1932

Abstract

The family of genes encodes electroneutral Cl-dependent cation transporters (i.e., Na-Cl, K-Cl, Na-K-2Cl cotransporters), which play significant roles in maintaining cell and body homeostasis. Recent resolution of their structures at the atomic level provides a new understanding how these transporters operate in health and disease and how they are targeted for therapeutic intervention. Overall, the SLC12 transporter cryo-EM structures confirm some key features established by traditional biochemical and molecular methods, such as the presence of 12 transmembrane domains and the formation of a functional dimer. Study of these structures also uncovers previously unknown features, such as the presence of strategic salt bridges that explain why transporters are stabilized in specific conformations. The cryo-EM structures show similarities with other transport protein structures, especially regarding the position of the cations. The structures also pose challenging questions regarding the number of ions bound and the strict electroneutrality that is conventional understanding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022624-020130
2025-02-10
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022624-020130.html?itemId=/content/journals/10.1146/annurev-physiol-022624-020130&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ye AY, Liu QR, Li CY, Zhao M, Qu H. 2014.. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes. . PLOS ONE 9::e88883
    [Crossref] [Google Scholar]
  2. 2.
    Pizzagalli MD, Bensimon A, Superti-Furga G. 2021.. A guide to plasma membrane solute carrier proteins. . FEBS J. 288::2784835
    [Crossref] [Google Scholar]
  3. 3.
    Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, et al. 1993.. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. . PNAS 90::274953
    [Crossref] [Google Scholar]
  4. 4.
    Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee W-S, et al. 1994.. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. . J. Biol. Chem. 269::1771322
    [Crossref] [Google Scholar]
  5. 5.
    Delpire E, Rauchman MI, Beier DR, Hebert SC, Gullans SR. 1994.. Molecular cloning and chromosome localization of a putative basolateral Na-K-2Cl cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. . J. Biol. Chem. 269::2567783
    [Crossref] [Google Scholar]
  6. 6.
    Xu J-C, Lytle C, Zhu TT, Payne JA, Benz EJ, Forbush BI. 1994.. Molecular cloning and functional expression of the bumetanide-sensitive Na-K-2Cl cotransporter. . PNAS 91::22015
    [Crossref] [Google Scholar]
  7. 7.
    Igarashi P, Vanden Heuvel GB, Quaggin SE, Payne JA, Forbush BI. 1994.. Cloning, embryonic expression, and chromosomal localization of murine renal Na-K-Cl cotransporter (NKCC2). . J. Am. Soc. Nephrol. 5::288
    [Google Scholar]
  8. 8.
    Payne JA, Xu J-C, Haas M, Lytle CY, Ward D, Forbush BI. 1995.. Primary structure, functional expression, and chromosome localization of the bumetanide sensitive Na-K-Cl cotransporter in human colon. . J. Biol. Chem. 270::1797785
    [Crossref] [Google Scholar]
  9. 9.
    Gillen CM, Brill S, Payne JA, Forbush BI. 1996.. Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family. . J. Biol. Chem. 271::1623744
    [Crossref] [Google Scholar]
  10. 10.
    Payne JA, Stevenson TJ, Donaldson LF. 1996.. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. . J. Biol. Chem. 271::1624552
    [Crossref] [Google Scholar]
  11. 11.
    Mount DB, Mercado A, Song L, Xu J, George JAL, et al. 1999.. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. . J. Biol. Chem. 274::1635562
    [Crossref] [Google Scholar]
  12. 12.
    Hiki K, D'Andrea RJ, Furze J, Crawford J, Woollatt E, et al. 1999.. Cloning, characterization, and chromosomal location of a novel human K+-Cl cotransporter. . J. Biol. Chem. 274::1066167
    [Crossref] [Google Scholar]
  13. 13.
    Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ. 1999.. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. . Am. J. Physiol. Cell Physiol. 277::C121019
    [Crossref] [Google Scholar]
  14. 14.
    Leiserson WM, Forbush B, Keshishian H. 2011.. Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume. . Glia 59::32032
    [Crossref] [Google Scholar]
  15. 15.
