1932

Abstract

Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as intestinal motility and epithelial barrier integrity through actions that regulate the microenvironment of the enteric nervous system, the activity of enteric neurons, intestinal epithelial functions, and immune response. Changes to glial phenotype in disease switch glial functions and contribute to intestinal inflammation, dysmotility, pain, neuroplasticity, and tumorigenesis. This review summarizes current concepts regarding the physiological roles of enteric glial cells and their potential contributions to gut disease. The discussion is focused on recent evidence that suggests important glial contributions to gastrointestinal health and pathophysiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105016
2025-02-10
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105016.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105016&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schemann M, Neunlist M. 2004.. The human enteric nervous system. . Neurogastroenterol. Motil. 16:(S1):5559
    [Crossref] [Google Scholar]
  2. 2.
    Costa M, Brookes SJH, Hennig GW. 2000.. Anatomy and physiology of the enteric nervous system. . Gut 47:(Suppl. 4):iv1519
    [Google Scholar]
  3. 3.
    Gabella G. 1981.. Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial cells. . Neuroscience 6:(3):42536
    [Crossref] [Google Scholar]
  4. 4.
    Dogiel AS. 1899.. Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere. . Arch. Anat. Physiol. Leipz. 1899::13058
    [Google Scholar]
  5. 5.
    Cook RD, Burnstock G. 1976.. The ultrastructure of Auerbach's plexus in the guinea-pig. II. Non-neuronal elements. . J. Neurocytol. 5:(2):195206
    [Crossref] [Google Scholar]
  6. 6.
    Jessen KR, Mirsky R. 1980.. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. . Nature 286:(5774):73637
    [Crossref] [Google Scholar]
  7. 7.
    Sanchini G, Vaes N, Boesmans W. 2023.. Mini-review: Enteric glial cell heterogeneity: Is it all about the niche?. Neurosci. Lett. 812::137396
    [Crossref] [Google Scholar]
  8. 8.
    Gulbransen BD, Sharkey KA. 2012.. Novel functional roles for enteric glia in the gastrointestinal tract. . Nat. Rev. Gastroenterol. Hepatol. 9:(11):62532
    [Crossref] [Google Scholar]
  9. 9.
    Broadhead MJ, Bayguinov PO, Okamoto T, Heredia DJ, Smith TK. 2012.. Ca2+ transients in myenteric glial cells during the colonic migrating motor complex in the isolated murine large intestine. . J. Physiol. 590:(2):33550
    [Crossref] [Google Scholar]
  10. 10.
    Gulbransen BD, Sharkey KA. 2009.. Purinergic neuron-to-glia signaling in the enteric nervous system. . Gastroenterology 136:(4):134958
    [Crossref] [Google Scholar]
  11. 11.
    Neunlist M, Rolli-Derkinderen M, Latorre R, Landeghem LV, Coron E, et al. 2014.. Enteric glial cells: recent developments and future directions. . Gastroenterology 147:(6):123037
    [Crossref] [Google Scholar]
  12. 12.
    Seguella L, Gulbransen BD. 2021.. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. . Nat. Rev. Gastroenterol. Hepatol. 18:(8):57187
    [Crossref] [Google Scholar]
  13. 13.
    Rao M, Nelms BD, Dong L, Salinas-Rios V, Rutlin M, et al. 2015.. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. . Glia 63:(11):204057
    [Crossref] [Google Scholar]
  14. 14.
    Boesmans W, Rocha NP, Reis HJ, Holt M, Berghe PV. 2014.. The astrocyte marker Aldh1L1 does not reliably label enteric glial cells. . Neurosci. Lett. 566::1025
    [Crossref] [Google Scholar]
  15. 15.
    Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, et al. 2018.. Molecular architecture of the mouse nervous system. . Cell 174:(4):9991014.e22
    [Crossref] [Google Scholar]
  16. 16.
    Drokhlyansky E, Smillie CS, Wittenberghe NV, Ericsson M, Griffin GK, et al. 2020.. The human and mouse enteric nervous system at single-cell resolution. . Cell 182:(6):160622.e23
    [Crossref] [Google Scholar]
  17. 17.
    Rao M, Gershon MD. 2018.. Enteric nervous system development: What could possibly go wrong?. Nat. Rev. Neurosci. 19:(9):55265
    [Crossref] [Google Scholar]
  18. 18.
    Wang X, Chan AKK, Sham MH, Burns AJ, Chan WY. 2011.. Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. . Gastroenterology 141:(3):9921002.e6
    [Crossref] [Google Scholar]
  19. 19.
    Yu Q, Liu L, Du M, Müller D, Gu Y, et al. 2024.. Sacral neural crest-independent origin of the enteric nervous system in mouse. . Gastroenterology 166:(6):108599
    [Crossref] [Google Scholar]
  20. 20.
    Uesaka T, Nagashimada M, Enomoto H. 2013.. GDNF signaling levels control migration and neuronal differentiation of enteric ganglion precursors. . J. Neurosci. 33:(41):1637282
    [Crossref] [Google Scholar]
  21. 21.
    Nagy N, Goldstein AM. 2017.. Enteric nervous system development: a crest cell's journey from neural tube to colon. . Semin. Cell Dev. Biol. 66::94106
    [Crossref] [Google Scholar]
  22. 22.
