In recent years, researchers have devoted much attention to the diverse roles of macrophages and their contributions to tissue development, wound healing, and angiogenesis. What should not be lost in the discussions regarding the diverse biology of these cells is that when perturbed, macrophages are the primary contributors to potentially pathological inflammatory processes. Macrophages stand poised to rapidly produce large amounts of inflammatory cytokines in response to danger signals. The production of these cytokines can initiate a cascade of inflammatory mediator release that can lead to wholesale tissue destruction. The destructive inflammatory capability of macrophages is amplified by exposure to exogenous interferon-γ, which prolongs and heightens inflammatory responses. In simple terms, macrophages can thus be viewed as incendiary devices with hair triggers waiting to detonate. We have begun to ask questions about how these cells can be regulated to mitigate the collateral destruction associated with macrophage activation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Medzhitov R, Horng T. 1.  2009. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9:692–703 [Google Scholar]
  2. Hargreaves DC, Horng T, Medzhitov R. 2.  2009. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138:129–45 [Google Scholar]
  3. Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S. 3.  et al. 2011. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLOS Genet 7:e1002401 [Google Scholar]
  4. Barozzi I, Simonatto M, Bonifacio S, Yang L, Rohs R. 4.  et al. 2014. Co-regulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54:844–57 [Google Scholar]
  5. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F. 5.  et al. 2010. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32:317–28 [Google Scholar]
  6. Boehm U, Klamp T, Groot M, Howard JC. 6.  1997. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15:749–95 [Google Scholar]
  7. Qiao Y, Giannopoulou EG, Chan CH, Park S, Gong S. 7.  et al. 2013. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39:454–69 [Google Scholar]
  8. Bergeron M, Olivier M. 8.  2006. Trypanosoma cruzi-mediated IFN-γ-inducible nitric oxide output in macrophages is regulated by iNOS mRNA stability. J. Immunol. 177:6271–80 [Google Scholar]
  9. Su X, Yu Y, Zhong Y, Giannopoulou EG, Hu X. 9.  et al. 2015. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat. Immunol. 16:838–49 [Google Scholar]
  10. Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S. 10.  et al. 2002. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3:875–81 [Google Scholar]
  11. Martin M, Rehani K, Jope RS, Michalek SM. 11.  2005. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6:777–84 [Google Scholar]
  12. Heremans H, Van Damme J, Dillen C, Dijkmans R, Billiau A. 12.  1990. Interferon gamma, a mediator of lethal lipopolysaccharide-induced Shwartzman-like shock reactions in mice. J. Exp. Med. 171:1853–69 [Google Scholar]
  13. Kühbacher T, Gionchetti P, Hampe J, Helwig U, Rosenstiel P. 13.  et al. 2001. Activation of signal-transducer and activator of transcription 1 (STAT1) in pouchitis. Clin. Exp. Immunol. 123:395–401 [Google Scholar]
  14. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA. 14.  et al. 2003. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS 100:2610–15 [Google Scholar]
  15. Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M. 15.  et al. 2013. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation–polyendochrinopathy–enteropathy–X-linked-like syndrome. J. Allergy Clin. Immunol. 131:1611–23.e3 [Google Scholar]
  16. Rosenzweig SD, Holland SM. 16.  2005. Defects in the interferon-γ and interleukin-12 pathways. Immunol. Rev. 203:38–47 [Google Scholar]
  17. van der Pouw Kraan TCTM, van Gaalen FA, Kasperkovitz PV, Verbeet NL, Smeets TJM. 17.  et al. 2003. Rheumatoid arthritis is a heterogeneous disease: evidence for differences in the activation of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum 48:2132–45 [Google Scholar]
