072
    [Crossref] [Google Scholar]
  69. 69.
    Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, et al. 2005.. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. . J. Clin. Investig. 115::277483
    [Crossref] [Google Scholar]
  70. 70.
    Kasuga K, Yang R, Porter TF, Agrawal N, Petasis NA, et al. 2008.. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. . J. Immunol. 181::867787
    [Crossref] [Google Scholar]
  71. 71.
    Norris PC, Gosselin D, Reichart D, Glass CK, Dennis EA. 2014.. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. . PNAS 111::1274651
    [Crossref] [Google Scholar]
  72. 72.
    Chiang N, Fredman G, Bäckhed F, Oh SF, Vickery TW, et al. 2012.. Infection regulates pro-resolving mediators that lower antibiotic requirements. . Nature 484::52428
    [Crossref] [Google Scholar]
  73. 73.
    Norris PC, Libreros S, Chiang N, Serhan CN. 2017.. A cluster of immunoresolvents links coagulation to innate host defense in human blood. . Sci. Signal. 10::eaan1471
    [Crossref] [Google Scholar]
  74. 74.
    Jordan PM, van Goethem E, Müller AM, Hemmer K, Gavioli V, et al. 2021.. The natural combination medicine Traumeel (Tr14) improves resolution of inflammation by promoting the biosynthesis of specialized pro-resolving mediators. . Pharmaceuticals 14::1123
    [Crossref] [Google Scholar]
  75. 75.
    Taylor HA, Finkel T, Gao Y, Ballinger SW, Campo R, et al. 2022.. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. . FASEB J. 36::e22639
    [Crossref] [Google Scholar]
  76. 76.
    Scruggs S. 2019.. Inflammation resolution gets top billing at NIH workshop. . Environmental Factor, May. https://www.factor.niehs.nih.gov/2019/5/science-highlights/inflammation
    [Google Scholar]
  77. 77.
    Tang H, Liu Y, Yan C, Petasis NA, Serhan CN, Gao H. 2014.. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. . J. Immunol. 193::376978
    [Crossref] [Google Scholar]
  78. 78.
    Serhan CN. 2014.. Pro-resolving lipid mediators are leads for resolution physiology. . Nature 510::92101
    [Crossref] [Google Scholar]
  79. 79.
    Lee CR, Zeldin DC. 2015.. Resolvin infectious inflammation by targeting the host response. . N. Engl. J. Med. 373::218385
    [Crossref] [Google Scholar]
  80. 80.
    Basil MC, Levy BD. 2016.. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. . Nat. Rev. Immunol. 16::5167
    [Crossref] [Google Scholar]
  81. 81.
    de la Rosa X, Norris PC, Chiang N, Rodriguez AR, Spur BW, Serhan CN. 2018.. Identification and complete stereochemical assignments of the new resolvin conjugates in tissue regeneration in human tissues that stimulate proresolving phagocyte functions and tissue regeneration. . Am. J. Pathol. 188::95066
    [Crossref] [Google Scholar]
  82. 82.
    Orr SK, Colas RA, Dalli J, Chiang N, Serhan CN. 2015.. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. . Am. J. Physiol. Lung Cell. Mol. Physiol. 308::L90411
    [Crossref] [Google Scholar]
  83. 83.
    Murakami Y, Fukuda H, Muromoto R, Hirashima K, Ishimura K, et al. 2020.. Design and synthesis of benzene congeners of resolvin E2, a proresolving lipid mediator, as its stable equivalents. . ACS Med. Chem. Lett. 11::47984
    [Crossref] [Google Scholar]
  84. 84.
    Savin IA, Zenkova MA, Sen'kova AV. 2022.. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. . Int. J. Mol. Sci. 23::14959
    [Crossref] [Google Scholar]
  85. 85.
    Lee TH, Crea AE, Gant V, Spur BW, Marron BE, et al. 1990.. Identification of lipoxin A4 and its relationship to the sulfidopeptide leukotrienes C4, D4, and E4 in the bronchoalveolar lavage fluids obtained from patients with selected pulmonary diseases. . Am. Rev. Respir. Dis. 141::145358
    [Crossref] [Google Scholar]
  86. 86.
