1932

Abstract

Mitochondria are multifaceted organelles with several life-sustaining functions beyond energy transformation, including cell signaling, calcium homeostasis, hormone synthesis, programmed cell death (apoptosis), and others. A defining aspect of these dynamic organelles is their remarkable plasticity, which allows them to sense, respond, and adapt to various stressors. In particular, it is well-established that the stress of exercise provides a powerful stimulus that can trigger transient or enduring changes to mitochondrial molecular features, activities, integrated functions, behaviors, and cell-dependent mitochondrial phenotypes. Evidence documenting the many beneficial mitochondrial adaptations to exercise has led to the notion of exercise as a mitochondrial medicine. However, as with other medicines, it is important to understand the optimal prescription (i.e., type, dose, frequency, duration). In this review, we build on a systematic biological framework that distinguishes between domains of mitochondrial biology to critically evaluate how different exercise prescription variables influence mitochondrial adaptations to training.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-104836
2025-02-10
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-104836.html?itemId=/content/journals/10.1146/annurev-physiol-022724-104836&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, et al. 2018.. The physical activity guidelines for Americans. . JAMA 320::202028
    [Crossref] [Google Scholar]
  2. 2.
    Deloitte Access Economics. 2015.. Value of accredited exercise physiologists in Australia. Rep., Deloitte Access Economics, Kingston, Aust:. https://www.deloitte.com/au/en/services/economics/perspectives/value-exercise-physiologists-australia.html
    [Google Scholar]
  3. 3.
    Pedersen BK, Saltin B. 2006.. Evidence for prescribing exercise as therapy in chronic disease. . Scand. J. Med. Sci. Sports 16::363
    [Crossref] [Google Scholar]
  4. 4.
    Holloszy JO. 1967.. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. . J. Biol. Chem. 242::227882
    [Crossref] [Google Scholar]
  5. 5.
    Botella J, Motanova ES, Bishop DJ. 2022.. Muscle contraction and mitochondrial biogenesis—a brief historical reappraisal. . Acta Physiol. 235::e13813
    [Crossref] [Google Scholar]
  6. 6.
    Picard M, Shirihai OS. 2022.. Mitochondrial signal transduction. . Cell Metab. 34::162053
    [Crossref] [Google Scholar]
  7. 7.
    Sterling P. 2012.. Allostasis: a model of predictive regulation. . Physiol. Behav. 106::515
    [Crossref] [Google Scholar]
  8. 8.
    Bishop DJ, Botella J, Genders AJ, Lee MJ, Saner NJ, et al. 2019.. High-intensity exercise and mitochondrial biogenesis: current controversies and future research directions. . Physiology 34::5670
    [Crossref] [Google Scholar]
  9. 9.
    Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, et al. 2020.. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases?. Endocr. Rev. 41::bnaa005
    [Crossref] [Google Scholar]
  10. 10.
    Lee MJ, Saner NJ, Ferri A, García-Domínguez E, Broatch JR, Bishop DJ. 2024.. Delineating the contribution of ageing and physical activity to changes in mitochondrial characteristics across the lifespan. . Mol. Aspects Med. 97::101272
    [Crossref] [Google Scholar]
  11. 11.
    Siekevitz P. 1957.. Powerhouse of the cell. . Sci. Am. 197::13144
    [Crossref] [Google Scholar]
  12. 12.
    Monzel AS, Enríquez JA, Picard M. 2023.. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. . Nat. Metab. 5::54662
    [Crossref] [Google Scholar]
  13. 13.
    Green DR, Reed JC. 1998.. Mitochondria and apoptosis. . Science 281::130912
    [Crossref] [Google Scholar]
  14. 14.
    Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, et al. 2012.. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. . J. Physiol. 590::334960
    [Crossref] [Google Scholar]
  15. 15.
    Jacobs RA, Lundby AK, Fenk S, Gehrig S, Siebenmann C, et al. 2016.. Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. . J. Physiol. 594::115166
    [Crossref] [Google Scholar]
  16. 16.
