1932

Abstract

The Frank-Starling law and Anrep effect describe two intrinsic mechanisms that regulate contraction force in the heart. Based on recent advancements and the historical literature, we propose new perspectives and address several critical issues in this review. () The Frank-Starling mechanism and Anrep effect are dynamically linked and act synergistically. () An open question is how cardiomyocytes sense mechanical load and transduce to biochemical signals (called mechano-chemo-transduction or MCT) to regulate contraction in response to load changes. () One research focus is to identify various mechanosensors and decipher their downstream MCT pathways. () Innovative experimental techniques engage different mechanosensors that detect different local strain and stress in the cell architecture. () Closed-loop MCT feedback in the dynamic excitation-Ca2+ signaling-contraction system enables autoregulation of contraction in response to physiological load changes. () However, pathological overload such as volume and pressure overload lead to excessive MCT-Ca2+ gain, cardiac remodeling, and heart diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-104846
2025-02-10
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-104846.html?itemId=/content/journals/10.1146/annurev-physiol-022724-104846&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. 1985.. Arterial blood-pressure response to heavy resistance exercise. . J. Appl. Physiol. 58::78590
    [Google Scholar]
  2. 2.
    Cingolani OH, Kirk JA, Seo K, Koitabashi N, Lee DI, et al. 2011.. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. . Circ. Res. 109::141014
    [Google Scholar]
  3. 3.
    Zimmer H-G. 2002.. Who discovered the Frank-Starling mechanism?. Physiology 17::18184
    [Google Scholar]
  4. 4.
    Starling EH. 1915.. The Linacre Lecture on the Law of the Heart. London:: Longmans, Green & Co.
    [Google Scholar]
  5. 5.
    Patterson SW, Starling EH. 1914.. On the mechanical factors which determine the output of the ventricles. . J. Physiol. 48::35779
    [Google Scholar]
  6. 6.
    Hibberd MG, Jewell BR. 1982.. Calcium- and length-dependent force production in rat ventricular muscle. . J. Physiol. 329::52740
    [Google Scholar]
  7. 7.
    Sonnenblick EH, Downing SE. 1963.. Afterload as a primary determinant of ventricular performance. . Am. J. Physiol. 204::60410
    [Google Scholar]
  8. 8.
    Schwinger RH, Böhm M, Koch A, Schmidt U, Morano I, et al. 1994.. The failing human heart is unable to use the Frank-Starling mechanism. . Circ. Res. 74::95969
    [Google Scholar]
  9. 9.
    Parmley WW, Chuck L. 1973.. Length-dependent changes in myocardial contractile state. . Am. J. Physiol. 224::119599
    [Google Scholar]
  10. 10.
    Hongo K, White E, LeGuennec JY, Orchard CH. 1996.. Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. . J. Physiol. 491::60919
    [Google Scholar]
  11. 11.
    White E, Boyett MR, Orchard CH. 1995.. The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. . J. Physiol. 482::93107
    [Google Scholar]
  12. 12.
    Khokhlova A, Iribe G, Yamaguchi Y, Naruse K, Solovyova O. 2017.. Effects of simulated ischemia on the transmural differences in the Frank Starling relationship in isolated mouse ventricular cardiomyocytes. . Progress Biophys. Mol. Biol. 130::32332
    [Google Scholar]
  13. 13.
    Iribe G, Helmes M, Kohl P. 2007.. Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. . Am. J. Physiol. Heart Circ. Physiol. 292::H148797
    [Google Scholar]
  14. 14.
    Lookin O, Protsenko Y. 2019.. Length-dependent activation of contractility and Ca-transient kinetics in auxotonically contracting isolated rat ventricular cardiomyocytes. . Front. Physiol. 11::1473
    [Google Scholar]
  15. 15.
    Sollott SJ, Lakatta EG. 1994.. Novel method to alter length and load in isolated mammalian cardiac myocytes. . Am. J. Physiol. 267::H161929
    [Google Scholar]
  16. 16.