    McCann CJ, Alves MM, Brosens E, Natarajan D, Perin S, et al. 2019.. Neuronal development and onset of electrical activity in the human enteric nervous system. . Gastroenterology 156:(5):148395.e6
    [Crossref] [Google Scholar]
  23. 23.
    Young HM, Bergner AJ, Müller T. 2003.. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. . J. Comp. Neurol. 456:(1):111
    [Crossref] [Google Scholar]
  24. 24.
    Rothman TP, Tennyson VM, Gershon MD. 1986.. Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. . J. Comp. Neurol. 252:(4):493506
    [Crossref] [Google Scholar]
  25. 25.
    Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. 2022.. Development, diversity, and neurogenic capacity of enteric glia. . Front. Cell Dev. Biol. 9::775102
    [Crossref] [Google Scholar]
  26. 26.
    Cossais F, Durand T, Chevalier J, Boudaud M, Kermarrec L, et al. 2016.. Postnatal development of the myenteric glial network and its modulation by butyrate. . Am. J. Physiol. Gastrointest. Liver Physiol. 310:(11):G94151
    [Crossref] [Google Scholar]
  27. 27.
    Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, et al. 2015.. Microbiota controls the homeostasis of glial cells in the gut lamina propria. . Neuron 85:(2):28995
    [Crossref] [Google Scholar]
  28. 28.
    Joly A, Leulier F, Vadder FD. 2021.. Microbial modulation of the development and physiology of the enteric nervous system. . Trends Microbiol. 29:(8):68699
    [Crossref] [Google Scholar]
  29. 29.
    Joseph NM, He S, Quintana E, Kim Y-G, Núñez G, Morrison SJ. 2011.. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. . J. Clin. Investig. 121:(9):3398411
    [Crossref] [Google Scholar]
  30. 30.
    Belkind-Gerson J, Hotta R, Nagy N, Thomas AR, Graham H, et al. 2015.. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. . Inflamm. Bowel Dis. 21:(4):87078
    [Crossref] [Google Scholar]
  31. 31.
    Woods C, Flockton AR, Belkind-Gerson J. 2024.. Phosphatase and tensin homolog inhibition in proteolipid protein 1–expressing cells stimulates neurogenesis and gliogenesis in the postnatal enteric nervous system. . Biomolecules 14:(3):346
    [Crossref] [Google Scholar]
  32. 32.
    Soret R, Schneider S, Bernas G, Christophers B, Souchkova O, et al. 2020.. Glial cell-derived neurotrophic factor induces enteric neurogenesis and improves colon structure and function in mouse models of Hirschsprung disease. . Gastroenterology 159:(5):182438.e17
    [Crossref] [Google Scholar]
  33. 33.
    Baghdadi MB, Ayyaz A, Coquenlorge S, Chu B, Kumar S, et al. 2022.. Enteric glial cell heterogeneity regulates intestinal stem cell niches. . Cell Stem Cell 29:(1):86100.e6
    [Crossref] [Google Scholar]
  34. 34.
    Seguella L, McClain JL, Esposito G, Gulbransen BD. 2022.. Functional intraregional and interregional heterogeneity between myenteric glial cells of the colon and duodenum in mice. . J. Neurosci. 42:(46):8694708
    [Crossref] [Google Scholar]
  35. 35.
    Ahmadzai MM, Seguella L, Gulbransen BD. 2021.. Circuit-specific enteric glia regulate intestinal motor neurocircuits. . PNAS 118:(40):e2025938118
    [Crossref] [Google Scholar]
  36. 36.
    Grubišić V, Gulbransen BD. 2016.. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. . J. Physiol. 595:(11):340924
    [Crossref] [Google Scholar]
  37. 37.
    McClain JL, Fried DE, Gulbransen BD. 2015.. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. . Cell. Mol. Gastroenterol. Hepatol. 1:(6):63145
    [Crossref] [Google Scholar]
  38. 38.
    McClain JL, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM, et al. 2014.. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. . Gastroenterology 146:(2):497507.e1
    [Crossref] [Google Scholar]
  39. 39.
    Delvalle NM, Fried DE, Rivera-Lopez G, Gaudette L, Gulbransen BD. 2018.. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. . Am. J. Physiol. Gastrointest. Liver Physiol. 315:(4):G47383
    [Crossref] [Google Scholar]
  40. 40.
    Boesmans W, Lasrado R, Berghe PV, Pachnis V. 2015.. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. . Glia 63:(2):22941
    [Crossref] [Google Scholar]
  41. 41.
    Touvron M, Wieland BA, Mariant CL, Hattenhauer AR, Landeghem LV. 2022.. Enteric glial cells of the two plexi of the enteric nervous system exhibit phenotypic and functional inter- and intra-heterogeneity. . bioRxiv 497986. https://doi.org/10.1101/2022.06.28.497986
  42. 42.
    Spencer NJ, Hu H. 2020.. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. . Nat. Rev. Gastroenterol. Hepatol. 17:(6):33851
    [Crossref] [Google Scholar]
  43. 43.
    Galligan JJ, North RA. 2004.. Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. . Neurogastroenterol. Motil. 16:(S1):6470
    [Crossref] [Google Scholar]
  44. 44.
    Griffiths IR, Dickinson P, Montague P. 1995.. Expression of the proteolipid protein gene in glial cells of the post-natal peripheral nervous system of rodents. . Neuropathol. Appl. Neurobiol. 21:(2):97110
    [Crossref] [Google Scholar]
  45. 45.