    Meinild Lundby AK, Jacobs R, Gehrig S, De Leur J, Hauser M, et al. 2018.. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. . Acta Physiol. 222::e12905
    [Crossref] [Google Scholar]
  17. 17.
    Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, et al. 2021.. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. . Nat. Commun. 12::7056
    [Crossref] [Google Scholar]
  18. 18.
    Groennebaek T, Nielsen J, Jespersen NR, Bøtker HE, de Paoli FV, et al. 2020.. Utilization of biomarkers as predictors of skeletal muscle mitochondrial content after physiological intervention and in clinical settings. . Am. J. Physiol. Endocrinol. Metab. 318::E88689
    [Crossref] [Google Scholar]
  19. 19.
    Miller BF, Hamilton KL. 2012.. A perspective on the determination of mitochondrial biogenesis. . Am. J. Physiol. Endocrinol. Metab. 302::E49699
    [Crossref] [Google Scholar]
  20. 20.
    Wilkinson DJ, Brook MS, Smith K, Atherton PJ. 2017.. Stable isotope tracers and exercise physiology: past, present and future. . J. Physiol. 595::287382
    [Crossref] [Google Scholar]
  21. 21.
    Saner NJ, Lee MJC, Pitchford NW, Kuang J, Roach GD, et al. 2020.. The effect of sleep restriction, with or without high-intensity interval exercise, on myofibrillar protein synthesis in healthy young men. . J. Physiol. 598:(8):152336
    [Crossref] [Google Scholar]
  22. 22.
    Kuang J, Saner NJ, Botella J, Lee MJC, Granata C, et al. 2022.. Assessing mitochondrial respiration in permeabilized fibres and biomarkers for mitochondrial content in human skeletal muscle. . Acta Physiol. 234::e13772
    [Crossref] [Google Scholar]
  23. 23.
    Picard M, Taivassalo T, Gouspillou G, Hepple RT. 2011.. Mitochondria: isolation, structure and function. . J. Physiol. 589::441321
    [Crossref] [Google Scholar]
  24. 24.
    Botella J, Shaw CS, Bishop DJ. 2023.. Autophagy and exercise: current insights and future research directions. . Int. J. Sports Med. 45:(3):17182
    [Google Scholar]
  25. 25.
    Hood DA, Memme JM, Oliveira AN, Triolo M. 2019.. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. . Annu. Rev. Physiol. 81::1941
    [Crossref] [Google Scholar]
  26. 26.
    Bishop DJ, Beck B, Biddle SJH, Denay KL, Ferri A, et al. 2025.. Physical activity and exercise intensity terminology: a joint expert statement from Exercise and Sport Science Australia (ESSA) and the American College of Sports Medicine (ACSM). . Med. Sci. Sports Exerc. In Press
    [Google Scholar]
  27. 27.
    Winter EM, Abt G, Brookes FC, Challis JH, Fowler NE, et al. 2016.. Misuse of “power” and other mechanical terms in sport and exercise science research. . J. Strength Cond. Res. 30::292300
    [Crossref] [Google Scholar]
  28. 28.
    Thompson W, Gordon N, Pescatello L. 2009.. ACSM's Guidelines for Exercise Testing and Prescription. Chicago, IL:.: Lippincott Williams & Wilkins
    [Google Scholar]
  29. 29.
    Lustyk MKB, Widman L, Paschane AA, Olson KC. 2004.. Physical activity and quality of life: Assessing the influence of activity frequency, intensity, volume, and motives. . Behav. Med. 30::12432
    [Crossref] [Google Scholar]
  30. 30.
    Petrick HL, King TJ, Pignanelli C, Vanderlinde TE, Cohen JN, et al. 2021.. Endurance and sprint training improve glycemia and VO2 peak but only frequent endurance benefits blood pressure and lipidemia. . Med. Sci. Sports Exerc. 53::1194205
    [Crossref] [Google Scholar]
  31. 31.