  18. Toro JR, Finlay D, Dou X, Zheng SC, Le Boit PE, Connolly MK. 18.  2000. Detection of type 1 cytokines in discoid lupus erythematosus. Arch. Dermatol. 136:1497–501 [Google Scholar]
  19. Browne TC, McQuillan K, McManus RM, O'Reilly J-A, Mills KHG, Lynch MA. 19.  2013. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J. Immunol. 190:2241–51 [Google Scholar]
  20. Kryczek I, Bruce AT, Gudjonsson JE, Johnston A, Aphale A. 20.  et al. 2008. Induction of IL-17+ T cell trafficking and development by IFN-γ: mechanism and pathological relevance in psoriasis. J. Immunol. 181:4733–41 [Google Scholar]
  21. Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R. 21.  2015. Stage-specific role of interferon-gamma in experimental autoimmune encephalomyelitis and multiple sclerosis. Front. Immunol. 6:492 [Google Scholar]
  22. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J. 22.  et al. 2009. Preferential recruitment of interferon-γ-expressing Th17 cells in multiple sclerosis. Ann. Neurol. 66:390–402 [Google Scholar]
  23. Kallaur AP, Oliveira SR, Simão ANC, Alfieri DF, Flauzino T. 23.  et al. 2016. Cytokine profile in patients with progressive multiple sclerosis and its association with disease progression and disability. Mol. Neurobiol. In press. doi: 10.1007/s12035-016-9846-x [Google Scholar]
  24. Hindinger C, Bergmann CC, Hinton DR, Phares TW, Parra GI. 24.  et al. 2012. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability. PLOS ONE 7:e42088 [Google Scholar]
  25. Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT. 25.  et al. 2005. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat. Immunol. 6:571–78 [Google Scholar]
  26. O'Neill LAJ, Bowie AG. 26.  2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7:353–64 [Google Scholar]
  27. Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. 27.  2003. Myd88S, a splice variant of Myd88, differentially modulates NF-κB- and AP-1-dependent gene expression. FEBS Lett 548:103–7 [Google Scholar]
  28. Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H. 28.  et al. 2009. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor Myd88-independent TLR4 pathway. Nat. Immunol. 10:579–86 [Google Scholar]
  29. Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G. 29.  2006. Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 7:139–47 [Google Scholar]
  30. Boone DL, Turer EE, Lee EG, Ahmad R-C, Wheeler MT. 30.  et al. 2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5:1052–60 [Google Scholar]
  31. Hayden MS, Ghosh S. 31.  2008. Shared principles in NF-κB signaling. Cell 132:344–62 [Google Scholar]
  32. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J. 32.  et al. 2010. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev 24:2760–65 [Google Scholar]
  33. Toney LM, Cattoretti G, Graf JA, Merghoub T, Pandolfi P-P. 33.  et al. 2000. BCL-6 regulates chemokine gene transcription in macrophages. Nat. Immunol. 1:214–20 [Google Scholar]
  34. Maine GN, Mao X, Komarck CM, Burstein E. 34.  2007. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–47 [Google Scholar]
  35. Labzin LI, Schmidt SV, Masters SL, Beyer M, Krebs W. 35.  et al. 2015. ATF3 is a key regulator of macrophage IFN responses. J. Immunol. 195:4446–55 [Google Scholar]
  36. Hutchins AP, Diez D, Miranda-Saavedra D. 36.  2013. The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges. Brief. Funct. Genom. 12:489–98 [Google Scholar]
  37. Bode JG, Ehlting C, Haussinger D. 37.  2012. The macrophage response towards LPS and its control through the P38MAPK-STAT3 axis. Cell Signal 24:1185–94 [Google Scholar]
  38. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G. 38.  et al. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357:1608–19 [Google Scholar]
  39. Fleming BD, Chandrasekaran P, Dillon LAL, Dalby E, Suresh R. 39.  et al. 2015. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. J. Leukoc. Biol. 98:395–407 [Google Scholar]