    Patyal P, Fil D, Wight PA. 2023.. Plp1 in the enteric nervous system is preferentially expressed during early postnatal development in mouse as DM20, whose expression appears reliant on an intronic enhancer. . Front. Cell. Neurosci. 17::1175614
    [Crossref] [Google Scholar]
  46. 46.
    Guyer RA, Stavely R, Robertson K, Bhave S, Mueller JL, et al. 2023.. Single-cell multiome sequencing clarifies enteric glial diversity and identifies an intraganglionic population poised for neurogenesis. . Cell Rep. 42:(3):112194
    [Crossref] [Google Scholar]
  47. 47.
    Li X, Wang C-Y. 2021.. From bulk, single-cell to spatial RNA sequencing. . Int. J. Oral Sci. 13:(1):36
    [Crossref] [Google Scholar]
  48. 48.
    Chen W, Guillaume-Gentil O, Rainer PY, Gäbelein CG, Saelens W, et al. 2022.. Live-seq enables temporal transcriptomic recording of single cells. . Nature 608:(7924):73340
    [Crossref] [Google Scholar]
  49. 49.
    Majd H, Cesiulis A, Samuel RM, Richter MN, Elder N, et al. 2024.. A call for a unified and multimodal definition of cellular identity in the enteric nervous system. . bioRxiv 575794. https://doi.org/10.1101/2024.01.15.575794
  50. 50.
    Gabella G. 2022.. Enteric glia: extent, cohesion, axonal contacts, membrane separations and mitochondria in Auerbach's ganglia of guinea pigs. . Cell Tissue Res. 389:(3):40926
    [Crossref] [Google Scholar]
  51. 51.
    Albini M, Krawczun-Rygmaczewska A, Cesca F. 2023.. Astrocytes and brain-derived neurotrophic factor (BDNF). . Neurosci. Res. 197::4251
    [Crossref] [Google Scholar]
  52. 52.
    Saint-Martin M, Goda Y. 2023.. Astrocyte-synapse interactions and cell adhesion molecules. . FEBS J. 290:(14):351226
    [Crossref] [Google Scholar]
  53. 53.
    Berre-Scoul C, Chevalier J, Oleynikova E, Cossais F, Talon S, et al. 2017.. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. . J. Physiol. 595:(2):58398
    [Crossref] [Google Scholar]
  54. 54.
    Landeghem LV, Chevalier J, Mahé MM, Wedel T, Urvil P, et al. 2011.. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. . Am. J. Physiol. Gastrointest. Liver Physiol. 300:(6):G97687
    [Crossref] [Google Scholar]
  55. 55.
    von Boyen GBT, Steinkamp M, Reinshagen M, Schäfer K -H, Adler G, Kirsch J. 2006.. Nerve growth factor secretion in cultured enteric glia cells is modulated by proinflammatory cytokines. . J. Neuroendocrinol. 18:(11):82025
    [Crossref] [Google Scholar]
  56. 56.
    Aoki E, Takeuchi IK, Shoji R, Semba R. 1993.. Localization of nitric oxide-related substances in the peripheral nervous tissues. . Brain Res. 620:(1):14245
    [Crossref] [Google Scholar]
  57. 57.
    Nagahama M, Semba R, Tsuzuki M, Aoki E. 2001.. L-arginine immunoreactive enteric glial cells in the enteric nervous system of rat ileum. . Biol. Signals Recept. 10:(5):33640
    [Crossref] [Google Scholar]
  58. 58.
    Jessen K, Mirsky R. 1983.. Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. . J. Neurosci. 3:(11):220618
    [Crossref] [Google Scholar]
  59. 59.
    Kato H, Yamamoto T, Yamamoto H, Ohi R, So N, Iwasaki Y. 1990.. Immunocytochemical characterization of supporting cells in the enteric nervous system in Hirschsprung's disease. . J. Pediatr. Surg. 25:(5):51419
    [Crossref] [Google Scholar]
  60. 60.
    Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, et al. 2019.. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. . Am. J. Physiol. Gastrointest. Liver Physiol. 317:(3):G31432
    [Crossref] [Google Scholar]
  61. 61.
    Fletcher EL, Clark MJ, Furness JB. 2002.. Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. . Cell Tissue Res. 308:(3):33946
    [Crossref] [Google Scholar]
  62. 62.
    Rühl A, Hoppe S, Frey I, Daniel H, Schemann M. 2005.. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. . J. Comp. Neurol. 490:(1):111
    [Crossref] [Google Scholar]
  63. 63.
    Braun N, Sévigny J, Robson SC, Hammer K, Hanani M, Zimmermann H. 2004.. Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. . Glia 45:(2):12432
    [Crossref] [Google Scholar]
  64. 64.
    Fried DE, Watson RE, Robson SC, Gulbransen BD. 2017.. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling. . Am. J. Physiol. Gastrointest. Liver Physiol. 313:(6):G57080
    [Crossref] [Google Scholar]
  65. 65.
    Lavoie EG, Gulbransen BD, Martín-Satué M, Aliagas E, Sharkey KA, Sévigny J. 2011.. Ectonucleotidases in the digestive system: focus on NTPDase3 localization. . Am. J. Physiol. Gastrointest. Liver Physiol. 300:(4):G60820
    [Crossref] [Google Scholar]
  66. 66.
