The glomerulus is a highly specialized microvascular bed that filters blood to form primary urinary filtrate. It contains four cell types: fenestrated endothelial cells, specialized vascular support cells termed podocytes, perivascular mesangial cells, and parietal epithelial cells. Glomerular cell-cell communication is critical for the development and maintenance of the glomerular filtration barrier. VEGF, ANGPT, EGF, SEMA3A, TGF-β, and CXCL12 signal in paracrine fashions between the podocytes, endothelium, and mesangium associated with the glomerular capillary bed to maintain filtration barrier function. In this review, we summarize the current understanding of these signaling pathways in the development and maintenance of the glomerulus and the progression of disease.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Haraldsson B, Nystrom J, Deen WM. 1.  2008. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88:451–87 [Google Scholar]
  2. Herrera GA. 2.  2006. Plasticity of mesangial cells: a basis for understanding pathological alterations. Ultrastruct. Pathol. 30:471–79 [Google Scholar]
  3. Ohyama K, Seyer JM, Raghow R, Kang AH. 3.  1990. Extracellular matrix phenotype of rat mesangial cells in culture. Biosynthesis of collagen types I, III, IV, and V and a low molecular weight collagenous component and their regulation by dexamethasone. J. Lab. Clin. Med. 116:219–27 [Google Scholar]
  4. Johnson RJ, Floege J, Yoshimura A, Iida H, Couser WG, Alpers CE. 4.  1992. The activated mesangial cell: a glomerular “myofibroblast”?. J. Am. Soc. Nephrol. 2:S190–97 [Google Scholar]
  5. Abrahamson DR. 5.  1991. Glomerulogenesis in the developing kidney. Semin. Nephrol. 11:375–89 [Google Scholar]
  6. Choi ME, Ballermann BJ. 6.  1995. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J. Biol. Chem. 270:21144–50 [Google Scholar]
  7. Ichimura K, Stan RV, Kurihara H, Sakai T. 7.  2008. Glomerular endothelial cells form diaphragms during development and pathologic conditions. J. Am. Soc. Nephrol. 19:1463–71 [Google Scholar]
  8. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G. 8.  et al. 2003. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Investig. 111:707–16 [Google Scholar]
  9. Lindahl P, Hellstrom M, Kalen M, Karlsson L, Pekny M. 9.  et al. 1998. Paracrine PDGF-B/PDGF-Rβ signaling controls mesangial cell development in kidney glomeruli. Development 125:3313–22 [Google Scholar]
  10. Bjarnegård M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S. 10.  et al. 2004. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131:1847–57 [Google Scholar]
  11. Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. 11.  1994. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8:1875–87 [Google Scholar]
  12. Eremina V, Cui S, Gerber H, Ferrara N, Haigh J. 12.  et al. 2006. Vascular endothelial growth factor A signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J. Am. Soc. Nephrol. 17:724–35 [Google Scholar]
  13. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. 13.  1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–45 [Google Scholar]
  14. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. 14.  2000. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J. Biol. Chem. 275:18040–45 [Google Scholar]
  15. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF. 15.  et al. 1995. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66 [Google Scholar]
  16. Fong GH, Zhang L, Bryce DM, Peng J. 16.  1999. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126:3015–25 [Google Scholar]
  17. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. 17.  1998. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. PNAS 95:9349–54 [Google Scholar]
  18. Kearney JB, Kappas NC, Ellerstrom C, DiPaola FW, Bautch VL. 18.  2004. The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis. Blood 103:4527–35 [Google Scholar]
  19. Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T. 19.  et al. 1998. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–49 [Google Scholar]