    Rodan AR, Baum M, Huang CL. 2012.. The Drosophila NKCC Ncc69 is required for normal renal tubule function. . Am. J. Physiol. Cell Physiol. 303::C8894
    [Crossref] [Google Scholar]
  16. 16.
    Wu Y, Schellinger JN, Huang CL, Rodan AR. 2014.. Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. . J. Biol. Chem. 289::2613142
    [Crossref] [Google Scholar]
  17. 17.
    Stenesen D, Moehlman AT, Schellinger JN, Rodan AR, Krämer H. 2019.. The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. . Sci. Rep. 9::2475
    [Crossref] [Google Scholar]
  18. 18.
    Duong PC, McCabe TC, Riley GF, Holmes HL, Piermarini PM, et al. 2022.. Sequence analysis and function of mosquito aeCCC2 and Drosophila Ncc83 orthologs. . Insect Biochem. Mol. Biol. 143::103729
    [Crossref] [Google Scholar]
  19. 19.
    Kalsi M, Gillen C, Piermarini PM. 2019.. Heterologous expression of Aedes aegypti cation chloride cotransporter 2 (aeCCC2) in Xenopus laevis oocytes induces an enigmatic Na+/Li+ conductance. . Insects 10::71
    [Crossref] [Google Scholar]
  20. 20.
    Howard HC, Mount DB, Rochefort D, Byun N, Dupré N, et al. 2002.. Mutations in the K-Cl cotransporter KCC3 cause a severe peripheral neuropathy associated with agenesis of the corpus callosum. . Nat. Genet. 32::38492
    [Crossref] [Google Scholar]
  21. 21.
    Byun N, Delpire E. 2007.. Axonal and periaxonal swelling precede peripheral neurodegeneration in KCC3 knockout mice. . Neurobiol. Dis. 28::3951
    [Crossref] [Google Scholar]
  22. 22.
    Ferdaus MZ, Terker AS, Koumangoye R, Delpire E. 2022.. KCC3a, a strong candidate pathway for K+ loss in alkalemia. . Front. Cell Dev. Biol. 10::931326
    [Crossref] [Google Scholar]
  23. 23.
    Ferdaus MZ, Terker AS, Koumangoye R, Wall SM, Delpire E. 2023.. Bicarbonate is the primary inducer of KCC3a expression in renal cortical B-type intercalated cells. . Am. J. Physiol. Cell Physiol. 324::C117178
    [Crossref] [Google Scholar]
  24. 24.
    Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, et al. 2012.. The amino acid–polyamine–organocation superfamily. . J. Mol. Microbiol. Biotechnol. 22::10513
    [Google Scholar]
  25. 25.
    Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 2005.. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. . Nature 437::21523
    [Crossref] [Google Scholar]
  26. 26.
    Delpire E, Terker AS, Gagnon KB. 2023.. Pharmacology of compounds targeting cation-chloride cotransporter physiology. . Handb. Exp. Pharmacol. 283::24984
    [Crossref] [Google Scholar]
  27. 27.
    Gerelsaikhan T, Turner RJ. 2000.. Transmembrane topology of the secretory Na+-K+-2Cl cotransporter NKCC1 studied by in vitro translation. . J. Biol. Chem. 275::4047177
    [Crossref] [Google Scholar]
  28. 28.
    Moore-Hoon ML, Turner RJ. 2000.. The structural unit of the secretory Na+-K+-2Cl cotransporter (NKCC1) is a homodimer. . Biochemistry 39::371824
    [Crossref] [Google Scholar]
  29. 29.
    Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020.. Atomic-resolution protein structure determination by cryo-EM. . Nature 587::15761
    [Crossref] [Google Scholar]
  30. 30.
    Schmidt A, Teeter M, Weckert E, Lamzin VS. 2011.. Crystal structure of small protein crambin at 0.48Å resolution. . Acta Crystallogr. F 67::42428
    [Crossref] [Google Scholar]
  31. 31.
    Chew TA, Orlando BJ, Zhang J, Latorraca NR, Wang A, et al. 2019.. Structure and mechanism of the cation-chloride cotransporter NKCC1. . Nature 572::48892
    [Crossref] [Google Scholar]
  32. 32.