  40. Sica A, Mantovani A. 40.  2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 122:787–95 [Google Scholar]
  41. Huber S, Hoffmann R, Muskens F, Voehringer D. 41.  2010. Alternatively activated macrophages inhibit T-cell proliferation by STAT6-dependent expression of PD-L2. Blood 116:3311–20 [Google Scholar]
  42. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM. 42.  et al. 2001. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167:6533–44 [Google Scholar]
  43. Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. 43.  2013. Expression profiles of miRNAs in polarized macrophages. Int. J. Mol. Med. 31:797–802 [Google Scholar]
  44. Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. 44.  2012. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 287:21816–25 [Google Scholar]
  45. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. 45.  2011. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med. 17:64–70 [Google Scholar]
  46. Veremeyko T, Siddiqui S, Sotnikov I, Yung A, Ponomarev ED. 46.  2013. IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLOS ONE 8:e81774 [Google Scholar]
  47. Wu X, Dai Y, Yang Y, Huang C, Meng X. 47.  et al. 2016. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 148:237–48 [Google Scholar]
  48. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. 48.  2013. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. PNAS 110:11499–504 [Google Scholar]
  49. Zhang Y, Zhang H, Liu Z. 49.  2016. MicroRNA-147 suppresses proliferation, invasion and migration through the AKT/MTOR signaling pathway in breast cancer. Oncol. Lett. 11:405–10 [Google Scholar]
  50. Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L. 50.  et al. 2012. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. PNAS 109:E3101–10 [Google Scholar]
  51. Suojalehto H, Lindström I, Majuri M-L, Mitts C, Karjalainen J. 51.  et al. 2014. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int. Arch. Allergy Immunol. 163:168–78 [Google Scholar]
  52. Rückerl D, Jenkins SJ, Laqtom NN, Gallagher IJ, Sutherland TE. 52.  et al. 2012. Induction of IL-4rα-dependent microRNAs identifies PI3K/AKT signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120:2307–16 [Google Scholar]
  53. Kelly B, O'Neill LAJ. 53.  2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–84 [Google Scholar]
  54. Ruiz-García A, Monsalve E, Novellasdemunt L, Navarro-Sabaté À, Manzano A. 54.  et al. 2011. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J. Biol. Chem. 286:19247–58 [Google Scholar]
  55. Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S. 55.  2013. Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLOS ONE 8:e59778 [Google Scholar]
  56. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM. 56.  et al. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–67 [Google Scholar]
  57. Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM. 57.  2013. TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 122:1935–45 [Google Scholar]
  58. Kaczmarek E, Koziak K, Sévigny J, Siegel JB, Anrather J. 58.  et al. 1996. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem. 271:33116–22 [Google Scholar]
  59. Zimmermann H, Braun N. 59.  1999. Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog. Brain Res. 120:371–85 [Google Scholar]
  60. Mosser DM, Edwards JP. 60.  2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–69 [Google Scholar]
  61. Haskó G, Cronstein B. 61.  2013. Regulation of inflammation by adenosine. Front. Immunol. 4:85 [Google Scholar]
  62. Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. 62.  2015. IFN-γ prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J. Immunol. 195:3828–37 [Google Scholar]
  63. Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ. 63.  et al. 2005. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J. Immunol. 175:8260–70 [Google Scholar]
  64. Kreckler LM, Wan TC, Ge Z-D, Auchampach JA. 64.  2006. Adenosine inhibits tumor necrosis factor-α release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J. Pharmacol. Exp. Ther. 317:172–80 [Google Scholar]