  20. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. 20.  1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22 [Google Scholar]
  21. Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA. 21.  et al. 1999. VEGF is required for growth and survival in neonatal mice. Development 126:1149–59 [Google Scholar]
  22. Kitamoto Y, Tokunaga H, Tomita K. 22.  1997. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Investig. 99:2351–57 [Google Scholar]
  23. Mattot V, Moons L, Lupu F, Chernavvsky D, Gómez RA. 23.  et al. 2002. Loss of the VEGF164 and VEGF188 isoforms impairs postnatal glomerular angiogenesis and renal arteriogenesis in mice. J. Am. Soc. Nephrol. 13:1548–60 [Google Scholar]
  24. Sison K, Eremina V, Baelde H, Min W, Hirashima M. 24.  et al. 2010. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. J. Am. Soc. Nephrol. 21:1691–701 [Google Scholar]
  25. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M. 25.  et al. 2008. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358:1129–36 [Google Scholar]
  26. Guan F, Villegas G, Teichman J, Mundel P, Tufro A. 26.  2006. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am. J. Physiol. Ren. Physiol. 291:F422–28 [Google Scholar]
  27. Ku CH, White KE, Dei Cas A, Hayward A, Webster Z. 27.  et al. 2008. Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice. Diabetes 57:2824–33 [Google Scholar]
  28. Jin J, Sison K, Li C, Tian R, Wnuk M. 28.  et al. 2012. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:384–99 [Google Scholar]
  29. Kurihara T, Westenskow PD, Bravo S, Aguilar E, Friedlander M. 29.  2012. Targeted deletion of Vegfa in adult mice induces vision loss. J. Clin. Investig. 122:4213–17 [Google Scholar]
  30. Eibel B, Rodrigues CG, Giusti II, Nesralla IA, Prates PR. 30.  et al. 2011. Gene therapy for ischemic heart disease: review of clinical trials. Rev. Bras. Cir. Cardiovasc. 26:635–46 [Google Scholar]
  31. Stillman IE, Karumanchi SA. 31.  2007. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 18:2281–84 [Google Scholar]
  32. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T. 32.  et al. 2006. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12:642–49 [Google Scholar]
  33. Chaiworapongsa T, Romero R, Kim YM, Kim GJ, Kim MR. 33.  et al. 2005. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal Neonatal Med. 17:3–18 [Google Scholar]
  34. Hertig A, Berkane N, Lefevre G, Toumi K, Marti HP. 34.  et al. 2004. Maternal serum sFlt1 concentration is an early and reliable predictive marker of preeclampsia. Clin. Chem. 50:1702–3 [Google Scholar]
  35. Maynard SE, Min JY, Merchan J, Lim KH, Li J. 35.  et al. 2003. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 111:649–58 [Google Scholar]
  36. Makris A, Thornton C, Thompson J, Thomson S, Martin R. 36.  et al. 2007. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int. 71:977–84 [Google Scholar]
  37. Lu F, Longo M, Tamayo E, Maner W, Al-Hendy A. 37.  et al. 2007. The effect of over-expression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am. J. Obstet. Gynecol. 196:396.e1–7; discussion e7 [Google Scholar]
  38. Ranieri G, Patruno R, Ruggieri E, Montemurro S, Valerio P, Ribatti D. 38.  2006. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13:1845–57 [Google Scholar]
  39. Izzedine H, Soria JC, Escudier B. 39.  2013. Proteinuria and VEGF-targeted therapies: an underestimated toxicity?. J. Nephrol. 26:807–10 [Google Scholar]
  40. Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, Jozwiak L. 40.  2007. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetic patients. Nephrol. Dial. Transplant. 22:827–32 [Google Scholar]
  41. Ray D, Mishra M, Ralph S, Read I, Davies R. 41.  et al. 2004. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 52:861–64 [Google Scholar]
  42. Amle D, Mir R, Khaneja A, Agarwal S, Ahlawat R. 42.  et al. 2015. Association of 18bp insertion/deletion polymorphism, at −2549 position of VEGF gene, with diabetic nephropathy in type 2 diabetes mellitus patients of North Indian population. J Diabetes Metab. Disord. 27:14–19 [Google Scholar]