    Moseng MA, Su CC, Rios K, Cui M, Lyu M, et al. 2022.. Inhibition mechanism of NKCC1 involves the carboxyl terminus and long-range conformational coupling. . Sci. Adv. 8::eabq0952
    [Crossref] [Google Scholar]
  33. 33.
    Nan J, Yuan Y, Yang X, Shan Z, Liu H, et al. 2022.. Cryo-EM structure of the human sodium-chloride cotransporter NCC. . Sci. Adv. 8::eadd7176
    [Crossref] [Google Scholar]
  34. 34.
    Fan M, Zhang J, Lee CL, Zhang J, Feng L. 2023.. Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter. . Nature 614::78893
    [Crossref] [Google Scholar]
  35. 35.
    Xie Y, Chang S, Zhao C, Wang F, Liu S, et al. 2020.. Structures and an activation mechanism of human potassium-chloride cotransporters. . Sci. Adv. 6::eabc5883
    [Crossref] [Google Scholar]
  36. 36.
    Liu S, Chang S, Han B, Lingyi Xu L, Zhang M, et al. 2019.. Cryo-EM structures of the human cation-chloride cotransporter KCC1. . Science 366::5058
    [Crossref] [Google Scholar]
  37. 37.
    Nayak SR, Joseph D, Höfner G, Dakua A, Athreya A, et al. 2023.. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. . Nat. Struct. Mol. Biol. 30::102332
    [Crossref] [Google Scholar]
  38. 38.
    Coleman JA, Yang D, Zhao Z, Wen PC, Yoshioka C, et al. 2019.. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. . Nature 569::14145
    [Crossref] [Google Scholar]
  39. 39.
    Chen JG, Sachpatzidis A, Rudnick G. 1997.. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. . J. Biol. Chem. 272::2832127
    [Crossref] [Google Scholar]
  40. 40.
    Crane RK. 1960.. Intestinal absorption of sugars. . Physiol. Rev. 40::789825
    [Crossref] [Google Scholar]
  41. 41.
    Crane RK. 1962.. Hypothesis for mechanism of intestinal active transport of sugars. . Fed. Proc. 21::89195
    [Google Scholar]
  42. 42.
    Crane RK, Forstner G, Eichholz A. 1965.. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro. . Biochim. Biophys. Acta 109::46777
    [Crossref] [Google Scholar]
  43. 43.
    Crane RK. 1977.. The gradient hypothesis and other models of carrier-mediated active transport. . Rev. Physiol. Biochem. Pharmacol. 78::99159
    [Crossref] [Google Scholar]
  44. 44.
    Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM. 2000.. Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. . J. Biol. Chem. 275::3741422
    [Crossref] [Google Scholar]
  45. 45.
    Geck P, Heinz E. 1986.. The Na-K-2Cl cotransport system. . J. Membr. Biol. 91::97105
    [Crossref] [Google Scholar]
  46. 46.
    Hall AC, Ellory JC. 1985.. Measurement and stoichiometry of bumetanide-sensitive (2Na:1K:3Cl) cotransport in ferret red cells. . J. Membr. Biol. 85::20513
    [Crossref] [Google Scholar]
  47. 47.
    Jennings ML, Adame MF. 2001.. Direct estimate of 1:1 stoichiometry of K+-Cl cotransport in rabbit erythrocytes. . Am. J. Physiol. Cell Physiol. 281::C82532
    [Crossref] [Google Scholar]
  48. 48.
    Dunham PB, Steward GW, Ellory JC. 1980.. Chloride-activated passive potassium transport in human erythrocytes. . PNAS 77::171115
    [Crossref] [Google Scholar]
  49. 49.
    Kaji D. 1986.. Volume-sensitive K transport in human erythrocytes. . J. Gen. Physiol. 88::71938
    [Crossref] [Google Scholar]
  50. 50.
    Garay RP, Nazaret C, Hannaert PA, Cragoe EJ Jr. 1988.. Demonstration of a [K+Cl]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+, K+, Cl]-cotransport system. . Mol. Pharmacol. 33::696701
    [Crossref] [Google Scholar]
  51. 51.