    Pelletier J, Agonsanou H, Delvalle N, Fausther M, Salem M, et al. 2017.. Generation and characterization of polyclonal and monoclonal antibodies to human NTPDase2 including a blocking antibody. . Purinergic Signal. 13:(3):293304
    [Crossref] [Google Scholar]
  67. 67.
    Brown IAM, Gulbransen BD. 2018.. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. . Am. J. Physiol. Gastrointest. Liver Physiol. 314:(1):G3952
    [Crossref] [Google Scholar]
  68. 68.
    Abdo H, Derkinderen P, Gomes P, Chevalier J, Aubert P, et al. 2010.. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. . FASEB J. 24:(4):108294
    [Crossref] [Google Scholar]
  69. 69.
    Abdo H, Mahé MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B. 2012.. The omega-6 fatty acid derivative 15-deoxy-Δ12,14-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. . J. Physiol. 590:(11):273950
    [Crossref] [Google Scholar]
  70. 70.
    Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, et al. 2007.. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. . Gastroenterology 132:(4):134458
    [Crossref] [Google Scholar]
  71. 71.
    Rauhala P, Lin AM-Y, Chiueh CC. 1998.. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. . FASEB J. 12:(2):16573
    [Crossref] [Google Scholar]
  72. 72.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, et al. 2003.. Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. . J. Neurosci. 23:(8):3394406
    [Crossref] [Google Scholar]
  73. 73.
    Dringen R, Pfeiffer B, Hamprecht B. 1999.. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. . J. Neurosci. 19:(2):56269
    [Crossref] [Google Scholar]
  74. 74.
    Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, et al. 2011.. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. . J. Clin. Investig. 121:(9):341224
    [Crossref] [Google Scholar]
  75. 75.
    Laddach A, Chng SH, Lasrado R, Progatzky F, Shapiro M, et al. 2023.. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. . Nat. Commun. 14:(1):5904
    [Crossref] [Google Scholar]
  76. 76.
    Belkind-Gerson J, Graham HK, Reynolds J, Hotta R, Nagy N, et al. 2017.. Colitis promotes neuronal differentiation of Sox2+ and PLP1+ enteric cells. . Sci. Rep. 7:(1):2525
    [Crossref] [Google Scholar]
  77. 77.
    Costa M, Spencer NJ, Brookes SJH. 2021.. The role of enteric inhibitory neurons in intestinal motility. . Auton. Neurosci. 235::102854
    [Crossref] [Google Scholar]
  78. 78.
    Barth BB, Spencer NJ, Grill WM. 2023.. The enteric nervous system II. . Adv. Exp. Med. Biol. 1383::11323
    [Crossref] [Google Scholar]
  79. 79.
    Aubé A-C, Cabarrocas J, Bauer J, Philippe D, Aubert P, et al. 2006.. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. . Gut 55:(5):63037
    [Crossref] [Google Scholar]
  80. 80.
    Nasser Y, Fernandez E, Keenan CM, Ho W, Oland LD, et al. 2006.. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. . Am. J. Physiol. Gastrointest. Liver Physiol. 291:(5):G91227
    [Crossref] [Google Scholar]
  81. 81.
    Bai X, Palma GD, Boschetti E, Nishiharo Y, Lu J, et al. 2024.. Vasoactive intestinal polypeptide plays a key role in the microbial-neuroimmune control of intestinal motility. . Cell. Mol. Gastroenterol. Hepatol. 17:(3):38398
    [Crossref] [Google Scholar]
  82. 82.
    Kovler ML, Salazar AJG, Fulton WB, Lu P, Yamaguchi Y, et al. 2021.. Toll-like receptor 4-mediated enteric glia loss is critical for the development of necrotizing enterocolitis. . Sci. Transl. Med. 13:(612):eabg3459
    [Crossref] [Google Scholar]
  83. 83.
    Gulbransen BD, Bains JS, Sharkey KA. 2010.. Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. . J. Neurosci. 30:(19):68019
    [Crossref] [Google Scholar]
  84. 84.
    Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW. 2003.. Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. . Glia 42:(3):25262
    [Crossref] [Google Scholar]
  85. 85.
    Sarosi GA, Barnhart DC, Turner DJ, Mulholland MW. 1998.. Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. . Am. J. Physiol. 275:(3):G55055
    [Google Scholar]
  86. 86.
    Ren J, Galligan JJ. 2005.. Dynamics of fast synaptic excitation during trains of stimulation in myenteric neurons of guinea-pig ileum. . Auton. Neurosci. 117:(2):6778
    [Crossref] [Google Scholar]
  87. 87.
    Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, et al. 2012.. Activation of neuronal P2X7 receptor-Pannexin-1 mediates death of enteric neurons during colitis. . Nat. Med. 18:(4):6004
    [Crossref] [Google Scholar]
  88. 88.
    Sperlágh B, Vizi ES, Wirkner K, Illes P. 2006.. P2X7 receptors in the nervous system. . Prog. Neurobiol. 78:(6):32746
    [Crossref] [Google Scholar]
  89. 89.
    Grider JR, Makhlouf GM. 1992.. Enteric GABA: mode of action and role in the regulation of the peristaltic reflex. . Am. J. Physiol. Gastrointest. Liver Physiol. 262:(4):G69094
    [Crossref] [Google Scholar]
  90. 90.