  43. Rizkalla B, Forbes JM, Cao Z, Boner G, Cooper ME. 43.  2005. Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin-angiotensin system. J. Hypertens. 23:153–64 [Google Scholar]
  44. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ. 44.  et al. 1999. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48:2229–39 [Google Scholar]
  45. Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D. 45.  et al. 2011. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Investig. 121:2278–89 [Google Scholar]
  46. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. 46.  2001. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J. Am. Soc. Nephrol. 12:993–1000 [Google Scholar]
  47. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. 47.  2002. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51:3090–94 [Google Scholar]
  48. Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. 48.  2006. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol. 17:3093–104 [Google Scholar]
  49. Schrijvers BF, Flyvbjerg A, Tilton RG, Lameire NH. Vriese AS. 49. , De 2006. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat. Nephrol. Dial. Transplant. 21:324–29 [Google Scholar]
  50. Veron D, Reidy KJ, Bertuccio C, Teichman J, Villegas G. 50.  et al. 2010. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int. 77:989–99 [Google Scholar]
  51. Bertuccio C, Veron D, Aggarwal PK, Holzman L, Tufro A. 51.  2011. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J. Biol. Chem. 286:39933–44 [Google Scholar]
  52. Veron D, Bertuccio CA, Marlier A, Reidy K, Garcia AM. 52.  et al. 2011. Podocyte vascular endothelial growth factor (Vegf164) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia 54:1227–41 [Google Scholar]
  53. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. 53.  1998. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Investig. 100:3131–39 [Google Scholar]
  54. Weis SM, Cheresh DA. 54.  2005. Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504 [Google Scholar]
  55. Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. 55.  2012. Vegfa protects the glomerular microvasculature in diabetes. Diabetes 61:2958–66 [Google Scholar]
  56. Kumar D, Konkimalla S, Yadav A, Sataranatarajan K, Kasinath BS. 56.  et al. 2010. HIV-associated nephropathy: role of mammalian target of rapamycin pathway. Am. J. Pathol. 177:813–21 [Google Scholar]
  57. Korgaonkar SN, Feng X, Ross MD, Lu TC, D'Agati V. 57.  et al. 2008. HIV-1 upregulates VEGF in podocytes. J. Am. Soc. Nephrol. 19:877–83 [Google Scholar]
  58. Papeta N, Kiryluk K, Patel A, Sterken R, Kacak N. 58.  et al. 2011. APOL1 variants increase risk for FSGS and HIVAN but not IgA nephropathy. J. Am. Soc. Nephrol. 22:1991–96 [Google Scholar]
  59. Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G. 59.  et al. 2011. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22:2129–37 [Google Scholar]
  60. Nitta K, Uchida K, Kimata N, Honda K, Horita S. 60.  et al. 1999. Increased serum levels of vascular endothelial growth factor in human crescentic glomerulonephritis. Clin. Nephrol. 52:76–82 [Google Scholar]
  61. Yuan HT, Tipping PG, Li XZ, Long DA, Woolf AS. 61.  2002. Angiopoietin correlates with glomerular capillary loss in anti-glomerular basement membrane glomerulonephritis. Kidney Int. 61:2078–89 [Google Scholar]
  62. Hara A, Wada T, Furuichi K, Sakai N, Kawachi H. 62.  et al. 2006. Blockade of VEGF accelerates proteinuria, via decrease in nephrin expression in rat crescentic glomerulonephritis. Kidney Int. 69:1986–95 [Google Scholar]
  63. Thomas S, Vanuystel J, Gruden G, Rodriguez V, Burt D. 63.  et al. 2000. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J. Am. Soc. Nephrol. 11:1236–43 [Google Scholar]
  64. Ostendorf T, Kunter U, Eitner F, Loos A, Regele H. 64.  et al. 1999. VEGF165 mediates glomerular endothelial repair. J. Clin. Investig. 104:913–23 [Google Scholar]
  65. Haas CS, Campean V, Kuhlmann A, Dimmler A, Reulbach U. 65.  et al. 2006. Analysis of glomerular VEGF mRNA and protein expression in murine mesangioproliferative glomerulonephritis. Virchows Arch. 450:81–92 [Google Scholar]