    Delpire E, Lauf PK. 1992.. Kinetics of DIDS inhibition of swelling-activated K-Cl cotransport in low K sheep erythrocytes. . J. Membr. Biol. 126::8996
    [Crossref] [Google Scholar]
  52. 52.
    Delpire E, Lauf PK. 1991.. Kinetics of Cl-dependent K fluxes in hyposmotically low K sheep erythrocytes. . J. Gen. Physiol. 97::17393
    [Crossref] [Google Scholar]
  53. 53.
    Delpire E, Lauf PK. 1991.. Trans-effects of cellular K and Cl on ouabain-resistant Rb(K) influx in low K sheep red blood cells: further evidence for asymmetry of K-Cl cotransport. . Pflüg. Arch. 419::54042
    [Crossref] [Google Scholar]
  54. 54.
    Lytle C, McManus TJ, Haas M. 1998.. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry. . Am. J. Physiol. 274::C299309
    [Crossref] [Google Scholar]
  55. 55.
    Delpire E, Gagnon KB. 2011.. Kinetics of hyperosmotically-stimulated Na-K-2Cl cotransporter in Xenopus laevis oocytes. . Am. J. Physiol. Cell Physiol. 301::C107485
    [Crossref] [Google Scholar]
  56. 56.
    Zhao Y, Shen J, Wang Q, Ruiz Munevar MJ, Vidossich P, et al. 2022.. Structure of the human cation-chloride cotransport KCC1 in an outward-open state. . PNAS 119::e2109083119
    [Crossref] [Google Scholar]
  57. 57.
    Zhao Y, Roy K, Vidossich P, Cancedda L, De Vivo M, et al. 2022.. Structural basis for inhibition of the cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. . Nat. Commun. 13::2747
    [Crossref] [Google Scholar]
  58. 58.
    Warmuth S, Zimmermann I, Dutzler R. 2009.. X-ray structure of the C-terminal domain of a prokaryotic cation-chloride cotransporter. . Structure 17::53846
    [Crossref] [Google Scholar]
  59. 59.
    Gagnon KB, England R, Delpire E. 2007.. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter. . Cell. Physiol. Biochem. 20::13142
    [Crossref] [Google Scholar]
  60. 60.
    Chi X, Li X, Chen Y, Zhang Y, Su Q, Zhou Q. 2020.. Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters. . Cell Res. 31::48284
    [Crossref] [Google Scholar]
  61. 61.
    Monette MY, Forbush B. 2012.. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). . J. Biol. Chem. 287::221020
    [Crossref] [Google Scholar]
  62. 62.
    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015.. The I-TASSER Suite: protein structure and function prediction. . Nat. Methods 12::78
    [Crossref] [Google Scholar]
  63. 63.
    Simard CF, Bergeron MJ, Frenette-Cotton R, Carpentier GA, Pelchat ME, et al. 2007.. Homooligomeric and heterooligomeric associations between K+-Cl cotransporter isoforms and between K+-Cl and Na+-K+-Cl cotransporters. . J. Biol. Chem. 282::1808393
    [Crossref] [Google Scholar]
  64. 64.
    Ding J, Ponce-Coria J, Delpire E. 2013.. A trafficking-deficient mutant of KCC3 reveals dominant-negative effects on K-Cl cotransport function. . PLOS ONE 8::e61112
    [Crossref] [Google Scholar]
  65. 65.
    Yang X, Wang Q, Cao E. 2020.. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. . Nat. Commun. 11::1016
    [Crossref] [Google Scholar]
  66. 66.
    Zhang S, Zhou J, Zhang Y, Liu T, Friedel P, et al. 2021.. The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2. . Commun. Biol. 4::226
    [Crossref] [Google Scholar]
  67. 67.
    Neumann C, Rosenbaek LL, Flygaard RK, Habeck M, Karlsen JL, et al. 2022.. Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity. . EMBO J. 41::e110169
    [Crossref] [Google Scholar]
  68. 68.
    Chi G, Ebenhoch R, Man H, Tang H, Tremblay LE, et al. 2021.. Phospho-regulation, nucleotide binding and ion access control in potassium-chloride cotransporters. . EMBO J. 40::e107294
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022624-020130
Loading
/content/journals/10.1146/annurev-physiol-022624-020130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error