    Dahlén S-E, Dahlén B, Kumlin M, Björck T, Ihre E, Zetterström O. 1994.. Clinical and experimental studies of leukotrienes as mediators of airway obstruction in humans. . Adv. Prostaglandin Thromboxane Leukot. Res. 22::15566
    [Google Scholar]
  87. 87.
    Li W, Shepherd HM, Terada Y, Shay AE, Bery AI, et al. 2023.. Resolvin D1 prevents injurious neutrophil swarming in transplanted lungs. . PNAS 120::e2302938120
    [Crossref] [Google Scholar]
  88. 88.
    Zhu H, Kurokawa M, Chen M, Wang Q, Inoue M, Takao T. 2023.. Characteristic fragmentation of polyunsaturated fatty acids with allylic vicinal diols in positive-ion LC/ESI-MS/MS. . J. Lipid Res. 64::100384
    [Crossref] [Google Scholar]
  89. 89.
    Mas E, Croft KD, Zahra P, Barden A, Mori TA. 2012.. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. . Clin. Chem. 58::147684
    [Crossref] [Google Scholar]
  90. 90.
    Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. 2014.. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. . Am. J. Physiol. Cell Physiol. 307::C3954
    [Crossref] [Google Scholar]
  91. 91.
    Xiang SY, Ye Y, Yang Q, Xu HR, Shen CX, et al. 2021.. RvD1 accelerates the resolution of inflammation by promoting apoptosis of the recruited macrophages via the ALX/FasL-FasR/caspase-3 signaling pathway. . Cell Death Discov. 7::339
    [Crossref] [Google Scholar]
  92. 92.
    Devitt A, Griffiths HR, Milic I. 2018.. Communicating with the dead: lipids, lipid mediators and extracellular vesicles. . Biochem. Soc. Trans. 46::63139
    [Crossref] [Google Scholar]
  93. 93.
    Zhu ZZ, Wang WQ, Han JB, Wang L, Lyu W. 2021.. Different concentrations of specialized pro-resolving mediators in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. . Chin. J. Otorhinolaryngol. Head Neck Surg. 56::107379
    [Google Scholar]
  94. 94.
    Yang J, Eiserich JP, Cross CE, Morrissey BM, Hammock BD. 2012.. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic. . Biol. Med. 53::16071
    [Google Scholar]
  95. 95.
    Norris PC, Serhan CN. 2018.. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. . Biochem. Biophys. Res. Commun. 504::55361
    [Crossref] [Google Scholar]
  96. 96.
    Flitter BA, Hvorecny KL, Ono E, Eddens T, Yang J, et al. 2017.. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators. . PNAS 114::13641
    [Crossref] [Google Scholar]
  97. 97.
    Codagnone M, Cianci E, Lamolinara A, Mari VC, Nespoli A, et al. 2018.. Resolvin D1 enhances the resolution of lung inflammation caused by long-term Pseudomonas aeruginosa infection. . Mucosal Immunol. 11::3549
    [Crossref] [Google Scholar]
  98. 98.
    Duvall MG, Bruggemann TR, Levy BD. 2017.. Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. . Mol. Aspects Med. 58::4456
    [Crossref] [Google Scholar]
  99. 99.
    Ringholz FC, Higgins G, Hatton A, Sassi A, Moukachar A, et al. 2018.. Resolvin D1 regulates epithelial ion transport and inflammation in cystic fibrosis airways. . J. Cyst. Fibros. 17::60715
    [Crossref] [Google Scholar]
  100. 100.
    Shum M, London CM, Briottet M, Sy KA, Baillif V, et al. 2022.. CF patients’ airway epithelium and sex contribute to biosynthesis defects of pro-resolving lipids. . Front. Immunol. 13::915261
    [Crossref] [Google Scholar]
  101. 101.
    Philippe R, Urbach V. 2018.. Specialized pro-resolving lipid mediators in cystic fibrosis. . Int. J. Mol. Sci. 19::2865
    [Crossref] [Google Scholar]
  102. 102.
    Ferri G, Serano M, Isopi E, Mucci M, Mattoscio D, et al. 2023.. Resolvin D1 improves airway inflammation and exercise capacity in cystic fibrosis lung disease. . FASEB J. 37::e23233
    [Crossref] [Google Scholar]
  103. 103.