  66. Masuda Y, Shimizu A, Mori T, Ishiwata T, Kitamura H. 66.  et al. 2001. Vascular endothelial growth factor enhances glomerular capillary repair and accelerates resolution of experimentally induced glomerulonephritis. Am. J. Pathol. 159:599–608 [Google Scholar]
  67. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M. 67.  et al. 2002. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62:4123–31 [Google Scholar]
  68. Kawamura H, Li X, Harper S, Bates D, Claesson-Welsh L. 68.  2008. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res. 68:4683–92 [Google Scholar]
  69. Varey AHR, Rennel ES, Qiu Y, Bevan HS, Perrin RM. 69.  et al. 2008. VEGF165b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br. J. Cancer 98:1366–79 [Google Scholar]
  70. Carter JG, Gammons MV, Damodaran G, Churchill AJ, Harper SJ, Bates DO. 70.  2015. The carboxyl terminus of VEGF-A is a potential target for anti-angiogenic therapy. Angiogenesis 18:23–30 [Google Scholar]
  71. Bevan H, van den Akker N, Qiu Y, Polman J, Foster R. 71.  et al. 2008. The alternatively spliced anti-angiogenic family of VEGF isoforms VEGFxxxb in human kidney development. Nephron Physiol. 110:57–67 [Google Scholar]
  72. Cui TG, Foster RR, Saleem M, Mathieson PW, Gillatt DA. 72.  et al. 2004. Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am. J. Physiol. Ren. Physiol. 286:F767–73 [Google Scholar]
  73. Schumacher VA, Jeruschke S, Eitner F, Becker JU, Pitschke G. 73.  et al. 2007. Impaired glomerular maturation and lack of VEGF165b in Denys-Drash syndrome. J. Am. Soc. Nephrol. 18:719–29 [Google Scholar]
  74. Amin EM, Oltean S, Hua J, Gammons MV, Hamdollah-Zadeh M. 74.  et al. 2011. WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20:768–80 [Google Scholar]
  75. Qiu Y, Ferguson J, Oltean S, Neal CR, Kaura A. 75.  et al. 2010. Overexpression of VEGF165b in podocytes reduces glomerular permeability. J. Am. Soc. Nephrol. 21:1498–509 [Google Scholar]
  76. Oltean S, Neal CR, Mavrou A, Patel P, Ahad T. 76.  et al. 2012. VEGF165b overexpression restores normal glomerular water permeability in VEGF164-overexpressing adult mice. Am. J. Physiol. Ren. Physiol. 303:F1026–36 [Google Scholar]
  77. Oltean S, Qiu Y, Ferguson JK, Stevens M, Neal C. 77.  et al. 2015. Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J. Am. Soc. Nephrol. 261889–904 [Google Scholar]
  78. Kärpänen T, Heckman C, Keskitalo S, Jeltsch M, Ollila H. 78.  et al. 2006. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 20:1462–72 [Google Scholar]
  79. Müller-Deile J, Worthmann K, Saleem M, Tossidou I, Haller H, Schiffer M. 79.  2009. The balance of autocrine VEGF-A and VEGF-C determines podocyte survival. Am. J. Physiol. Ren. Physiol. 297:F1656–67 [Google Scholar]
  80. Foster RR, Satchell SC, Seckley J, Emmett MS, Joory K. 80.  et al. 2006. VEGF-C promotes survival in podocytes. Am. J. Physiol. Ren. Physiol. 291:F196–207 [Google Scholar]
  81. Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A. 81.  et al. 2009. Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int. 75:828–38 [Google Scholar]
  82. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A. 82.  et al. 2000. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 14:2087–96 [Google Scholar]
  83. Foster R, Slater S, Seckley J, Kerjaschki D, Bates D. 83.  et al. 2008. Vascular endothelial growth factor-C, a potential paracrine regulator of glomerular permeability, increases glomerular endothelial cell monolayer integrity and intracellular calcium. Am. J. Pathol. 173:938–48 [Google Scholar]
  84. Foster R, Armstrong L, Baker S, Wong D, Wylie E. 84.  et al. 2013. Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. Am. J. Pathol. 183:604–16 [Google Scholar]
  85. Ostalska-Nowicka D, Zachwieja J, Nowicki M, Kaczmarek E, Siwinska A, Witt M. 85.  2005. Vascular endothelial growth factor (VEGF-C1)-dependent inflammatory response of podocytes in nephrotic syndrome glomerulopathies in children: an immunohistochemical approach. Histopathology 46:176–83 [Google Scholar]