    Poole DC, Ward SA, Gardner GW, Whipp BJ. 1988.. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. . Ergonomics 31:(9):126579
    [Crossref] [Google Scholar]
  32. 32.
    Galán-Rioja , Gonzalez-Mohino F, Poole DC, González-Ravé JM. 2020.. Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis. . Sports Med. 50::177183
    [Crossref] [Google Scholar]
  33. 33.
    Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. 2020.. An examination and critique of current methods to determine exercise intensity. . Sports Med. 10::172956
    [Crossref] [Google Scholar]
  34. 34.
    Faude O, Kindermann W, Meyer T. 2009.. Lactate threshold concepts: How valid are they?. Sports Med. 39::46990
    [Crossref] [Google Scholar]
  35. 35.
    Granata C, Jamnick NA, Bishop DJ. 2018.. Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. . Sports Med. 48::154159
    [Crossref] [Google Scholar]
  36. 36.
    Schoenfeld B, Grgic J. 2018.. Evidence-based guidelines for resistance training volume to maximize muscle hypertrophy. . Strength Cond. J. 40::10712
    [Crossref] [Google Scholar]
  37. 37.
    Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. 2010.. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. . J. Physiol. 588::4795810
    [Crossref] [Google Scholar]
  38. 38.
    Granata C, Oliveira RS, Little JP, Bishop DJ. 2020.. Forty high-intensity interval training sessions blunt exercise-induced changes in the nuclear protein content of PGC-1α and p53 in human skeletal muscle. . Am. J. Physiol. Endocrinol. Metab. 318::E22436
    [Crossref] [Google Scholar]
  39. 39.
    Hoppeler H, Howald H, Conley K, Lindstedt SL, Classen H, et al. 1985.. Endurance training in humans: aerobic capacity and structure of skeletal muscle. . J. Appl. Physiol. 59:(2):32027
    [Crossref] [Google Scholar]
  40. 40.
    Montero D, Cathomen A, Jacobs RA, Flück D, de Leur J, et al. 2015.. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. . J. Physiol. 593::467788
    [Crossref] [Google Scholar]
  41. 41.
    Montero D, Lundby C. 2017.. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. . J. Physiol. 595::337787
    [Crossref] [Google Scholar]
  42. 42.
    Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. 2007.. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 292::R127178
    [Crossref] [Google Scholar]
  43. 43.
    Turner DL, Hoppeler H, Claassen H, Vock P, Kayser B, et al. 1997.. Effects of endurance training on oxidative capacity and structural composition of human arm and leg muscles. . Acta Physiol. Scand. 161::45964
    [Crossref] [Google Scholar]
  44. 44.
    Gouspillou G, Sgarioto N, Norris B, Barbat-Artigas S, Aubertin-Leheudre M, et al. 2014.. The relationship between muscle fiber type-specific PGC-1α content and mitochondrial content varies between rodent models and humans. . PLOS ONE 9::e103044
    [Crossref] [Google Scholar]
  45. 45.
    Henstridge DC, Bruce CR, Drew BG, Tory K, Kolonics A, et al. 2014.. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance. . Diabetes 63::188194
    [Crossref] [Google Scholar]
  46. 46.
    Saleem A, Iqbal S, Zhang Y, Hood DA. 2015.. Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle. . Am. J. Physiol. Cell Physiol. 308::C31929
    [Crossref] [Google Scholar]
  47. 47.
    Selathurai A, Kowalski GM, Burch ML, Sepulveda P, Risis S, et al. 2015.. The CDP-ethanolamine pathway regulates skeletal muscle diacylglycerol content and mitochondrial biogenesis without altering insulin sensitivity. . Cell Metab. 21::71830
    [Crossref] [Google Scholar]
  48. 48.
    Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, et al. 2017.. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. . Cell Metab. 25::30111
    [Crossref] [Google Scholar]
  49. 49.