    Recchiuti A, Isopi E, Romano M, Mattoscio D. 2020.. Roles of specialized pro-resolving lipid mediators in autophagy and inflammation. . Int. J. Mol. Sci. 21::6637
    [Crossref] [Google Scholar]
  104. 104.
    Thornton JM, Walker JM, Sundarasivarao PYK, Spur BW, Rodriguez A, Yin K. 2021.. Lipoxin A4 promotes reduction and antibiotic efficacy against Pseudomonas aeruginosa biofilm. . Prostaglandins Other Lipid Mediat. 152::106505
    [Crossref] [Google Scholar]
  105. 105.
    Sham HP, Walker KH, Abdulnour RE, Krishnamoorthy N, Douda DN, et al. 2018.. 15-Epi-lipoxin A4, resolvin D2, and resolvin D3 induce NF-κB regulators in bacterial pneumonia. . J. Immunol. 200::275766
    [Crossref] [Google Scholar]
  106. 106.
    Tavares LP, Brüggemann TR, Rezende RM, Machado MG, Cagnina RE, et al. 2022.. Cysteinyl maresins reprogram macrophages to protect mice from Streptococcus pneumoniae after influenza A virus infection. . mBio 13::e0126722
    [Crossref] [Google Scholar]
  107. 107.
    Walker KH, Krishnamoorthy N, Brüggemann TR, Shay AE, Serhan CN, Levy BD. 2021.. Protectins PCTR1 and PD1 reduce viral load and lung inflammation during respiratory syncytial virus infection in mice. . Front. Immunol. 12::704427
    [Crossref] [Google Scholar]
  108. 108.
    Krishnamoorthy N, Walker KH, Brüggemann TR, Tavares LP, Smith EW, et al. 2023.. The Maresin 1-LGR6 axis decreases respiratory syncytial virus-induced lung inflammation. . PNAS 120::e2206480120
    [Crossref] [Google Scholar]
  109. 109.
    Jundi B, Lee DH, Jeon H, Duvall MG, Nijmeh J, et al. 2021.. Inflammation resolution circuits are uncoupled in acute sepsis and correlate with clinical severity. . JCI Insight 6::e148866
    [Google Scholar]
  110. 110.
    Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. 2015.. Asthma. . Nat. Rev. Dis. Primers 1::15025
    [Crossref] [Google Scholar]
  111. 111.
    Brusselle GG, Koppelman GH. 2022.. Biologic therapies for severe asthma. . N. Engl. J. Med. 386::15771
    [Crossref] [Google Scholar]
  112. 112.
    Peh HY, Brüggemann TR, Duvall MG, Nshimiyimana R, Nijmeh J, et al. 2024.. Resolvin D2 regulates type 2 inflammatory responses and promotes resolution of mouse allergic inflammation. . Allergy 79::73943
    [Crossref] [Google Scholar]
  113. 113.
    Brüggemann TR, Peh HY, Tavares LP, Nijmeh J, Shay AE, et al. 2023.. Eosinophil phenotypes are functionally regulated by resolvin D2 during allergic lung inflammation. . Am. J. Respir. Cell Mol. Biol. 69::66677
    [Crossref] [Google Scholar]
  114. 114.
    Duvall MG, Barnig C, Cernadas M, Ricklefs I, Krishnamoorthy N, et al. 2017.. Natural killer cell-mediated inflammation resolution is disabled in severe asthma. . Sci. Immunol. 2::eaam5446
    [Crossref] [Google Scholar]
  115. 115.
    Ricklefs I, Barkas I, Duvall MG, Cernadas M, Grossman NL, et al. 2017.. ALX receptor ligands define a biochemical endotype for severe asthma. . JCI Insight 2::e93534
    [Crossref] [Google Scholar]
  116. 116.
    Tejera P, Abdulnour RE, Zhu Z, Su L, Levy BD, Christiani DC. 2020.. Plasma levels of proresolving and prophlogistic lipid mediators: association with severity of respiratory failure and mortality in acute respiratory distress syndrome. . Crit. Care Explor. 2::e0241
    [Crossref] [Google Scholar]
  117. 117.
    Krishnamoorthy N, Burkett PR, Dalli J, Abdulnour RE, Colas R, et al. 2015.. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. . J. Immunol. 194::86367
    [Crossref] [Google Scholar]
  118. 118.
    Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD. 2005.. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. . J. Immunol. 174::503339
    [Crossref] [Google Scholar]
  119. 119.
    Abdulnour RE, Gunderson T, Barkas I, Timmons JY, Barnig C, et al. 2018.. Early intravascular events are associated with development of acute respiratory distress syndrome. A substudy of the LIPS-A clinical trial. . Am. J. Respir. Crit. Care Med. 197::157585
    [Crossref] [Google Scholar]
  120. 120.
    Chiarella SE, Barnes PJ. 2023.. Endogenous inhibitory mechanisms in asthma. . J. Allergy Clin. Immunol. Glob. 2::100135
    [Crossref] [Google Scholar]
  121. 121.
    Abdulnour RE, Dalli J, Colby JK, Krishnamoorthy N, Timmons JY, et al. 2014.. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. . PNAS 111::1652631
    [Crossref] [Google Scholar]
  122. 122.
    Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, et al. 2013.. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. . Mucosal Immunol. 6::25666
    [Crossref] [Google Scholar]
  123. 123.
    Seki H, Fukunaga K, Arita M, Arai H, Nakanishi H, et al. 2010.. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. . J. Immunol. 184::83643
    [Crossref] [Google Scholar]
  124. 124.
    Serhan CN, Petasis NA. 2011.. Resolvins and protectins in inflammation-resolution. . Chem. Rev. 111::592243
    [Crossref] [Google Scholar]
  125. 125.
    Sasaki K, Urabe D, Arai H, Arita M, Inoue M. 2011.. Total synthesis and bioactivities of two proposed structures of maresin. . Chem. Asian J. 6::53443
    [Crossref] [Google Scholar]
  126. 126.
    Rodriguez AR, Spur BW. 2012.. Total synthesis of Resolvin D1, a potent anti-inflammatory lipid mediator. . Tetrahedron Lett. 53::699094
    [Crossref] [Google Scholar]
  127. 127.
    Vidar Hansen T, Serhan CN. 2022.. Protectins: Their biosynthesis, metabolism and structure-functions. . Biochem. Pharmacol. 206::115330
    [Crossref] [Google Scholar]
  128. 128.
    Balas L, Risé P, Gandrath D, Rovati G, Bolego C, et al. 2019.. Rapid metabolization of protectin D1 by β-oxidation of its polar head chain. . J. Med. Chem. 62::996175
    [Crossref] [Google Scholar]
  129. 129.
    Reinertsen AF, Libreros S, Nshimiyimana R, Serhan CN, Hansen TV. 2023.. Metabolization of Resolvin E4 by ω-oxidation in human neutrophils: synthesis and biological evaluation of 20-hydroxy-resolvin E4 (20-OH-RvE4). . ACS Pharmacol. Transl. Sci. 6::18981908
    [Crossref] [Google Scholar]
  130. 130.
    Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee C-H, et al. 2010.. Resolvin D1 binds human phagocytes with evidence for pro-resolving receptors. . PNAS 107::166065
    [Crossref] [Google Scholar]
  131. 131.
    Nunes VS, Abrahão O Jr., Rogério AP, Serhan CN. 2023.. ALX/FPR2 activation by stereoisomers of D1 resolvins elucidating with molecular dynamics simulation. . J. Phys. Chem. B 127::647986
    [Crossref] [Google Scholar]
  132. 132.
    Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, et al. 2013.. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. . PNAS 110::1823237
    [Crossref] [Google Scholar]
  133. 133.
    Chiang N, Serhan CN. 2020.. Specialized pro-resolving mediator network: an update on production and actions. . Essays Biochem. 64::44362
    [Crossref] [Google Scholar]
  134. 134.
    Chiang N, de la Rosa X, Libreros S, Serhan CN. 2017.. Novel resolvin D2 receptor axis in infectious inflammation. . J. Immunol. 198::84251
    [Crossref] [Google Scholar]
  135. 135.
    Chiang N, Shinohara M, Dalli J, Mirakaj V, Kibi M, et al. 2013.. Inhaled carbon monoxide accelerates resolution of inflammation via unique pro-resolving mediator–heme oxygenase-1 circuits. . J. Immunol. 190::637888
    [Crossref] [Google Scholar]
  136. 136.