  86. Lee AS, Lee JE, Jung YJ, Kim DH, Kang KP. 86.  et al. 2013. Vascular endothelial growth factor-C and -D are involved in lymphangiogenesis in mouse unilateral ureteral obstruction. Kidney Int. 83:50–62 [Google Scholar]
  87. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M. 87.  et al. 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8:1897–909 [Google Scholar]
  88. Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M. 88.  et al. 1992. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol. Cell. Biol. 12:1698–707 [Google Scholar]
  89. Davis S, Papadopoulos N, Aldrich TH, Maisonpierre PC, Huang T. 89.  et al. 2003. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat. Struct. Biol. 10:38–44 [Google Scholar]
  90. Satchell SC, Harper SJ, Tooke JE, Kerjaschki D, Saleem MA, Mathieson PW. 90.  2002. Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. J. Am. Soc. Nephrol. 13:544–50 [Google Scholar]
  91. Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V. 91.  et al. 2004. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–56 [Google Scholar]
  92. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL. 92.  et al. 1996. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–69 [Google Scholar]
  93. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ. 93.  et al. 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60 [Google Scholar]
  94. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC. 94.  et al. 1996. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–80 [Google Scholar]
  95. Reiss Y, Droste J, Heil M, Tribulova S, Schmidt MH. 95.  et al. 2007. Angiopoietin-2 impairs revascularization after limb ischemia. Circ. Res. 101:88–96 [Google Scholar]
  96. Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY. 96.  2000. Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–52 [Google Scholar]
  97. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. 97.  2009. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol. Cell. Biol. 29:2011–22 [Google Scholar]
  98. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q. 98.  et al. 2002. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3:411–23 [Google Scholar]
  99. Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A. 99.  et al. 2014. A lymphatic defect causes ocular hypertension and glaucoma in mice. J. Clin. Investig. 124:4320–24 [Google Scholar]
  100. Seegar TC, Eller B, Tzvetkova-Robev D, Kolev MV, Henderson SC. 100.  et al. 2010. Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol. Cell 37:643–55 [Google Scholar]
  101. Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J. 101.  1995. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14:5884–91 [Google Scholar]
  102. Thurston G, Suri C, Smith K, McClain J, Sato TN. 102.  et al. 1999. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–14 [Google Scholar]
  103. Kim I, Oh JL, Ryu YS, So JN, Sessa WC. 103.  et al. 2002. Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J. 16:126–28 [Google Scholar]
  104. Kim I, Moon SO, Park SK, Chae SW, Koh GY. 104.  2001. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ. Res. 89:477–79 [Google Scholar]
  105. Augustin HG, Koh GY, Thurston G, Alitalo K. 105.  2009. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10:165–77 [Google Scholar]
  106. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF. 106.  et al. 2004. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–63 [Google Scholar]
  107. Lobov IB, Brooks PC, Lang RA. 107.  2002. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. PNAS 99:11205–10 [Google Scholar]
  108. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS. 108.  et al. 2005. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–26 [Google Scholar]
  109. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. 109.  2011. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17:347–62 [Google Scholar]
  110. Serini G, Valdembri D, Bussolino F. 110.  2006. Integrins and angiogenesis: a sticky business. Exp. Cell Res. 312:651–58 [Google Scholar]