    Koh H-CE, Ørtenblad N, Winding KM, Hellsten Y, Mortensen SP, Nielsen J. 2018.. High-intensity interval, but not endurance, training induces muscle fiber type-specific subsarcolemmal lipid droplet size reduction in type 2 diabetic patients. . Am. J. Physiol. Endocrinol. Metab. 315::E87284
    [Crossref] [Google Scholar]
  50. 50.
    Shepherd S, Cocks M, Meikle P, Mellett N, Ranasinghe A, et al. 2017.. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. . Int. J. Obes. 41::174554
    [Crossref] [Google Scholar]
  51. 51.
    Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. 2001.. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. . J. Appl. Physiol. 91::17382
    [Crossref] [Google Scholar]
  52. 52.
    Hoppeler H. 1986.. Exercise-induced ultrastructural changes in skeletal muscle. . Int. J. Sports Med. 7::187204
    [Crossref] [Google Scholar]
  53. 53.
    Bishop DJ, Botella J, Granata C. 2019.. CrossTalk opposing view: exercise training volume is more important than training intensity to promote increases in mitochondrial content. . J. Physiol. 597::411518
    [Crossref] [Google Scholar]
  54. 54.
    MacInnis MJ, Skelly LE, Gibala MJ. 2019.. CrossTalk proposal: exercise training intensity is more important than volume to promote increases in human skeletal muscle mitochondrial content. . J. Physiol. 597::411113
    [Crossref] [Google Scholar]
  55. 55.
    Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, et al. 2024.. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. . Nat. Commun. 15::7677
    [Crossref] [Google Scholar]
  56. 56.
    Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H. 2001.. Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. . Int. J. Sports Med. 22::57985
    [Crossref] [Google Scholar]
  57. 57.
    Helge J, Damsgaard R, Overgaard K, Andersen J, Donsmark M, et al. 2008.. Low-intensity training dissociates metabolic from aerobic fitness. . Scand. J. Med. Sci. Sports 18::8694
    [Crossref] [Google Scholar]
  58. 58.
    Hoppeler H, Luthi P, Clausen H. 1973.. The ultrastructure of the normal human skeletal muscle: a morphological analysis on untrained men, women and well trained orienteers. . Pflügers Arch. Eur. J. Physiol. 344::21732
    [Crossref] [Google Scholar]
  59. 59.
    Glancy B, Hsu LY, Dao L, Bakalar M, French S, et al. 2014.. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. . Microcirculation 21::13147
    [Crossref] [Google Scholar]
  60. 60.
    Schiaffino S, Reggiani C. 2011.. Fiber types in mammalian skeletal muscles. . Physiol. Rev. 91::1447531
    [Crossref] [Google Scholar]
  61. 61.
    Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R. 1985.. Influences of endurance training on the ultrastructural composition of the different muscle fibre types in humans. . Pflügers Arch. Eur. J. Physiol. 403::36976
    [Crossref] [Google Scholar]
  62. 62.
    Ørtenblad N, Nielsen J, Boushel R, Söderlund K, Saltin B, Holmberg H-C. 2018.. The muscle fiber profiles, mitochondrial content, and enzyme activities of the exceptionally well-trained arm and leg muscles of elite cross-country skiers. . Front. Physiol. 9::1031
    [Crossref] [Google Scholar]
  63. 63.
    Kiessling KH, Piehl K, Lundquist CG. 1971.. Effect of physical training on ultrastructural features in human skeletal muscle. . In Muscle Metabolism During Exercise: Proceedings of a Karolinska Institutet Symposium held in Stockholm, Sweden, September 6–9, 1970 Honorary Guest: E Hohwü Christensen, ed. B Pernow, B Saltin , pp. 97101. Boston, MA:: Springer
    [Google Scholar]
  64. 64.
    Vollestad NK, Blom PCS. 1985.. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. . Acta Physiol. Scand. 125::395405
    [Crossref] [Google Scholar]
  65. 65.