    Mateja RD, de Tombe PP. 2012.. Myofilament length-dependent activation develops within 5 ms in guinea-pig myocardium. . Biophys. J. 103::L1315
    [Google Scholar]
  17. 17.
    Horwitz LD, Atkins JM, Leshin SJ. 1972.. Role of Frank-Starling mechanism in exercise. . Circ. Res. 31::86875
    [Google Scholar]
  18. 18.
    Sarnoff SJ, Berglund E. 1954.. Ventricular function. 1. Starling law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. . Circulation 9::70618
    [Google Scholar]
  19. 19.
    Maughan WL, Shoukas AA, Sagawa K, Weisfeldt ML. 1979.. Instantaneous pressure-volume relationship of the canine right ventricle. . Circ. Res. 44::30915
    [Google Scholar]
  20. 20.
    Gill RM, Jones BD, Corbly AK, Ohad DG, Smith GD, et al. 2006.. Exhaustion of the Frank–Starling mechanism in conscious dogs with heart failure induced by chronic coronary microembolization. . Life Sci. 79::53644
    [Google Scholar]
  21. 21.
    Pacher P, Mabley JG, Liaudet L, Evgenov OV, Marton A, et al. 2004.. Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. . Am. J. Physiol. Heart Circ. Physiol. 287::H213237
    [Google Scholar]
  22. 22.
    Sarnoff SJ. 1955.. Myocardial contractility as described by ventricular function curves; observations on Starling's law of the heart. . Physiol. Rev. 35::10722
    [Google Scholar]
  23. 23.
    Braunwald E, Frahm CJ, Ross J. 1961.. Studies on Starling's law of heart. 5. Left ventricular function in man. . J. Clin. Investig. 40::188290
    [Google Scholar]
  24. 24.
    Braunwald E. 1965.. The control of ventricular function in man. . Br. Heart J. 27::116
    [Google Scholar]
  25. 25.
    Altschule MD. 1986.. Reflections on Starling's Laws of the Heart. Its muddy origins; its ambiguous content; its mysterious “families of curves. .” Chest 89::44445
    [Google Scholar]
  26. 26.
    de Tombe PP, Mateja RD, Tachampa K, Mou YA, Farman GP, Irving TC. 2010.. Myofilament length dependent activation. . J. Mol. Cell. Cardiol. 48::85158
    [Google Scholar]
  27. 27.
    Vahl CF, Timek T, Bonz A, Fuchs H, Dillman R, Hagl S. 1998.. Length dependence of calcium- and force-transients in normal and failing human myocardium. . J. Mol. Cell. Cardiol. 30::95766
    [Google Scholar]
  28. 28.
    Ross J, Braunwald E. 1964.. Studies on Starling's law of heart. IX. The effects of impeding venous return on performance of the normal and failing human left ventricle. . Circulation 30::71927
    [Google Scholar]
  29. 29.
    Holubarsch CJF. 2000.. Geometrical considerations in (reverse) remodeling. . In Surgical Remodeling in Heart Failure, ed. W Brett, A Todorov, M Pfisterer, HR Zerkowski , pp. 6782. New York:: Springer
    [Google Scholar]
  30. 30.
    Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Rola P, Haycock K, et al. 2021.. Inferring the Frank–Starling curve from simultaneous venous and arterial doppler: measurements from a wireless, wearable ultrasound patch. . Front. Med. Technol. 3::676995
    [Google Scholar]
  31. 31.
    Farman GP, Walker JS, de Tombe PP, Irving TC. 2006.. Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. . Am. J. Physiol. Heart Circ. Physiol. 291::H184755
    [Google Scholar]
  32. 32.
    Fuchs F, Smith SH. 2001.. Calcium, cross-bridges, and the Frank-Starling relationship. . Physiology 16::510
    [Google Scholar]
  33. 33.