    Kirischuk S, Héja L, Kardos J, Billups B. 2016.. Astrocyte sodium signaling and the regulation of neurotransmission. . Glia 64:(10):165566
    [Crossref] [Google Scholar]
  91. 91.
    Jessen KR, Hills JM, Saffrey MJ. 1986.. Immunohistochemical demonstration of GABAergic neurons in the enteric nervous system. . J. Neurosci. 6:(6):162834
    [Crossref] [Google Scholar]
  92. 92.
    Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. 2020.. Functional gastrointestinal disorders: advances in understanding and management. . Lancet 396:(10263):166474
    [Crossref] [Google Scholar]
  93. 93.
    Rao M, Rastelli D, Dong L, Chiu S, Setlik W, et al. 2017.. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. . Gastroenterology 153:(4):106881.e7
    [Crossref] [Google Scholar]
  94. 94.
    Liu JYH, Lin G, Fang M, Rudd JA. 2019.. Localization of estrogen receptor ERα, ERβ and GPR30 on myenteric neurons of the gastrointestinal tract and their role in motility. . Gen. Comp. Endocrinol. 272::6375
    [Crossref] [Google Scholar]
  95. 95.
    Zielińska M, Fichna J, Bashashati M, Habibi S, Sibaev A, et al. 2017.. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. . Neurogastroenterol. Motil. 29:(7):e13025
    [Crossref] [Google Scholar]
  96. 96.
    Neunlist M, Landeghem LV, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. 2013.. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. . Nat. Rev. Gastroenterol. Hepatol. 10:(2):90100
    [Crossref] [Google Scholar]
  97. 97.
    Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, et al. 2017.. Homeostasis of the gut barrier and potential biomarkers. . Am. J. Physiol. Gastrointest. Liver Physiol. 312:(3):G17193
    [Crossref] [Google Scholar]
  98. 98.
    Liu YA, Chung YC, Pan ST, Shen MY, Hou YC, et al. 2013.. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. . Neurogastroenterol. Motil. 25:(5):e32438
    [Crossref] [Google Scholar]
  99. 99.
    Neunlist M, Aubert P, Bonnaud S, Landeghem LV, Coron E, et al. 2007.. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. . Am. J. Physiol. Gastrointest. Liver Physiol. 292:(1):G23141
    [Crossref] [Google Scholar]
  100. 100.
    Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, et al. 1998.. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. . Cell 93:(2):189201
    [Crossref] [Google Scholar]
  101. 101.
    Cornet A, Savidge TC, Cabarrocas J, Deng W-L, Colombel J-F, et al. 2001.. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease?. Proc. Natl. Acad. Sci. 98:(23):1330611
    [Crossref] [Google Scholar]
  102. 102.
    Magnusson FC, Liblau RS, von Boehmer H, Pittet MJ, Lee J-W, et al. 2008.. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. . Gastroenterology 134:(4):102837
    [Crossref] [Google Scholar]
  103. 103.
    Woods C, Flockton AR, Wallace LE, Keenan CM, Macklin WB, et al. 2023.. Proteolipid protein 1 is involved in the regulation of intestinal motility and barrier function in the mouse. . Am. J. Physiol. Gastrointest. Liver Physiol. 324:(2):G11530
    [Crossref] [Google Scholar]
  104. 104.
    Landeghem LV, Mahé MM, Teusan R, Léger J, Guisle I, et al. 2009.. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. . BMC Genom. 10:(1):507
    [Crossref] [Google Scholar]
  105. 105.
    Xiao W-D, Chen W, Sun L-H, Wang W-S, Zhou S-W, Yang H. 2011.. The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. . Mol. Cell. Neurosci. 46:(2):52734
    [Crossref] [Google Scholar]
  106. 106.
    Flamant M, Aubert P, Rolli-Derkinderen M, Bourreille A, Neunlist MR, et al. 2011.. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. . Gut 60:(4):47384
    [Crossref] [Google Scholar]
  107. 107.
    Soret R, Coquenlorge S, Cossais F, Meurette G, Rolli-Derkinderen M, Neunlist M. 2013.. Characterization of human, mouse, and rat cultures of enteric glial cells and their effect on intestinal epithelial cells. . Neurogastroenterol. Motil. 25:(11):e75564
    [Crossref] [Google Scholar]
  108. 108.
    Puzan M, Hosic S, Ghio C, Koppes A. 2018.. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. . Sci. Rep. 8:(1):6313
    [Crossref] [Google Scholar]
  109. 109.
    Meir M, Kannapin F, Diefenbacher M, Ghoreishi Y, Kollmann C, et al. 2021.. Intestinal epithelial barrier maturation by enteric glial cells is GDNF-dependent. . Int. J. Mol. Sci. 22:(4):1887
    [Crossref] [Google Scholar]
  110. 110.
    Bubeck M, Becker C, Patankar JV. 2023.. Guardians of the gut: influence of the enteric nervous system on the intestinal epithelial barrier. . Front. Med. 10::1228938
    [Crossref] [Google Scholar]
  111. 111.
    Coquenlorge S, Landeghem LV, Jaulin J, Cenac N, Vergnolle N, et al. 2016.. The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. . Sci. Rep. 6:(1):25203
    [Crossref] [Google Scholar]
  112. 112.
    Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, et al. 2003.. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. . Gastroenterology 124:(7):174857
    [Crossref] [Google Scholar]
  113. 113.
    Cheadle GA, Costantini TW, Lopez N, Bansal V, Eliceiri BP, Coimbra R. 2013.. Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. . PLOS ONE 8:(7):e69042
    [Crossref] [Google Scholar]
  114. 114.
    Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, et al. 2016.. Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn's disease. . Gastroenterology 150:(1):16880
    [Crossref] [Google Scholar]
  115. 115.
    Bach-Ngohou K, Mahé MM, Aubert P, Abdo H, Boni S, et al. 2010.. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-Δ12,14-prostaglandin J2. . J. Physiol. 588:(14):253344
    [Crossref] [Google Scholar]
  116. 116.
    MacEachern SJ, Patel BA, Keenan CM, Dicay M, Chapman K, et al. 2015.. Inhibiting inducible nitric oxide synthase in enteric glia restores electrogenic ion transport in mice with colitis. . Gastroenterology 149:(2):44555.e3
    [Crossref] [Google Scholar]
  117. 117.
    Cavin J-B, Cuddihey H, MacNaughton WK, Sharkey KA. 2020.. Acute regulation of intestinal ion transport and permeability in response to luminal nutrients: the role of the enteric nervous system. . Am. J. Physiol. Gastrointest. Liver Physiol. 318:(2):G25464
    [Crossref] [Google Scholar]
  118. 118.
    Progatzky F, Shapiro M, Chng SH, Garcia-Cassani B, Classon CH, et al. 2021.. Regulation of intestinal immunity and tissue repair by enteric glia. . Nature 599:(7883):12530
    [Crossref] [Google Scholar]
  119. 119.
    Dharshika C, Gonzales J, Chow A, Morales-Soto W, Gulbransen BD. 2023.. Stimulator of interferon genes (STING) expression in the enteric nervous system and contributions of glial STING in disease. . Neurogastroenterol. Motil. 35:(7):e14553
    [Crossref] [Google Scholar]
  120. 120.
    Chow AK, Gulbransen BD. 2017.. Potential roles of enteric glia in bridging neuroimmune communication in the gut. . Am. J. Physiol. Gastrointest. Liver Physiol. 312:(2):G14552
    [Crossref] [Google Scholar]
  121. 121.
    Schneider KM, Blank N, Alvarez Y, Thum K, Lundgren P, et al. 2023.. The enteric nervous system relays psychological stress to intestinal inflammation. . Cell 186:(13):282338.e20
    [Crossref] [Google Scholar]
  122. 122.
    Dora D, Ferenczi S, Stavely R, Toth VE, Varga ZV, et al. 2021.. Evidence of a myenteric plexus barrier and its macrophage-dependent degradation during murine colitis: implications in enteric neuroinflammation. . Cell. Mol. Gastroenterol. Hepatol. 12:(5):161741
    [Crossref] [Google Scholar]
  123. 123.
    Phillips RJ, Powley TL. 2012.. Macrophages associated with the intrinsic and extrinsic autonomic innervation of the rat gastrointestinal tract. . Auton. Neurosci. 169:(1):1227
    [Crossref] [Google Scholar]
  124. 124.
    Eyo UB, Wu L-J. 2018.. Microglia: lifelong patrolling immune cells of the brain. . Prog. Neurobiol. 179::101614
    [Crossref] [Google Scholar]
  125. 125.
    Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. 2022.. Microglia in brain development and regeneration. . Development 149:(8):dev200425
    [Crossref] [Google Scholar]
  126. 126.
    Viola MF, Chavero-Pieres M, Modave E, Delfini M, Stakenborg N, et al. 2023.. Dedicated macrophages organize and maintain the enteric nervous system. . Nature 618::81826
    [Crossref] [Google Scholar]
  127. 127.
    Grubišić V, McClain JL, Fried DE, Grants I, Rajasekhar P, et al. 2020.. Enteric glia modulate macrophage phenotype and visceral sensitivity following inflammation. . Cell Rep. 32:(10):108100
    [Crossref] [Google Scholar]
  128. 128.
    Stakenborg M, Abdurahiman S, Simone VD, Goverse G, Stakenborg N, et al. 2022.. Enteric glial cells favor accumulation of anti-inflammatory macrophages during the resolution of muscularis inflammation. . Mucosal Immunol. 15:(6):12961308
    [Crossref] [Google Scholar]
  129. 129.
    Grubišić V, Bali V, Fried DE, Eltzschig HK, Robson SC, et al. 2022.. Enteric glial adenosine 2B receptor signaling mediates persistent epithelial barrier dysfunction following acute DSS colitis. . Mucosal Immunol. 15:(5):96476
    [Crossref] [Google Scholar]
  130. 130.
    Artis D, Spits H. 2015.. The biology of innate lymphoid cells. . Nature 517:(7534):293301
    [Crossref] [Google Scholar]
  131. 131.
    Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L, et al. 2016.. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. . Nature 535:(7612):44043
    [Crossref] [Google Scholar]
  132. 132.
    Kermarrec L, Durand T, Neunlist M, Naveilhan P, Neveu I. 2016.. Enteric glial cells have specific immunosuppressive properties. . J. Neuroimmunol. 295::7983
    [Crossref] [Google Scholar]
  133. 133.