    Granata C, Jamnick NA, Bishop DJ. 2018.. Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. . Sports Med. 48::180928
    [Crossref] [Google Scholar]
  66. 66.
    Bishop DJ, Granata C, Eynon N. 2014.. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content?. Biochim. Biophys. Acta 1840::126675
    [Crossref] [Google Scholar]
  67. 67.
    Duscha BD, Annex BH, Johnson JL, Huffman K, Houmard J, Kraus WE. 2012.. Exercise dose response in muscle. . Int. J. Sports Med. 33::21823
    [Crossref] [Google Scholar]
  68. 68.
    MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, et al. 2017.. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. . J. Physiol. 595::295568
    [Crossref] [Google Scholar]
  69. 69.
    Baekkerud FH, Solberg F, Leinan IM, Wisløff U, Karlsen T, Rognmo Ø. 2016.. Comparison of three popular exercise modalities on VO2max in overweight and obese. . Med. Sci. Sports Exerc. 48::49198
    [Crossref] [Google Scholar]
  70. 70.
    Gorostiaga EM, Walter CB, Foster C, Hickson RC. 1991.. Uniqueness of interval and continuous training at the same maintained exercise intensity. . Eur. J. Appl. Physiol. 63::1017
    [Crossref] [Google Scholar]
  71. 71.
    Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, et al. 2008.. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. . J. Physiol. 586::15160
    [Crossref] [Google Scholar]
  72. 72.
    Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. 2016.. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. . PLOS ONE 11::e0154075
    [Crossref] [Google Scholar]
  73. 73.
    Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, et al. 2015.. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. . J. Appl. Physiol. 119::11623
    [Crossref] [Google Scholar]
  74. 74.
    Lüthi J, Howald H, Claassen H, Rösler K, Vock P, Hoppeler H. 1986.. Structural changes in skeletal muscle tissue with heavy-resistance exercise. . Int. J. Sports Med. 7::12327
    [Crossref] [Google Scholar]
  75. 75.
    MacDougall JD, Sale DG, Alway SE, Sutton JR. 1982.. Muscle ultra-structural characteristics of elite powerlifters and bodybuilders. . Eur. J. Appl. Physiol. Occup. Physiol. 48::11726
    [Crossref] [Google Scholar]
  76. 76.
    MacDougall JD, Sale DG, Moroz JR, Elder GCB, Sutton JR. 1979.. Mitochondrial volume in human skeletal muscle following heavy resistance training. . Med. Sci. Sports Exerc. 11::16466
    [Crossref] [Google Scholar]
  77. 77.
    Haun CT, Vann CG, Osburn SC, Mumford PW, Roberson PA, et al. 2019.. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. . PLOS ONE 14::e0215267
    [Crossref] [Google Scholar]
  78. 78.
    Kon M, Ohiwa N, Honda A, Matsubayashi T, Ikeda T, et al. 2014.. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. . Physiol. Rep. 2::e12033
    [Crossref] [Google Scholar]
  79. 79.
    Roberts MD, Romero MA, Mobley CB, Mumford PW, Roberson PA, et al. 2018.. Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training. . PeerJ 6::e5338
    [Crossref] [Google Scholar]
  80. 80.
    Tesch PA, Komi PV, Hakkinen K. 1987.. Enzymatic adaptations consequent to long-term strength training. . Int. J. Sports Med. 8::6669
    [Crossref] [Google Scholar]
  81. 81.
    Ruegsegger GN, Pataky MW, Simha S, Robinson MM, Klaus KA, Nair KS. 2023.. High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. . J. Appl. Physiol. 135::76374
    [Crossref] [Google Scholar]
  82. 82.
    Groennebaek T, Jespersen NR, Jakobsgaard JE, Sieljacks P, Wang J, et al. 2018.. Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training. . Front. Physiol. 9::1796
    [Crossref] [Google Scholar]
  83. 83.