    Fuchs F, Wang YP. 1996.. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding. . J. Mol. Cell. Cardiol. 28::137583
    [Google Scholar]
  34. 34.
    McDonald KS, Field LJ, Parmacek MS, Soonpaa M, Leiden JM, Moss RL. 1995.. Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. . J. Physiol. 483::13139
    [Google Scholar]
  35. 35.
    Konhilas JP, Irving TC, de Tombe PP. 2002.. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. . Circ. Res. 90::5965
    [Google Scholar]
  36. 36.
    Moss RL, Fitzsimons DP. 2002.. Frank-Starling relationship: long on importance, short on mechanism. . Circ. Res. 90::1113
    [Google Scholar]
  37. 37.
    Shiels HA, White E. 2008.. The Frank-Starling mechanism in vertebrate cardiac myocytes. . J. Exp. Biol. 211::200513
    [Google Scholar]
  38. 38.
    Fitzsimons DP, Moss RL. 1998.. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. . Circ. Res. 83::6027
    [Google Scholar]
  39. 39.
    Kobirumaki-Shimozawa F, Inoue T, Shintani SA, Oyama K, Terui T, et al. 2014.. Cardiac thin filament regulation and the Frank-Starling mechanism. . J. Physiol. Sci. 64::22132
    [Google Scholar]
  40. 40.
    Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML, et al. 2016.. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. . PNAS 113::230611
    [Google Scholar]
  41. 41.
    Cazorla O, Wu Y, Irving TC, Granzier H. 2001.. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. . Circ. Res. 88::102835
    [Google Scholar]
  42. 42.
    Fukuda N, Sasaki D, Ishiwata S, Kurihara S. 2001.. Length dependence of tension generation in rat skinned cardiac muscle—role of titin in the Frank-Starling mechanism of the heart. . Circulation 104::163945
    [Google Scholar]
  43. 43.
    Fukuda N, Granzier HL. 2005.. Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. . J. Muscle Res. Cell Motil. 26::31923
    [Google Scholar]
  44. 44.
    Fukuda N, Wu YM, Farman G, Irving TC, Granzier H. 2005.. Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. . Pflügers Arch. 449::44957
    [Google Scholar]
  45. 45.
    Terui T, Sodnomtseren M, Matsuba D, Udaka J, Ishiwata S, et al. 2008.. Troponin and titin coordinately regulate length-dependent activation in skinned porcine ventricular muscle. . J. Gen. Physiol. 131::27583
    [Google Scholar]
  46. 46.
    Cingolani HE, Pérez NG, Cingolani OH, Ennis IL. 2013.. The Anrep effect: 100 years later. . Am. J. Physiol. Heart Circ. Physiol. 304::H17582
    [Google Scholar]
  47. 47.
    Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, et al. 2019.. The slow force response to stretch: controversy and contradictions. . Acta Physiol. 226::e13250
    [Google Scholar]
  48. 48.
    Nichols CG, Hanck DA, Jewell BR. 1988.. The Anrep effect—an intrinsic myocardial mechanism. . Can. J. Physiol. Pharmacol. 66::92429
    [Google Scholar]
  49. 49.
    Allen DG, Kurihara S. 1982.. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. . J. Physiol. 327::7994
    [Google Scholar]
  50. 50.
    Kentish JC, Wrzosek A. 1998.. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. . J. Physiol. 506:(Part 2):43144
    [Google Scholar]
  51. 51.
    Calaghan S, White E. 2004.. Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. . J. Physiol. 559::20514
    [Google Scholar]
  52. 52.
    Seo K, Rainer PP, Lee DI, Hao S, Bedja D, et al. 2014.. Hyperactive adverse mechanical-stress responses in dystrophic heart are coupled to TRPC6 and blocked by cGMP-PKG modulation. . Circ. Res. 114::82332
    [Google Scholar]
  53. 53.