  111. Cascone T, Heymach JV. 111.  2012. Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double-edged sword?. J. Clin. Oncol. 30:441–44 [Google Scholar]
  112. Huang H, Bhat A, Woodnutt G, Lappe R. 112.  2010. Targeting the ANGPT-TIE2 pathway in malignancy. Nat. Rev. Cancer 10:575–85 [Google Scholar]
  113. Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT. 113.  et al. 2013. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J. Natl. Cancer Inst. 105:1188–201 [Google Scholar]
  114. Campochiaro PA, Sophie R, Tolentino M, Miller DM, Browning D. 114.  et al. 2015. Treatment of diabetic macular edema with an inhibitor of vascular endothelial-protein tyrosine phosphatase that activates Tie2. Ophthalmology 122:545–54 [Google Scholar]
  115. Loughna S, Hardman P, Landels E, Jussila L, Alitalo K, Woolf AS. 115.  1997. A molecular and genetic analysis of renalglomerular capillary development. Angiogenesis 1:84–101 [Google Scholar]
  116. Kolatsi-Joannou M, Li XZ, Suda T, Yuan HT, Woolf AS. 116.  2001. Expression and potential role of angiopoietins and Tie-2 in early development of the mouse metanephros. Dev. Dyn. 222:120–26 [Google Scholar]
  117. Yuan HT, Suri C, Yancopoulos GD, Woolf AS. 117.  1999. Expression of angiopoietin-1, angiopoietin-2, and the Tie-2 receptor tyrosine kinase during mouse kidney maturation. J. Am. Soc. Nephrol. 10:1722–36 [Google Scholar]
  118. Fukuhara S, Sako K, Minami T, Noda K, Kim HZ. 118.  et al. 2008. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat. Cell Biol. 10:513–26 [Google Scholar]
  119. Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A. 119.  et al. 2008. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat. Cell Biol. 10:527–37 [Google Scholar]
  120. Davis B, Dei Cas A, Long DA, White KE, Hayward A. 120.  et al. 2007. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J. Am. Soc. Nephrol. 18:2320–29 [Google Scholar]
  121. David S, John SG, Jefferies HJ, Sigrist MK, Kumpers P. 121.  et al. 2012. Angiopoietin-2 levels predict mortality in CKD patients. Nephrol. Dial. Transpl. 27:1867–72 [Google Scholar]
  122. Shroff RC, Price KL, Kolatsi-Joannou M, Todd AF, Wells D. 122.  et al. 2013. Circulating angiopoietin-2 is a marker for early cardiovascular disease in children on chronic dialysis. PLOS ONE 8:e56273 [Google Scholar]
  123. Kumpers P, David S, Haubitz M, Hellpap J, Horn R. 123.  et al. 2009. The Tie2 receptor antagonist angiopoietin 2 facilitates vascular inflammation in systemic lupus erythematosus. Ann. Rheum. Dis. 68:1638–43 [Google Scholar]
  124. Salama MK, Taha FM, Safwat M, Darweesh HE, Basel ME. 124.  2012. The Tie2 receptor antagonist angiopoietin-2 in systemic lupus erythematosus: its correlation with various disease activity parameters. Immunol. Investig. 41:864–75 [Google Scholar]
  125. El-Banawy HS, Gaber EW, Maharem DA, Matrawy KA. 125.  2012. Angiopoietin-2, endothelial dysfunction and renal involvement in patients with systemic lupus erythematosus. J. Nephrol. 25:541–50 [Google Scholar]
  126. Lovric S, Lukasz A, Hafer C, Kielstein JT, Haubitz M. 126.  et al. 2010. Removal of elevated circulating angiopoietin-2 by plasma exchange—a pilot study in critically ill patients with thrombotic microangiopathy and anti-glomerular basement membrane disease. Thromb. Haemost. 104:1038–43 [Google Scholar]
  127. Yamamoto Y, Maeshima Y, Kitayama H, Kitamura S, Takazawa Y. 127.  et al. 2004. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes 53:1831–40 [Google Scholar]
  128. Lee S, Kim W, Moon SO, Sung MJ, Kim DH. 128.  et al. 2007. Renoprotective effect of COMP-angiopoietin-1 in db/db mice with type 2 diabetes. Nephrol. Dial. Transpl. 22:396–408 [Google Scholar]
  129. Dessapt-Baradez C, Woolf AS, White KE, Pan J, Huang JL. 129.  et al. 2014. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J. Am. Soc. Nephrol. 25:33–42 [Google Scholar]
  130. Chen J, Chen J-K, Harris R. 130.  2012. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Kidney Int. 82:45–52 [Google Scholar]