  65. Sun Y, Duan Y, Eisenstein AS, Hu W, Quintana A. 65.  et al. 2012. A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors. J. Cell Sci. 125:4507–17 [Google Scholar]
  66. Haskó G, Szabó C, Németh ZH, Kvetan V, Pastores SM, Vizi ES. 66.  1996. Adenosine receptor agonists differentially regulate IL-10, TNF-α, and nitric oxide production in raw 264.7 macrophages and in endotoxemic mice. J. Immunol. 157:4634–40 [Google Scholar]
  67. Leibovich SJ, Chen J-F, Pinhal-Enfield G, Belem PC, Elson G. 67.  et al. 2002. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am. J. Pathol. 160:2231–44 [Google Scholar]
  68. Koupenova M, Johnston-Cox H, Ravid K. 68.  2012. Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr. Atheroscler. Rep. 14:460–68 [Google Scholar]
  69. Park JY, Pillinger MH, Abramson SB. 69.  2006. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin. Immunol. 119:229–40 [Google Scholar]
  70. Kalinski P. 70.  2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188:21–28 [Google Scholar]
  71. Kuroda E, Yamashita U. 71.  2003. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in Th1 activation in Th2-dominant BALB/c mice. J. Immunol. 170:757–64 [Google Scholar]
  72. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G. 72.  et al. 2013. PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J. Immunol. 190:565–77 [Google Scholar]
  73. Sokolowska M, Chen L-Y, Liu Y, Martinez-Anton A, Qi H-Y. 73.  et al. 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J. Immunol. 194:5472–87 [Google Scholar]
  74. Liu L, Ge D, Ma L, Mei J, Liu S. 74.  et al. 2012. Interleulin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J. Thorac. Oncol. 7:1091–100 [Google Scholar]
  75. Goto T, Herberman RB, Maluish A, Strong DM. 75.  1983. Cyclic AMP as a mediator of prostaglandin E-induced suppression of human natural killer cell activity. J. Immunol. 130:1350–55 [Google Scholar]
  76. Birrell MA, Maher SA, Dekkak B, Jones V, Wong S. 76.  et al. 2015. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax 70:740–47 [Google Scholar]
  77. Nakatsuji M, Minami M, Seno H, Yasui M, Komekado H. 77.  et al. 2015. EP4 receptor-associated protein in macrophages ameliorates colitis and colitis-associated tumorigenesis. PLOS Genet 11:e1005542 [Google Scholar]
  78. Harizi H, Juzan M, Grosset C, Rashedi M, Gualde N. 78.  2001. Dendritic cells issued in vitro from bone marrow produce PGE2 that contributes to the immunomodulation induced by antigen-presenting cells. Cell. Immunol. 209:19–28 [Google Scholar]
  79. Serezani CH, Chung J, Ballinger MN, Moore BB, Aronoff DM, Peters-Golden M. 79.  2007. Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am. J. Respir. Cell Mol. Biol. 37:562–70 [Google Scholar]
  80. Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. 80.  2014. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. J. Immunol. 193:2330–39 [Google Scholar]
  81. Nishimura T, Zhao X, Gan H, Koyasu S, Remold HG. 81.  2013. The prostaglandin E2 receptor EP4 is integral to a positive feedback loop for prostaglandin E2 production in human macrophages infected with Mycobacterium tuberculosis. FASEB J 27:3827–36 [Google Scholar]
  82. Na YR, Yoon YN, Son D, Jung D, Gu GJ, Seok SH. 82.  2015. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype. PLOS ONE 10:e0118203 [Google Scholar]
  83. Scher JU, Pillinger MH. 83.  2015. The anti-inflammatory effects of prostaglandins. J. Investig. Med. 57:703–8 [Google Scholar]
  84. Serhan CN, Chiang N, Dalli J. 84.  2015. The resolution code of acute inflammation: novel pro-resolving lipid mediators in resolution. Semin. Immunol. 27:200–15 [Google Scholar]
  85. Qu Q, Xuan W, Fan G-H. 85.  2015. Roles of resolvins in the resolution of acute inflammation. Cell Biol. Int. 39:3–22 [Google Scholar]
  86. Spite M, Norling LV, Summers L, Yang R, Cooper D. 86.  et al. 2009. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461:1287–91 [Google Scholar]