    Calaghan SC, Le Guennec JY, White E. 2004.. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. . Prog. Biophys. Mol. Biol. 84::2959
    [Google Scholar]
  54. 54.
    Browe DM, Baumgarten CM. 2003.. Stretch of β1 integrin activates an outwardly rectifying chloride current via FAK and Src in rabbit ventricular myocytes. . J. Gen. Physiol. 122::689702
    [Google Scholar]
  55. 55.
    Caldiz CI, Garciarena CD, Dulce RA, Novaretto LP, Yeves AM, et al. 2007.. Mitochondrial reactive oxygen species activate the slow force response to stretch in feline myocardium. . J. Physiol. 584::895905
    [Google Scholar]
  56. 56.
    Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ. 2013.. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. . J. Mol. Cell. Cardiol. 58::17281
    [Google Scholar]
  57. 57.
    Seo K, Inagaki M, Hidaka I, Fukano H, Sugimachi M, et al. 2014.. Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs. . Prog. Biophys. Mol. Biol. 115::12939
    [Google Scholar]
  58. 58.
    Moss RL, Razumova M, Fitzsimons DP. 2004.. Myosin crossbridge activation of cardiac thin filaments—implications for myocardial function in health and disease. . Circ. Res. 94::1290300
    [Google Scholar]
  59. 59.
    Sequeira V, van der Velden J. 2015.. Historical perspective on heart function: the Frank–Starling Law. . Biophys. Rev. 7::42147
    [Google Scholar]
  60. 60.
    de Tombe PP. 2003.. Cardiac myofilaments: mechanics and regulation. . J. Biomech. 36::72130
    [Google Scholar]
  61. 61.
    Diaz ME, Trafford AW, Eisner DA. 2001.. The effects of exogenous calcium buffers on the systolic calcium transient in rat ventricular myocytes. . Biophys. J. 80::191525
    [Google Scholar]
  62. 62.
    Backx PH, Gao WD, Azan-Backx MD, Marban E. 1995.. The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. . J. Gen. Physiol. 105::119
    [Google Scholar]
  63. 63.
    Gwathmey JK, Hajjar RJ. 1990.. Intracellular calcium related to force development in twitch contraction of mammalian myocardium. . Cell Calcium 11::53138
    [Google Scholar]
  64. 64.
    Yue DT. 1987.. Intracellular [Ca2+] related to rate of force development in twitch contraction of heart. . Am. J. Physiol. 252::H76070
    [Google Scholar]
  65. 65.
    Yue DT, Marban E, Wier WG. 1986.. Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle. . J. Gen. Physiol. 87::22342
    [Google Scholar]
  66. 66.
    Izu L, Shimkunas R, Jian Z, Hegyi B, Kazemi-Lari M, et al. 2021.. Emergence of mechano-sensitive contraction autoregulation in cardiomyocytes. . Life 11::503
    [Google Scholar]
  67. 67.
    Shimkunas R, Hegyi B, Jian Z, Shaw JA, Kazemi-Lari MA, et al. 2021.. Mechanical load regulates excitation-Ca2+ signaling-contraction in cardiomyocyte. . Circ. Res. 128::77274
    [Google Scholar]
  68. 68.
    Le Guennec JY, Peineau N, Argibay JA, Mongo KG, Garnier D. 1990.. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: length dependence of passive and active tension. . J. Mol. Cell. Cardiol. 22::108393
    [Google Scholar]
  69. 69.
    Prosser BL, Ward CW, Lederer WJ. 2011.. X-ROS signaling: rapid mechano-chemo transduction in heart. . Science 333::144045
    [Google Scholar]
  70. 70.
    Jian Z, Han H, Zhang T, Puglisi J, Izu LT, et al. 2014.. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. . Sci. Signal. 7::ra27
    [Google Scholar]
  71. 71.