    Shinohara M, Kibi M, Riley IR, Chiang N, Dalli J, et al. 2014.. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. . Am. J. Physiol. Lung Cell. Mol. Physiol. 307::L74657
    [Crossref] [Google Scholar]
  137. 137.
    Fredenburgh LE, Perrella MA, Barragan-Bradford D, Hess DR, Peters E, et al. 2018.. A phase I trial of low-dose inhaled carbon monoxide in sepsis-induced ARDS. . JCI Insight 3::e124039
    [Crossref] [Google Scholar]
  138. 138.
    Colby JK, Abdulnour RE, Sham HP, Dalli J, Colas RA, et al. 2016.. Resolvin D3 and aspirin-triggered resolvin D3 are protective for injured epithelia. . Am. J. Pathol. 186::180113
    [Crossref] [Google Scholar]
  139. 139.
    He P, Hao J, Kong LF, Wotan A, Yan P, et al. 2024.. Resolvin and lipoxin metabolism network regulated by Hyssopus Cuspidatus Boriss extract in asthmatic mice. . Prostaglandins Other Lipid Mediat. 170::106803
    [Crossref] [Google Scholar]
  140. 140.
    Johnson RK, Manke J, Campbell M, Armstrong M, Boorgula MP, et al. 2022.. Lipid mediators are detectable in the nasal epithelium and differ by asthma status in female subjects. . J. Allergy Clin. Immunol. 150::96571.e8
    [Crossref] [Google Scholar]
  141. 141.
    Archambault AS, Zaid Y, Rakotoarivelo V, Turcotte C, Doré É, et al. 2021.. High levels of eicosanoids and docosanoids in the lungs of intubated COVID-19 patients. . FASEB J. 35::e21666
    [Crossref] [Google Scholar]
  142. 142.
    So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, et al. 2021.. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. . Atherosclerosis 316::9098
    [Crossref] [Google Scholar]
  143. 143.
    Barden A, Phillips M, Hill LM, Fletcher EM, Mas E, et al. 2018.. Antiemetic doses of dexamethasone and their effects on immune cell populations and plasma mediators of inflammation resolution in healthy volunteers. . Prostaglandins Leukot. Essent. Fatty Acids 139::3139
    [Crossref] [Google Scholar]
  144. 144.
    Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. 2014.. Vagus nerve controls resolution and pro-resolving mediators of inflammation. . J. Exp. Med. 211::103748
    [Crossref] [Google Scholar]
  145. 145.
    Tracey KJ. 2002.. The inflammatory reflex. . Nature 420::85359
    [Crossref] [Google Scholar]
  146. 146.
    Huang Y, Dong S, Li X, Shi J, Zhang Y, et al. 2024.. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. . FASEB J. 38::e9664
    [Crossref] [Google Scholar]
  147. 147.
    Rao Z, Brunner E, Giszas B, Iyer-Bierhoff A, Gerstmeier J, et al. 2023.. Glucocorticoids regulate lipid mediator networks by reciprocal modulation of 15-lipoxygenase isoforms affecting inflammation resolution. . PNAS 120::e2302070120
    [Crossref] [Google Scholar]
  148. 148.
    Freedman SD, Blanco PG, Zaman MM, Shea JC, Ollero M, et al. 2004.. Association of cystic fibrosis with abnormalities in fatty acid metabolism. . N. Engl. J. Med. 350::56069
    [Crossref] [Google Scholar]
  149. 149.
    Funk CD. 2001.. Prostaglandins and leukotrienes: advances in eicosanoid biology. . Science 294::187175
    [Crossref] [Google Scholar]
  150. 150.
    Arita M, Clish CB, Serhan CN. 2005.. The contributions of aspirin and microbial oxygenase in the biosynthesis of anti-inflammatory resolvins: novel oxygenase products from omega-3 polyunsaturated fatty acids. . Biochem. Biophy. Res. Commun. 338::14957
    [Crossref] [Google Scholar]
  151. 151.
    Capdevila JH, Falck JR, Dishman E, Karara A. 1990.. Cytochrome P-450 arachidonate oxygenase. . In Arachidonate Related Lipid Mediators, ed. RC Murphy, FA Fitzpatrick , pp. 38594. San Diego:: Academic
    [Google Scholar]
  152. 152.