    Kermarrec L, Durand T, Gonzales J, Pabois J, Hulin P, et al. 2019.. Rat enteric glial cells express novel isoforms of interleukine-7 regulated during inflammation. . Neurogastroenterol. Motil. 31:(1):e13467
    [Crossref] [Google Scholar]
  134. 134.
    Chow AK, Grubišić V, Gulbransen BD. 2021.. Enteric glia regulate lymphocyte activation via autophagy-mediated MHC-II expression. . Cell. Mol. Gastroenterol. Hepatol. 12:(4):121537
    [Crossref] [Google Scholar]
  135. 135.
    Pabois J, Durand T, Berre CL, Gonzales J, Neunlist M, et al. 2020.. T cells show preferential adhesion to enteric neural cells in culture and are close to neural cells in the myenteric ganglia of Crohn's patients. . J. Neuroimmunol. 349::577422
    [Crossref] [Google Scholar]
  136. 136.
    Pabois J, Durand T, Berre CL, Filippone RT, Noël T, et al. 2024.. Role of ICAM-1 in the adhesion of T cells to enteric glia: perspectives in the formation of plexitis in Crohn's disease. . Cell. Mol. Gastroenterol. Hepatol. 18:(1):13353
    [Crossref] [Google Scholar]
  137. 137.
    Mariant CL, Bacola G, Landeghem LV. 2023.. Mini-review: Enteric glia of the tumor microenvironment: an affair of corruption. . Neurosci. Lett. 814::137416
    [Crossref] [Google Scholar]
  138. 138.
    Berre CL, Naveilhan P, Rolli-Derkinderen M. 2023.. Enteric glia at center stage of inflammatory bowel disease. . Neurosci. Lett. 809::137315
    [Crossref] [Google Scholar]
  139. 139.
    Linan-Rico A, Ochoa-Cortes F, Schneider R, Christofi FL. 2023.. Mini-review: Enteric glial cell reactions to inflammation and potential therapeutic implications for GI diseases, motility disorders and abdominal pain. . Neurosci. Lett. 812::137395
    [Crossref] [Google Scholar]
  140. 140.
    Liñán-Rico A, Turco F, Ochoa-Cortes F, Harzman A, Needleman BJ, et al. 2016.. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype. . Inflamm. Bowel Dis. 22:(8):181234
    [Crossref] [Google Scholar]
  141. 141.
    Rosenbaum C, Schick MA, Wollborn J, Heider A, Scholz C-J, et al. 2016.. Activation of myenteric glia during acute inflammation in vitro and in vivo. . PLOS ONE 11:(3):e0151335
    [Crossref] [Google Scholar]
  142. 142.
    de-Faria FM, Casado-Bedmar M, Lindqvist CM, Jones MP, Walter SA, Keita ÅV. 2021.. Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome. . Neurogastroenterol. Motil. 33:(11):e14130
    [Crossref] [Google Scholar]
  143. 143.
    Antonioli L, D'Antongiovanni V, Pellegrini C, Fornai M, Benvenuti L, et al. 2020.. Colonic dysmotility associated with high-fat diet-induced obesity: role of enteric glia. . FASEB J. 34:(4):551224
    [Crossref] [Google Scholar]
  144. 144.
    Leven P, Schneider R, Schneider L, Mallesh S, Berghe PV, et al. 2023. β-Adrenergic signaling triggers enteric glial reactivity and acute enteric gliosis during surgery. . J. Neuroinflammation 20:(1):255
    [Crossref] [Google Scholar]
  145. 145.
    Delvalle NM, Dharshika C, Morales-Soto W, Fried DE, Gaudette L, Gulbransen BD. 2018.. Communication between enteric neurons, glia, and nociceptors underlies the effects of tachykinins on neuroinflammation. . Cell. Mol. Gastroenterol. Hepatol. 6:(3):32144
    [Crossref] [Google Scholar]
  146. 146.
    Brown IAM, McClain JL, Watson RE, Patel BA, Gulbransen BD. 2015.. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. . Cell. Mol. Gastroenterol. Hepatol. 2:(1):7791
    [Crossref] [Google Scholar]
  147. 147.
    Buckley MM, O'Halloran KD, Rae MG, Dinan TG, O'Malley D. 2014.. Modulation of enteric neurons by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome. . J. Physiol. 592:(Pt. 23):523550
    [Crossref] [Google Scholar]
  148. 148.
    Manning BP, Sharkey KA, Mawe GM. 2002.. Effects of PGE2 in guinea pig colonic myenteric ganglia. . Am. J. Physiol. Gastrointest. Liver Physiol. 283:(6):G138897
    [Crossref] [Google Scholar]
  149. 149.
    Morales-Soto W, Gonzales J, Jackson WF, Gulbransen BD. 2023.. Enteric glia promote visceral hypersensitivity during inflammation through intercellular signaling with gut nociceptors. . Sci. Signal. 16:(812):eadg1668
    [Crossref] [Google Scholar]
  150. 150.
    Linden DR, Sharkey KA, Ho W, Mawe GM. 2004.. Cyclooxygenase-2 contributes to dysmotility and enhanced excitability of myenteric AH neurones in the inflamed guinea pig distal colon. . J. Physiol. 557:(1):191205
    [Crossref] [Google Scholar]
  151. 151.