    Kazemi-Lari MA, Shaw JA, Wineman AS, Shimkunas R, Jian Z, et al. 2021.. A viscoelastic Eshelby inclusion model and analysis of the Cell-in-Gel system. . Int. J. Eng. Sci. 165::103489
    [Google Scholar]
  72. 72.
    Kazemi-Lari MA, Shimkunas R, Jian Z, Hegyi B, Izu L, et al. 2022.. Modeling cardiomyocyte mechanics and autoregulation of contractility by mechano-chemo-transduction feedback. . iScience 25::104667
    [Google Scholar]
  73. 73.
    Shaw J, Izu L, Chen-Izu Y. 2013.. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix. . PLOS ONE 8::e75492
    [Google Scholar]
  74. 74.
    Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, et al. 2001.. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. . Nat. Cell Biol. 3::86773
    [Google Scholar]
  75. 75.
    Wang H, Zhu G, Izu LT, Chen-Izu Y, Ono N, et al. 2023.. On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme. . Front. Physiol. 14::1156286
    [Google Scholar]
  76. 76.
    Donald TC, Peterson DM, Walker AA, Hefner LL. 1976.. Afterload-induced homeometric autoregulation in isolated cardiac muscle. . Am. J. Physiol. 231::54550
    [Google Scholar]
  77. 77.
    Solaro RJ. 2007.. Mechanisms of the Frank-Starling law of the heart: the beat goes on. . Biophys. J. 93::409596
    [Google Scholar]
  78. 78.
    Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, et al. 2009.. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. . Circ. Res. 104::78795
    [Google Scholar]
  79. 79.
    Iribe G, Kohl P. 2008.. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models. . Prog. Biophys. Mol. Biol. 97::298311
    [Google Scholar]
  80. 80.
    Prosser BL, Ward CW, Lederer WJ. 2013.. X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. . Cardiovasc. Res. 98::30714
    [Google Scholar]
  81. 81.
    Awasthi S, Izu L, Mao Z, Jian Z, Landas T, et al. 2015.. Multimodal SHG-2PF imaging of microdomain Ca2+-contraction coupling in live cardiac myocytes. . Circ. Res. 118::e1928
    [Google Scholar]
  82. 82.
    Hegyi B, Shimkunas R, Jian Z, Izu LT, Bers DM, Chen-Izu Y. 2021.. Mechanoelectric coupling and arrhythmogenesis in cardiomyocytes contracting under mechanical afterload in a 3D viscoelastic hydrogel. . PNAS 118::e2108484118
    [Google Scholar]
  83. 83.
    Hegyi B, Bers DM, Bossuyt J. 2019.. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. . J. Mol. Cell. Cardiol. 127::24659
    [Google Scholar]
  84. 84.
    Anderson ME, Brown JH, Bers DM. 2011.. CaMKII in myocardial hypertrophy and heart failure. . J. Mol. Cell. Cardiol. 51::46873
    [Google Scholar]
  85. 85.
    Alim CC, Ko CY, Mira Hernandez J, Shen EY, Baidar S, et al. 2022.. Nitrosylation of cardiac CaMKII at Cys290 mediates mechanical afterload-induced increases in Ca2+ transient and Ca2+ sparks. . J. Physiol. 600::486579
    [Google Scholar]
  86. 86.
    Schonleitner P, Schotten U, Antoons G. 2017.. Mechanosensitivity of microdomain calcium signalling in the heart. . Prog. Biophys. Mol. Biol. 130::288301
    [Google Scholar]
  87. 87.
    Chen-Izu Y, Izu LT. 2017.. Mechano-chemo-transduction in cardiac myocytes. . J. Physiol. 595::394958
    [Google Scholar]
  88. 88.
    Izu LT, Kohl P, Boyden PA, Miura M, Banyasz T, et al. 2020.. Mechano-electric and mechano-chemo-transduction in cardiomyocytes. . J. Physiol. 598::1285305
    [Google Scholar]
  89. 89.