    Serhan CN, Fredman G, Yang R, Karamnov S, Belayev LS, et al. 2011.. Novel proresolving aspirin-triggered DHA pathway. . Chem. Biol. 18::97687
    [Crossref] [Google Scholar]
  153. 153.
    Hamidzadeh K, Westcott J, Wourms N, Shay AE, Panigrahy A, et al. 2022.. A newly synthesized 17-epi-NeuroProtectin D1/17-epi-Protectin D1: authentication and functional regulation of inflammation-resolution. . Biochem. Pharmacol. 203::115181
    [Crossref] [Google Scholar]
  154. 154.
    Malawista SE, de Boisfleury Chevance A, van Damme J, Serhan CN. 2008.. Tonic inhibition of chemotaxis in human plasma. . PNAS 105::1794954
    [Crossref] [Google Scholar]
  155. 155.
    Hopke A, Lin T, Scherer AK, Shay AE, Timmer KD, et al. 2022.. Transcellular biosynthesis of leukotriene B4 orchestrates neutrophil swarming to fungi. . iScience 25::105226
    [Crossref] [Google Scholar]
  156. 156.
    Dalli J, Chiang N, Serhan CN. 2014.. Identification of sulfido-conjugated mediators that promote resolution of infection and organ protection. . PNAS 111::E475361
    [Crossref] [Google Scholar]
  157. 157.
    Dalli J, Vlasakov I, Riley IR, Rodriguez AR, Spur B, et al. 2016.. Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. . PNAS 113::1223237
    [Crossref] [Google Scholar]
  158. 158.
    Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, et al. 2006.. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. . J. Immunol. 176::184859
    [Crossref] [Google Scholar]
  159. 159.
    Ramon S, Dalli J, Sanger JM, Winkler JW, Aursnes M, et al. 2016.. The protectin PCTR1 is produced by human M2 macrophages and enhances resolution of infectious inflammation. Am. J. Pathol. 186::96273
    [Crossref] [Google Scholar]
  160. 160.
    Townsend EA, Guadarrama A, Shi L, Roti Roti E, Denlinger LC. 2023.. P2X7 signaling influences the production of pro-resolving and pro-inflammatory lipid mediators in alveolar macrophages derived from individuals with asthma. . Am. J. Physiol. Lung Cell. Mol. Physiol. 325::L399410
    [Crossref] [Google Scholar]
  161. 161.
    Puzzovio PG, Pahima H, George T, Mankuta D, Eliashar R, et al. 2023.. Mast cells contribute to the resolution of allergic inflammation by releasing resolvin D1. . Pharmacol. Res. 189::106691
    [Crossref] [Google Scholar]
  162. 162.
    Cox R Jr., Phillips O, Fukumoto J, Fukumoto I, Tamarapu Parthasarathy P, et al. 2015.. Resolvins decrease oxidative stress mediated macrophage and epithelial cell interaction through decreased cytokine secretion. . PLOS ONE 10::e0136755
    [Crossref] [Google Scholar]
  163. 163.
    Koltsida O, Karamnov S, Pyrillou K, Vickery T, Chairakaki AD, et al. 2013.. Toll-like receptor 7 stimulates production of specialized pro-resolving lipid mediators and promotes resolution of airway inflammation. . EMBO Mol. Med. 5::76275
    [Crossref] [Google Scholar]
  164. 164.
    Navarini L, Vomero M, Currado D, Berardicurti O, Biaggi A, et al. 2023.. The specialized pro-resolving lipid mediator Protectin D1 affects macrophages differentiation and activity in Adult-onset Still's disease and COVID-19, two hyperinflammatory diseases sharing similar transcriptomic profiles. . Front. Immunol. 14::1148268
    [Crossref] [Google Scholar]
  165. 165.
    Miyata J, Yokokura Y, Moro K, Arai H, Fukunaga K, Arita M. 2021.. 12/15-Lipoxygenase regulates IL-33-induced eosinophilic airway inflammation in mice. . Front. Immunol. 12::687192
    [Crossref] [Google Scholar]
  166. 166.
    Serhan CN, Fahlstadius P, Dahlén SE, Hamberg M, Samuelsson B. 1985.. Biosynthesis and biological activities of lipoxins. . Adv. Prostaglandin Thromboxane Leukot. Res. 15::16366
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020924-033209
Loading
/content/journals/10.1146/annurev-physiol-020924-033209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error