  131. Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ. 131.  et al. 2009. PKC-β1 mediates glucose-induced Akt activation and TGF-β1 upregulation in mesangial cells. J. Am. Soc. Nephrol. 20:554–66 [Google Scholar]
  132. Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC. 132.  2007. Collagen I induction by high glucose levels is mediated by epidermal growth factor receptor and phosphoinositide 3-kinase/Akt signalling in mesangial cells. Diabetologia 50:2008–18 [Google Scholar]
  133. Bollee G, Flamant M, Schordan S, Fligny C, Rumpel E. 133.  et al. 2011. Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat. Med. 17:1242–50 [Google Scholar]
  134. Gilbert RE, Cox A, McNally PG, Wu LL, Dziadek M. 134.  et al. 1997. Increased epidermal growth factor in experimental diabetes related kidney growth in rats. Diabetologia 40:778–85 [Google Scholar]
  135. Lee YJ, Shin SJ, Lin SR, Tan MS, Tsai JH. 135.  1995. Increased expression of heparin binding epidermal growth-factor-like growth factor mRNA in the kidney of streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 207:216–22 [Google Scholar]
  136. Wassef L, Kelly D, Gilbert R. 136.  2004. Epidermal growth factor receptor inhibition attenuates early kidney enlargement in experimental diabetes. Kidney Int. 66:1805–14 [Google Scholar]
  137. Advani A, Wiggins K, Cox A, Zhang Y, Gilbert R, Kelly D. 137.  2011. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology 16:573–81 [Google Scholar]
  138. Chen J, Chen J-K, Harris R. 138.  2015. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J. Am. Soc. Nephrol. 26:51115–25 [Google Scholar]
  139. Daehn I, Casalena G, Zhang T, Shi S, Fenninger F. 139.  et al. 2014. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Investig. 124:1608–21 [Google Scholar]
  140. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC. 140.  1996. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–28 [Google Scholar]
  141. Reidy K, Tufro A. 141.  2011. Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr. Nephrol. 26:1407–12 [Google Scholar]
  142. Tufro A. 142.  2014. Semaphorin3a signaling, podocyte shape, and glomerular disease. Pediatr. Nephrol. 29:751–55 [Google Scholar]
  143. Reidy K, Aggarwal P, Jimenez J, Thomas D, Veron D, Tufro A. 143.  2013. Excess podocyte semaphorin-3A leads to glomerular disease involving plexinA1-nephrin interaction. Am. J. Pathol. 183:1156–68 [Google Scholar]
  144. Veron D, Villegas G, Aggarwal PK, Bertuccio C, Jimenez J. 144.  et al. 2012. Acute podocyte vascular endothelial growth factor (VEGF-A) knockdown disrupts alphaVbeta3 integrin signaling in the glomerulus. PLOS ONE 7:e40589 [Google Scholar]
  145. Tapia R, Guan F, Gershin I, Teichman J, Villegas G, Tufro A. 145.  2008. Semaphorin3a disrupts podocyte foot processes causing acute proteinuria. Kidney Int. 73:733–40 [Google Scholar]
  146. Patrussi L, Baldari CT. 146.  2008. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol. Lett. 115:75–82 [Google Scholar]
  147. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K. 147.  et al. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–94 [Google Scholar]
  148. Takabatake Y, Sugiyama T, Kohara H, Matsusaka T, Kurihara H. 148.  et al. 2009. The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. J. Am. Soc. Nephrol. 20:1714–23 [Google Scholar]
  149. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J. 149.  et al. 2005. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem. 280:35760–66 [Google Scholar]
  150. Haege S, Einer C, Thiele S, Mueller W, Nietzsche S. 150.  et al. 2012. CXC chemokine receptor 7 (CXCR7) regulates CXCR4 protein expression and capillary tuft development in mouse kidney. PLOS ONEe42814 [Google Scholar]
  151. Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H. 151.  et al. 2008. Control of chemokine-guided cell migration by ligand sequestration. Cell 132:463–73 [Google Scholar]
  152. Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM. 152.  et al. 2007. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. PNAS 104:14759–64 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error