    Ingber DE. 2003.. Tensegrity I. Cell structure and hierarchical systems biology. . J. Cell Sci. 116::115773
    [Google Scholar]
  90. 90.
    Ingber DE. 2003.. Tensegrity II. How structural networks influence cellular information processing networks. . J. Cell Sci. 116::1397408
    [Google Scholar]
  91. 91.
    Diz-Munoz A, Weiner OD, Fletcher DA. 2018.. In pursuit of the mechanics that shape cell surfaces. . Nat. Phys. 14::64852
    [Google Scholar]
  92. 92.
    Sukharev S, Sachs F. 2012.. Molecular force transduction by ion channels: diversity and unifying principles. . J. Cell Sci. 125::307583
    [Google Scholar]
  93. 93.
    Sheikh F, Ross RS, Chen J. 2009.. Cell-cell connection to cardiac disease. . Trends Cardiovasc. Med. 19::18290
    [Google Scholar]
  94. 94.
    Kresh JY, Chopra A. 2011.. Intercellular and extracellular mechanotransduction in cardiac myocytes. . Pflügers Arch. 462::7587
    [Google Scholar]
  95. 95.
    Granzier HL, Irving TC. 1995.. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. . Biophys. J. 68::102744
    [Google Scholar]
  96. 96.
    Uchida K, Scarborough EA, Prosser BL. 2022.. Cardiomyocyte microtubules: control of mechanics, transport, and remodeling. . Annu. Rev. Physiol. 84::25783
    [Google Scholar]
  97. 97.
    Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J. 2011.. The costamere bridges sarcomeres to the sarcolemma in striated muscle. . Prog. Pediatr. Cardiol. 31::8388
    [Google Scholar]
  98. 98.
    Danowski BA, Imanaka-Yoshida K, Sanger JM, Sanger JW. 1992.. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. . J. Cell Biol. 118::141120
    [Google Scholar]
  99. 99.
    Bloch RJ, Gonzalez-Serratos H. 2003.. Lateral force transmission across costameres in skeletal muscle. . Exerc. Sport Sci. Rev. 31::7378
    [Google Scholar]
  100. 100.
    West G, Sedighi S, Agnetti G, Taimen P. 2023.. Intermediate filaments in the heart: the dynamic duo of desmin and lamins orchestrates mechanical force transmission. . Curr. Opin. Cell Biol. 85::102280
    [Google Scholar]
  101. 101.
    Gigli M, Begay RL, Morea G, Graw SL, Sinagra G, et al. 2016.. A review of the giant protein titin in clinical molecular diagnostics of cardiomyopathies. . Front. Cardiovasc. Med. 3::21
    [Google Scholar]
  102. 102.
    Linke WA. 2018.. Titin gene and protein functions in passive and active muscle. . Annu. Rev. Physiol. 80::389411
    [Google Scholar]
  103. 103.
    Prabhu SD, Frangogiannis NG. 2016.. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. . Circ. Res. 119::91112
    [Google Scholar]
  104. 104.
    Segura AM, Frazier OH, Buja LM. 2014.. Fibrosis and heart failure. . Heart Fail. Rev. 19::17385
    [Google Scholar]
  105. 105.
    Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, et al. 2014.. Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. . PNAS 111::1458994
    [Google Scholar]
  106. 106.
    Loescher CM, Hobbach AJ, Linke WA. 2022.. Titin (TTN): from molecule to modifications, mechanics, and medical significance. . Cardiovasc. Res. 118::290318
    [Google Scholar]
  107. 107.
    Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H. 2002.. Protein kinase A phosphorylates titin's cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. . Circ. Res. 90::118188
    [Google Scholar]
  108. 108.
    Hidalgo CG, Chung CS, Saripalli C, Methawasin M, Hutchinson KR, et al. 2013.. The multifunctional Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) phosphorylates cardiac titin's spring elements. . J. Mol. Cell. Cardiol. 54::9097
    [Google Scholar]
  109. 109.