    Mesquita PHC, Godwin JS, Ruple BA, Sexton CL, McIntosh MC, et al. 2023.. Resistance training diminishes mitochondrial adaptations to subsequent endurance training in healthy untrained men. . J. Physiol. 601::382546
    [Crossref] [Google Scholar]
  84. 84.
    Nelson AG, Arnall DA, Loy SF, Silvester LJ, Conlee RK. 1990.. Consequences of combining strength and endurance training regimens. . Phys. Ther. 70::28794
    [Crossref] [Google Scholar]
  85. 85.
    Porter C, Reidy PT, Bhattarai N, Sidossis LS, Rasmussen BB. 2015.. Resistance exercise training alters mitochondrial function in human skeletal muscle. . Med. Sci. Sports Exerc. 47::192231
    [Crossref] [Google Scholar]
  86. 86.
    Ruple BA, Godwin JS, Mesquita PHC, Osburn SC, Sexton CL, et al. 2021.. Myofibril and mitochondrial area changes in type I and II fibers following 10 weeks of resistance training in previously untrained men. . Front. Physiol. 12::728683
    [Crossref] [Google Scholar]
  87. 87.
    Tesch PA, Thorsson A, Colliander EB. 1990.. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzyme activities and capillary supply. . Acta Physiol. Scand. 140::57580
    [Crossref] [Google Scholar]
  88. 88.
    Wang N, Hikida RS, Staron RS, Simoneau JA. 1993.. Muscle fiber types of women after resistance training–quantitative ultrastructure and enzyme activity.. Pflügers Arch. Eur. J. Physiol. 424::494502
    [Crossref] [Google Scholar]
  89. 89.
    Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, et al. 2008.. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. . J. Physiol. 586::370117
    [Crossref] [Google Scholar]
  90. 90.
    Botella J, Schytz CT, Pehrson TF, Hokken R, Laugesen S, et al. 2023.. Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes. . J. Physiol. 601::2899915
    [Crossref] [Google Scholar]
  91. 91.
    Sale DG, MacDougall JD, Jacobs I, Garner S. 1990.. Interaction between concurrent strength and endurance training. . J. Appl. Physiol. 68::26070
    [Crossref] [Google Scholar]
  92. 92.
    Tang JE, Hartman JW, Phillips SM. 2006.. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. . Appl. Physiol. Nutr. Metabol. 31::495501
    [Crossref] [Google Scholar]
  93. 93.
    Friedman JR, Nunnari J. 2014.. Mitochondrial form and function. . Nature 505::33543
    [Crossref] [Google Scholar]
  94. 94.
    Schytz CT, Ørtenblad N, Lundby AKM, Jacobs RA, Nielsen J, Lundby C. 2024.. Skeletal muscle mitochondria demonstrate similar respiration per cristae surface area independent of training status and sex in healthy humans. . J. Physiol. 602::12951
    [Crossref] [Google Scholar]
  95. 95.
    Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, et al. 2017.. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. . J. Physiol. 595::283947
    [Crossref] [Google Scholar]
  96. 96.
    Suarez R, Lighton J, Brown G, Mathieu-Costello O. 1991.. Mitochondrial respiration in hummingbird flight muscles. . PNAS 88::487073
    [Crossref] [Google Scholar]
  97. 97.
    Bell KE, Séguin C, Parise G, Baker SK, Phillips SM. 2015.. Day-to-day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. . J. Gerontol. A Biomed. Sci. Med. Sci. 70::102429
    [Crossref] [Google Scholar]
  98. 98.
    Miller BF, Olesen JL, Hansen M, Døssing S, Crameri RM, et al. 2005.. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. . J. Physiol. 567::102133
    [Crossref] [Google Scholar]
  99. 99.
    Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, et al. 2011.. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. . Eur. J. Appl. Physiol. 111::147383
    [Crossref] [Google Scholar]
  100. 100.
    Di Donato DM, West DW, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. 2014.. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. . Am. J. Physiol. Endochrinol. Metab. 306::E102532
    [Crossref] [Google Scholar]
  101. 101.