  87. Cox R, Phillips O, Fukumoto J, Fukumoto I, Tamarapu Parthasarathy P. 87.  et al. 2015. Resolvins decrease oxidative stress mediated macrophage and epithelial cell interaction through decreased cytokine secretion. PLOS ONE 10e0136755 [Google Scholar]
  88. Schmid M, Gemperle C, Rimann N, Hersberger M. 88.  2016. Resolvin D1 polarizes primary human macrophages toward a proresolution phenotype through GPR32. J. Immunol. 196:3429–37 [Google Scholar]
  89. Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E. 89.  et al. 2011. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187:5408–18 [Google Scholar]
  90. Palmer CD, Mancuso CJ, Weiss JP, Serhan CN, Guinan EC, Levy O. 90.  2011. 17(R)-resolvin D1 differentially regulates TLR4-mediated responses of primary human macrophages to purified LPS and live E. coli.. J. Leukoc. Biol. 90:459–70 [Google Scholar]
  91. Lattin J, Zidar DA, Schroder K, Kellie S, Hume DA, Sweet MJ. 91.  2007. G-protein-coupled receptor expression, function, and signaling in macrophages. J. Leukoc. Biol. 82:16–32 [Google Scholar]
  92. Brennan F, Jackson A, Chantry D, Maini R, Feldmann M. 92.  1989. Inhibitory effect of TNFα antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 334:244–47 [Google Scholar]
  93. Baldwin AG, Brough D, Freeman S. 93.  2016. Inhibiting the inflammasome: a chemical perspective. J. Med. Chem. 59:1691–710 [Google Scholar]
  94. Rhen T, Cidlowski JA. 94.  2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353:1711–23 [Google Scholar]
  95. McKay LI, Cidlowski JA. 95.  1999. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocr. Rev. 20:435–59 [Google Scholar]
  96. Cato ACB, Nestl A, Mink S. 96.  2002. Rapid actions of steroid receptors in cellular signaling pathways. Sci. Signal. 2002:re9 [Google Scholar]
  97. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS. 97.  1995. Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270:283–86 [Google Scholar]
  98. Erwig L-P, Henson PM. 98.  2007. Immunological consequences of apoptotic cell phagocytosis. Am. J. Pathol. 171:2–8 [Google Scholar]
  99. Patterson H, Nibbs R, McInnes I, Siebert S. 99.  2014. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol. 176:1–10 [Google Scholar]
  100. Mócsai A, Ruland J, Tybulewicz VLJ. 100.  2010. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10:387–402 [Google Scholar]
  101. Liao C, Hsu J, Kim Y, Hu D-Q, Xu D. 101.  et al. 2013. Selective inhibition of spleen tyrosine kinase (SYK) with a novel orally bioavailable small molecule inhibitor, RO9021, impinges on various innate and adaptive immune responses: implications for SYK inhibitors in autoimmune disease therapy. Arthritis Res. Ther.15R146 [Google Scholar]
  102. Johnson GL, Lapadat R. 102.  2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–12 [Google Scholar]
  103. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA. 103.  et al. 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–60 [Google Scholar]
  104. Cuenda A, Rousseau S. 104.  2007. P38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta Mol. Cell Res. 1773:1358–75 [Google Scholar]
  105. Hommes D, Van Den Blink B, Plasse T, Bartelsman J, Xu C. 105.  et al. 2002. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122:7–14 [Google Scholar]
  106. Matozaki T, Murata Y, Okazawa H, Ohnishi H. 106.  2009. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol 19:72–80 [Google Scholar]
  107. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R. 107.  et al. 2000. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–71 [Google Scholar]
  108. Mihrshahi R, Brown MH. 108.  2010. Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J. Immunol. 185:7216–22 [Google Scholar]
  109. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. 109.  2006. Regulation of myeloid cell function through the CD200 receptor. J. Immunol. 176:191–99 [Google Scholar]
  110. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M. 110.  et al. 2006. Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177:3520–24 [Google Scholar]