    Perkin J, Slater R, Del Favero G, Lanzicher T, Hidalgo C, et al. 2015.. Phosphorylating titin's cardiac N2B element by ERK2 or CaMKIIδ lowers the single molecule and cardiac muscle force. . Biophys. J. 109::2592601
    [Google Scholar]
  110. 110.
    Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M. 2000.. Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. . J. Biol. Chem. 275::3711017
    [Google Scholar]
  111. 111.
    Rysa J, Leskinen H, Ilves M, Ruskoaho H. 2005.. Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure. . Hypertension 45::92733
    [Google Scholar]
  112. 112.
    Mustonen E, Aro J, Puhakka J, Ilves M, Soini Y, et al. 2008.. Thrombospondin-4 expression is rapidly upregulated by cardiac overload. . Biochem. Biophys. Res. Commun. 373::18691
    [Google Scholar]
  113. 113.
    Kanchanawong P, Calderwood DA. 2023.. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. . Nat. Rev. Mol. Cell Biol. 24::14261
    [Google Scholar]
  114. 114.
    Wu X, Chakraborty S, Heaps CL, Davis MJ, Meininger GA, Muthuchamy M. 2011.. Fibronectin increases the force production of mouse papillary muscles via α5β1 integrin. . J. Mol. Cell. Cardiol. 50::20313
    [Google Scholar]
  115. 115.
    Browe DM, Baumgarten CM. 2004.. Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl current elicited by beta1 integrin stretch in rabbit ventricular myocytes. . J. Gen. Physiol. 124::27387
    [Google Scholar]
  116. 116.
    Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE. 1999.. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. . Circ. Res. 85::71622
    [Google Scholar]
  117. 117.
    Perez NG, de Hurtado MC, Cingolani HE. 2001.. Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. . Circ. Res. 88::37682
    [Google Scholar]
  118. 118.
    Wilson DGS, Tinker A, Iskratsch T. 2022.. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. . Commun. Biol. 5::1022
    [Google Scholar]
  119. 119.
    Romfh A, McNally EM. 2010.. Cardiac assessment in Duchenne and Becker muscular dystrophies. . Curr. Heart Fail. Rep. 7::21218
    [Google Scholar]
  120. 120.
    Kamogawa Y, Biro S, Maeda M, Setoguchi M, Hirakawa T, et al. 2001.. Dystrophin-deficient myocardium is vulnerable to pressure overload in vivo. . Cardiovasc. Res. 50::50915
    [Google Scholar]
  121. 121.
    Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, et al. 2002.. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. . Brain Res. Mol. Brain Res. 109::95104
    [Google Scholar]
  122. 122.
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, et al. 2006.. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. . J. Clin. Investig. 116::311426
    [Google Scholar]
  123. 123.
    Lazniewska J, Weiss N. 2017.. Glycosylation of voltage-gated calcium channels in health and disease. . Biochim. Biophys. Acta Biomembr. 1859::66268
    [Google Scholar]
  124. 124.
    Suchyna TM. 2017.. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. . Prog. Biophys. Mol. Biol. 130::24453
    [Google Scholar]
  125. 125.
    Peyronnet R, Nerbonne JM, Kohl P. 2016.. Cardiac mechano-gated ion channels and arrhythmias. . Circ. Res. 118::31129
    [Google Scholar]
  126. 126.
    Craelius W, Chen V, El-Sherif N. 1988.. Stretch activated ion channels in ventricular myocytes. . Biosci. Rep. 8::40714
    [Google Scholar]
  127. 127.
    Kim D. 1992.. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. . J. Gen. Physiol. 100::102140
    [Google Scholar]
  128. 128.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, et al. 2010.. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. . Science 330::5560
    [Google Scholar]
  129. 129.
    Jiang F, Yin K, Wu K, Zhang M, Wang S, et al. 2021.. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. . Nat. Commun. 12::869
    [Google Scholar]
  130. 130.