    Churchward-Venne TA, Pinckaers PJ, Smeets JS, Betz MW, Senden JM, et al. 2020.. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. . Am. J. Clin. Nutr. 112::30317
    [Crossref] [Google Scholar]
  102. 102.
    Donges CE, Burd NA, Duffield R, Smith GC, West DW, et al. 2012.. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. . J. Appl. Physiol. 112::19922001
    [Crossref] [Google Scholar]
  103. 103.
    Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, et al. 2012.. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. . J. Physiol. 590::35162
    [Crossref] [Google Scholar]
  104. 104.
    Lee MJ, Caruana NJ, Saner NJ, Kuang J, Stokes T, et al. 2024.. Resistance-only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training. . FASEB J. 38::e23392
    [Crossref] [Google Scholar]
  105. 105.
    Fritzen AM, Thøgersen FB, Thybo K, Vissing CR, Krag TO, et al. 2019.. Adaptations in mitochondrial enzymatic activity occurs independent of genomic dosage in response to aerobic exercise training and deconditioning in human skeletal muscle. . Cells 8::237
    [Crossref] [Google Scholar]
  106. 106.
    Fritzen AM, Andersen SP, Qadri KAN, Thøgersen FD, Krag T, et al. 2020.. Effect of aerobic exercise training and deconditioning on oxidative capacity and muscle mitochondrial enzyme machinery in young and elderly individuals. . J. Clin. Med. 9::3113
    [Crossref] [Google Scholar]
  107. 107.
    Nilsson A, Björnson E, Flockhart M, Larsen FJ, Nielsen J. 2019.. Complex I is bypassed during high intensity exercise. . Nat. Commun. 10::5072
    [Crossref] [Google Scholar]
  108. 108.
    Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, et al. 2013.. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. . J. Appl. Physiol. 115::78593
    [Crossref] [Google Scholar]
  109. 109.
    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. 2016.. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. . FASEB J. 30::95970
    [Crossref] [Google Scholar]
  110. 110.
    Batterson PM, McGowan EM, Stierwalt HD, Ehrlicher SE, Newsom SA, Robinson MM. 2023.. Two weeks of high-intensity interval training increases skeletal muscle mitochondrial respiration via complex-specific remodeling in sedentary humans. . J. Appl. Physiol. 134::33955
    [Crossref] [Google Scholar]
  111. 111.
    Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, et al. 2008.. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 295::R26472
    [Crossref] [Google Scholar]
  112. 112.
    Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. 2016.. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. . FASEB J. 30::341323
    [Crossref] [Google Scholar]
  113. 113.
    Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, et al. 2011.. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 301::R107887
    [Crossref] [Google Scholar]
  114. 114.
    Walsh B, Tonkonogi M, Sahlin K. 2001.. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres. . Pflügers Arch. Eur. J. Physiol. 442::42025
    [Crossref] [Google Scholar]
  115. 115.
    Tonkonogi M, Walsh B, Svensson M, Sahlin K. 2000.. Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. . J. Physiol. 528:(Part 2):37988
    [Crossref] [Google Scholar]
  116. 116.
    Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, et al. 2017.. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. . Cell Metab. 25::58192
    [Crossref] [Google Scholar]
  117. 117.
    Robach P, Bonne T, Flueck D, Buergi S, Toigo M, et al. 2014.. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia. . Med. Sci. Sports Exerc. 46::193645
    [Crossref] [Google Scholar]
  118. 118.
    Dohlmann TL, Hindsø M, Dela F, Helge JW, Larsen S. 2018.. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. . Physiol. Rep. 6::e13857
    [Crossref] [Google Scholar]
  119. 119.
    Vincent G, Lamon S, Gant N, Vincent PJ, MacDonald JR, et al. 2015.. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. . Front. Physiol. 6::51
    [Google Scholar]
  120. 120.