  111. Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE. 111.  2003. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 171:594–99 [Google Scholar]
  112. Treede I, Braun A, Sparla R, Kühnel M, Giese T. 112.  et al. 2007. Anti-inflammatory effects of phosphatidylcholine. J. Biol. Chem. 282:27155–64 [Google Scholar]
  113. Wang J-Y, Shieh C-C, You P-F, Lei H-Y, Reid KBM. 113.  1998. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med. 158:510–18 [Google Scholar]
  114. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A. 114.  1991. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815–22 [Google Scholar]
  115. Mosser DM, Zhang X. 115.  2008. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev. 226:205–18 [Google Scholar]
  116. Sutterwala FS, Noel GJ, Clynes R, Mosser DM. 116.  1997. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J. Exp. Med. 185:1977–85 [Google Scholar]
  117. Miles SA, Conrad SM, Alves RG, Jeronimo SMB, Mosser DM. 117.  2005. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J. Exp. Med. 201:747–54 [Google Scholar]
  118. Massagué J. 118.  2012. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13:616–30 [Google Scholar]
  119. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 119.  1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 101:890–98 [Google Scholar]
  120. Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA, Thorbecke GJ. 120.  1991. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. PNAS 88:2918–21 [Google Scholar]
  121. Racke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE. 121.  1991. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J. Immunol. 146:3012–17 [Google Scholar]
  122. Willis BC, Borok Z. 122.  2007. TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L525–34 [Google Scholar]
  123. Bhardwaj S, Srivastava N, Sudan R, Saha B. 123.  2010. Leishmania interferes with host cell signaling to devise a survival strategy. J. Biomed. Biotechnol 2010:109189 [Google Scholar]
  124. Hickman SP, Chan J, Salgame P. 124.  2002. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J. Immunol. 168:4636–42 [Google Scholar]
  125. Kim SO, Sheikh HI, Ha S-D, Martins A, Reid G. 125.  2006. G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus-induced suppression of TNF production in macrophages. Cell. Microbiol. 8:1958–71 [Google Scholar]
  126. Hewitson JP, Grainger JR, Maizels RM. 126.  2009. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 167:1–11 [Google Scholar]
  127. Gautier EL, Ivanov S, Lesnik P, Randolph GJ. 127.  2013. Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood 122:2714–22 [Google Scholar]
  128. Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT. 128.  et al. 2011. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184:547–60 [Google Scholar]
  129. Seimon T, Tabas I. 129.  2009. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50:S382–87 [Google Scholar]
  130. Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. 130.  2010. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2:216–27 [Google Scholar]
  131. Huynh M-LN, Fadok VA, Henson PM. 131.  2002. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Investig. 109:41–50 [Google Scholar]
  132. Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. 132.  2016. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J. Immunol. Res. 2016:8239258 [Google Scholar]
  133. Schulert GS, Grom AA. 133.  2015. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu. Rev. Med. 66:145–59 [Google Scholar]
  134. Billiau AD, Roskams T, Van Damme-Lombaerts R, Matthys P, Wouters C. 134.  2004. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-γ-producing lymphocytes and IL-6- and TNF-α-producing macrophages. Blood 105:1648–51 [Google Scholar]
  135. Behrens EM, Canna SW, Slade K, Rao S, Kreiger PA. 135.  et al. Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice. J. Clin. Investig. 121:2264–77 [Google Scholar]