    Kloth B, Mearini G, Weinberger F, Stenzig J, Geertz B, et al. 2022.. Piezo2 is not an indispensable mechanosensor in murine cardiomyocytes. . Sci. Rep. 12::8193
    [Google Scholar]
  131. 131.
    Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, et al. 2012.. Microtubules underlie dysfunction in Duchenne muscular dystrophy. . Sci. Signal. 5::ra56
    [Google Scholar]
  132. 132.
    Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, et al. 2016.. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. . Science 352::aaf0659
    [Google Scholar]
  133. 133.
    Garbincius JF, Michele DE. 2015.. Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. . PNAS 112::1366368
    [Google Scholar]
  134. 134.
    Lohse MJ, Engelhardt S, Eschenhagen T. 2003.. What is the role of β-adrenergic signaling in heart failure?. Circ. Res. 93::896906
    [Google Scholar]
  135. 135.
    Devereux RB, Roman MJ, Palmieri V, Okin PM, Boman K, et al. 2000.. Left ventricular wall stresses and wall stress-mass-heart rate products in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. . J. Hypertens. 18::112938
    [Google Scholar]
  136. 136.
    Hegyi B, Banyasz T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. 2018.. β-Adrenergic regulation of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. . J. Mol. Cell. Cardiol. 123::16879
    [Google Scholar]
  137. 137.
    Balligand JL. 1999.. Regulation of cardiac β-adrenergic response by nitric oxide. . Cardiovasc. Res. 43::60720
    [Google Scholar]
  138. 138.
    Chhabra A, Jain N, Varshney R, Sharma M. 2023.. H2S regulates redox signaling downstream of cardiac β-adrenergic receptors in a G6PD-dependent manner. . Cell Signal. 107::110664
    [Google Scholar]
  139. 139.
    Feng N, Anderson ME. 2017.. CaMKII is a nodal signal for multiple programmed cell death pathways in heart. . J. Mol. Cell. Cardiol. 103::1029
    [Google Scholar]
  140. 140.
    Kass RS, Tsien RW. 1982.. Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. . Biophys. J. 38::25969
    [Google Scholar]
  141. 141.
    Berlin JR, Cannell MB, Lederer WJ. 1989.. Cellular origins of the transient inward current in cardiac myocytes. Role of fluctuations and waves of elevated intracellular calcium. . Circ. Res. 65::11526
    [Google Scholar]
  142. 142.
    Katra RP, Laurita KR. 2005.. Cellular mechanism of calcium-mediated triggered activity in the heart. . Circ. Res. 96::53542
    [Google Scholar]
  143. 143.
    Hennersdorf MG, Strauer BE. 2001.. Arterial hypertension and cardiac arrhythmias. . J. Hypertens. 19::16777
    [Google Scholar]
  144. 144.
    Meinertz T, Hofmann T, Kasper W, Treese N, Bechtold H, et al. 1984.. Significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. . Am. J. Cardiol. 53::9027
    [Google Scholar]
  145. 145.
    Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, et al. 2022.. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. . Circulation 145::e8951032
    [Google Scholar]
  146. 146.
    Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, et al. 2023.. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. . Front. Physiol. 14::1183101
    [Google Scholar]
  147. 147.
    US Food Drug Admin. 2023.. FDA approves first gene therapy for treatment of certain patients with Duchenne muscular dystrophy. News Release, June 22 , US Food Drug Admin., Silver Spring, MD:. https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapy-treatment-certain-patients-duchenne-muscular-dystrophy
    [Google Scholar]
  148. 148.
    Vasan RS, Levy D. 1996.. The role of hypertension in the pathogenesis of heart failure. A clinical mechanistic overview. . Arch. Intern. Med. 156::178996
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-104846
Loading
/content/journals/10.1146/annurev-physiol-022724-104846
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error