    Christensen PM, Jacobs RA, Bonne T, Flück D, Bangsbo J, Lundby C. 2016.. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics. . J. Appl. Physiol. 120::131927
    [Crossref] [Google Scholar]
  121. 121.
    MacInnis MJ, Gibala MJ. 2017.. Physiological adaptations to interval training and the role of exercise intensity. . J. Physiol. 595::291530
    [Crossref] [Google Scholar]
  122. 122.
    Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. 2021.. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. . Cell Metab. 33::95770
    [Crossref] [Google Scholar]
  123. 123.
    Hawley JA, Bishop DJ. 2021.. High-intensity exercise training—too much of a good thing?. Nat. Rev. Endocrinol. 17::38586
    [Crossref] [Google Scholar]
  124. 124.
    Pignanelli C, Petrick HL, Keyvani F, Heigenhauser GJF, Quadrilatero J, et al. 2020.. Low-load resistance training to task failure with and without blood flow restriction: muscular functional and structural adaptations. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 318::R28495
    [Crossref] [Google Scholar]
  125. 125.
    Salvadego D, Domenis R, Lazzer S, Porcelli S, Rittweger J, et al. 2013.. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training. . J. Appl. Physiol. 114::152735
    [Crossref] [Google Scholar]
  126. 126.
    Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS. 2015.. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. . J. Clin. Endocrinol. Metab. 100::165463
    [Crossref] [Google Scholar]
  127. 127.
    Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, et al. 2011.. Mitochondrial structure and function are disrupted by standard isolation methods. . PLOS ONE 6::e18317
    [Crossref] [Google Scholar]
  128. 128.
    Phielix E, Meex R, Moonen-Kornips E, Hesselink M, Schrauwen P. 2010.. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. . Diabetologia 53::171421
    [Crossref] [Google Scholar]
  129. 129.
    Konopka AR, Suer MK, Wolff CA, Harber MP. 2014.. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. . J. Gerontol. A Biomed. Sci. Med. Sci. 69::37178
    [Crossref] [Google Scholar]
  130. 130.
    Skelly LE, Gillen JB, Frankish BP, MacInnis MJ, Godkin FE, et al. 2021.. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. . J. Appl. Physiol. 130::100114
    [Crossref] [Google Scholar]
  131. 131.
    Arribat Y, Broskey NT, Greggio C, Boutant M, Conde Alonso S, et al. 2019.. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. . Acta Physiol. 225::e13179
    [Crossref] [Google Scholar]
  132. 132.
    Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, et al. 2017.. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. . J. Physiol. 595::334559
    [Crossref] [Google Scholar]
  133. 133.
    Lim C, Kim HJ, Morton RW, Harris R, Philips SM, et al. 2019.. Resistance exercise-induced changes in muscle metabolism are load-dependent. . Med. Sci. Sports Exerc. 51::257885
    [Crossref] [Google Scholar]
  134. 134.
    Mesquita PH, Godwin JS, Ruple BA, Sexton CL, McIntosh MC, et al. 2023.. Resistance training diminishes mitochondrial adaptations to subsequent endurance training in healthy untrained men. . J. Physiol. 601::382546
    [Crossref] [Google Scholar]
  135. 135.
    Anzell AR, Fogo GM, Gurm Z, Raghunayakula S, Wider JM, et al. 2021.. Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons. . Cell Death Dis. 12::475
    [Crossref] [Google Scholar]
  136. 136.
    Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, et al. 2017.. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. . Nat. Commun. 8::548
    [Crossref] [Google Scholar]
  137. 137.
    Botella J, Jamnick NA, Granata C, Genders AJ, Perri E, et al. 2022.. Exercise and training regulation of autophagy markers in human and rat skeletal muscle. . Int. J. Mol. Sci. 23::2619
    [Crossref] [Google Scholar]
  138. 138.
    Chen CCW, Erlich AT, Hood DA. 2018.. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. . Skeletal Muscle 8::10
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-104836
Loading
/content/journals/10.1146/annurev-physiol-022724-104836
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error