  136. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B. 136.  et al. 2014. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46:1140–46 [Google Scholar]
  137. Durand M, Troyanov Y, Laflamme P, Gregoire G. 137.  2010. Macrophage activation syndrome treated with anakinra. J. Rheumatol. 37:879–80 [Google Scholar]
  138. Shimizu M, Yokoyama T, Yamada K, Kaneda H, Wada H. 138.  et al. 2010. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology 49:1645–53 [Google Scholar]
  139. LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD. 139.  et al. 2003. Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol 171:6680–89 [Google Scholar]
  140. Ten Oever J, Kox M, van de Veerdonk FL, Mothapo KM, Slavcovici A. 140.  et al. 2014. The discriminative capacity of soluble Toll-like receptor (sTLR)2 and sTLR4 in inflammatory diseases. BMC Immunol 15:55 [Google Scholar]
  141. Kitchens RL, Thompson PA, Viriyakosol S, O'Keefe GE, Munford RS. 141.  2001. Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. J. Clin. Investig. 108:485–93 [Google Scholar]
  142. Wu J, Hu L, Zhang G, Wu F, He T. 142.  2015. Accuracy of presepsin in sepsis diagnosis: a systematic review and meta-analysis. PLOS ONE 10:e0133057 [Google Scholar]
  143. Honda Y, Yamagiwa S, Matsuda Y, Takamura M, Ichida T, Aoyagi Y. 143.  2007. Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. J. Hepatol. 47:404–11 [Google Scholar]
  144. Chuang TH, Ulevitch RJ. 144.  2004. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5:495–502 [Google Scholar]
  145. Chen NK, Chong TW, Loh HL, Lim KH, Gan VH. 145.  et al. 2013. Negative regulatory responses to metabolically triggered inflammation impair renal epithelial immunity in diabetes mellitus. J. Mol. Med. 91:587–98 [Google Scholar]
  146. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. 146.  2006. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat. Immunol. 7:1074–81 [Google Scholar]
  147. Basith S, Manavalan B, Govindaraj RG, Choi S. 147.  2011. In silico approach to inhibition of signaling pathways of Toll-like receptors 2 and 4 by ST2L. PLOS ONE 6:e23989 [Google Scholar]
  148. Su X, Li S, Meng M, Qian W, Xie W. 148.  et al. 2006. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-mediated signaling. Eur. J. Immunol. 36:199–206 [Google Scholar]
  149. Liang Y, Meng S, Zhang JA, Zhu YF, Li C. 149.  et al. 2016. Tumor necrosis factor receptor-associated factor 1 (TRAF1) polymorphisms and susceptibility to autoimmune thyroid disease. Autoimmunity 49:84–89 [Google Scholar]
  150. Shen J, Qiao Y, Ran Z, Wang T. 150.  2013. Different activation of TRAF4 and TRAF6 in inflammatory bowel disease. Mediat. Inflamm. 2013:647936 [Google Scholar]
  151. Takeshita F, Ishii KJ, Kobiyama K, Kojima Y, Coban C. 151.  et al. 2005. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. Eur. J. Immunol. 35:2477–85 [Google Scholar]
  152. Han C, Jin J, Xu S, Liu H, Li N, Cao X. 152.  2010. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of Myd88 and TRIF via Cbl-b. Nat. Immunol. 11:734–42 [Google Scholar]
  153. Abe T, Hirasaka K, Kohno S, Ochi A, Yamagishi N. 153.  et al. 2014. Ubiquitin ligase Cbl-b and obesity-induced insulin resistance. Endocr. J. 61:529–38 [Google Scholar]
  154. Lee BC, Miyata M, Lim JH, Li JD. 154.  2016. Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of Myd88. PNAS 113:E165–71 [Google Scholar]
  155. Nagy N, Farkas K, Kemény L, Széll M. 155.  2015. Phenotype-genotype correlations for clinical variants caused by CYLD mutations. Eur. J. Med. Genet. 58:271–78 [Google Scholar]
  156. Ahmed CMI, Larkin J, Johnson HM. 156.  2015. SOCS1 mimetics and antagonists: a complementary approach to positive and negative regulation of immune function. Front. Immunol. 6:183 [Google Scholar]
  157. Hardy MP, O'Neill LA. 157.  2004. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J. Biol. Chem. 279:27699–708 [Google Scholar]
  158. Rao N, Nguyen S, Ngo K, Fung-Leung WP. 158.  2005. A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol. Cell. Biol. 25:6521–32 [Google Scholar]
  159. Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr., Medzhitov R, Flavell RA. 159.  2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202 [Google Scholar]
  160. Lammers KM, Ouburg S, Morré SA, Crusius JBA, Gionchetti P. 160.  et al. 2005. Combined carriership of TLR9-1237C and CD14-260T alleles enhances the risk of developing chronic relapsing pouchitis. World J. Gastroenterol. 11:7323–29 [Google Scholar]
  161. An H, Zhao W, Hou J, Zhang Y, Xie Y. 161.  et al. 2006. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25:919–28 [Google Scholar]
  162. Abu-Dayyeh I, Shio MT, Sato S, Akira S, Cousineau B, Olivier M. 162.  2008. Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif. PLOS Negl. Trop. Dis. 2:e305 [Google Scholar]
  163. Zhu YY, Su Y, Li ZG, Zhang Y. 163.  2012. The largely normal response to Toll-like receptor 7 and 9 stimulation and the enhanced expression of SIGIRR by B cells in systemic lupus erythematosus. PLOS ONE 7:e44131 [Google Scholar]
  164. Ma A, Malynn BA. 164.  2012. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12:774–85 [Google Scholar]
  165. Gu YJ, Sun WY, Zhang S, Wu JJ, Wei W. 165.  2015. The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacol. Sin. 36:1277–87 [Google Scholar]
  166. Li H, Sun X, LeSage G, Zhang Y, Liang Z. 166.  et al. 2010. β-Arrestin 2 regulates toll-like receptor 4-mediated apoptotic signalling through glycogen synthase kinase-3β. Immunology 130:556–63 [Google Scholar]
  167. Wolska N, Rybakowska P, Rasmussen A, Brown M, Montgomery C. 167.  et al. 2016. Brief report: patients with primary Sjögren's syndrome who are positive for autoantibodies to tripartite motif-containing protein 38 show greater disease severity. Arthritis Rheumatol 68:724–29 [Google Scholar]
  168. Zhao W, Wang L, Zhang M, Yuan C, Gao C. 168.  2012. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages. J. Immunol. 188:2567–74 [Google Scholar]
  169. Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM. 169.  et al. 2013. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity 39:111–22 [Google Scholar]
  170. Shi M, Deng W, Bi E, Mao K, Ji Y. 170.  et al. 2008. TRIM30α negatively regulates TLR-mediated NF-κB activation by targeting TAB2 and TAB3 for degradation. Nat. Immunol. 9:369–77 [Google Scholar]
  171. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M. 171.  et al. 2006. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–78 [Google Scholar]
  172. Caso F, Galozzi P, Costa L, Sfriso P, Cantarini L, Punzi L. 172.  2015. Autoinflammatory granulomatous diseases: from Blau syndrome and early-onset sarcoidosis to NOD2-mediated disease and Crohn's disease. RMD Open Rheum. Musculoskelet. Dis. 1:e000097 [Google Scholar]
  173. Watanabe T, Kitani A, Murray PJ, Strober W. 173.  2004. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5:800–8 [Google Scholar]
  174. Stark A-K, Sriskantharajah S, Hessel EM, Okkenhaug K. 174.  2015. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 23:82–91 [Google Scholar]
  175. Saitoh T, Tun-Kyi A, Ryo A, Yamamoto M, Finn G. 175.  et al. 2006. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol. 7:598–605 [Google Scholar]
  176. Lu Z, Hunter T. 176.  2014. Prolyl isomerase Pin1 in cancer. Cell Res 24:1033–49 [Google Scholar]
  177. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K. 177.  et al. 2005. Negative regulation of Toll-like-receptor signaling by IRF-4. PNAS 102:15989–94 [Google Scholar]
  178. Manni M, Gupta S, Nixon BG, Weaver CT, Jessberger R, Pernis AB. 178.  2015. IRF4-dependent and IRF4-independent pathways contribute to DC dysfunction in lupus. PLOS ONE 10:e0141927 [Google Scholar]
  179. Ehrlich ES, Chmura JC, Smith JC, Kalu NN, Hayward GS. 179.  2014. KSHV RTA abolishes NFκB responsive gene expression during lytic reactivation by targeting vFLIP for degradation via the proteasome. PLOS ONE 9:e91359 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error