    Maier JA, Hla T, Maciag T. 1990.. Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. . J. Biol. Chem. 265:(19):108058
    [Crossref] [Google Scholar]
  152. 152.
    Dekkers JAJM, Kroese ABA, Keenan CM, MacNaughton WK, Sharkey KA. 1997.. Prostaglandin E2 activation of VIP secretomotor neurons in the guinea pig ileum. . J. Auton. Nerv. Syst. 66:(3):13137
    [Crossref] [Google Scholar]
  153. 153.
    Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, et al. 2023.. Anti-hyperalgesic efficacy of acetyl L-carnitine (ALCAR) against visceral pain induced by colitis: involvement of glia in the enteric and central nervous system. . Int. J. Mol. Sci. 24:(19):14841
    [Crossref] [Google Scholar]
  154. 154.
    Schneider R, Leven P, Mallesh S, Breßer M, Schneider L, et al. 2022.. IL-1-dependent enteric gliosis guides intestinal inflammation and dysmotility and modulates macrophage function. . Commun. Biol. 5:(1):811
    [Crossref] [Google Scholar]
  155. 155.
    Stoffels B, Hupa KJ, Snoek SA, van Bree S, Stein K, et al. 2014.. Postoperative ileus involves interleukin-1 receptor signaling in enteric glia. . Gastroenterology 146:(1):17687.e1
    [Crossref] [Google Scholar]
  156. 156.
    Schneider R, Leven P, Glowka T, Kuzmanov I, Lysson M, et al. 2021.. A novel P2X2-dependent purinergic mechanism of enteric gliosis in intestinal inflammation. . EMBO Mol. Med. 13:(1):e12724
    [Crossref] [Google Scholar]
  157. 157.
    Mazzotta E, Grants I, Villalobos-Hernandez E, Chaudhuri S, McClain JL, et al. 2023.. BQ788 reveals glial ETB receptor modulation of neuronal cholinergic and nitrergic pathways to inhibit intestinal motility: linked to postoperative ileus. . Br. J. Pharmacol. 180:(19):255076
    [Crossref] [Google Scholar]
  158. 158.
    Plastira I, Bernhart E, Joshi L, Koyani CN, Strohmaier H, et al. 2020.. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. . J. Neuroinflammation 17:(1):127
    [Crossref] [Google Scholar]
  159. 159.
    Ahmadzai MM, McClain JL, Dharshika C, Seguella L, Giancola F, et al. 2022.. LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction. . J. Clin. Investig. 132:(4):e149464
    [Crossref] [Google Scholar]
  160. 160.
    Manion J, Musser MA, Kuziel GA, Liu M, Shepherd A, et al. 2023.. C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation. . Nature 622:(7983):61118
    [Crossref] [Google Scholar]
  161. 161.
    Reynolds LA, Filbey KJ, Maizels RM. 2012.. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. . Semin. Immunopathol. 34:(6):82946
    [Crossref] [Google Scholar]
  162. 162.
    da Silveira ABM, de Oliveira EC, Neto SG, Luquetti AO, Fujiwara RT, et al. 2011.. Enteroglial cells act as antigen-presenting cells in chagasic megacolon. . Hum. Pathol. 42:(4):52232
    [Crossref] [Google Scholar]
  163. 163.
    da Silveira ABM, Freitas MAR, de Oliveira EC, Neto SG, Luquetti AO, et al. 2009.. Glial fibrillary acidic protein and S-100 colocalization in the enteroglial cells in dilated and nondilated portions of colon from chagasic patients. . Hum. Pathol. 40:(2):24451
    [Crossref] [Google Scholar]
  164. 164.
    Turco F, Sarnelli G, Cirillo C, Palumbo I, Giorgi FD, et al. 2014.. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells. . Gut 63:(1):10515
    [Crossref] [Google Scholar]
  165. 165.
    Costa DVS, Moura-Neto V, Bolick DT, Guerrant RL, Fawad JA, et al. 2021.. S100B inhibition attenuates intestinal damage and diarrhea severity during Clostridioides difficile infection by modulating inflammatory response. . Front. Cell. Infect. Microbiol. 11::739874
    [Crossref] [Google Scholar]
  166. 166.
    Costa DVS, Shin JH, Goldbeck SM, Bolick DT, Mesquita FS, et al. 2023.. Adenosine receptors differentially mediate enteric glial cell death induced by Clostridioides difficile toxins A and B. . Front. Immunol. 13::956326
    [Crossref] [Google Scholar]
  167. 167.
    Valdetaro L, Thomasi B, Ricciardi MC, de Melo Santos K, de Mattos Coelho-Aguiar J, Tavares-Gomes AL. 2023.. Enteric nervous system as a target and source of SARS-CoV-2 and other viral infections. . Am. J. Physiol. Gastrointest. Liver Physiol. 325:(2):G93108
    [Crossref] [Google Scholar]
  168. 168.
    Selgrad M, Giorgio RD, Fini L, Cogliandro RF, Williams S, et al. 2009.. JC virus infects the enteric glia of patients with chronic idiopathic intestinal pseudo-obstruction. . Gut 58:(1):2532
    [Crossref] [Google Scholar]
  169. 169.
    Esposito G, Capoccia E, Gigli S, Pesce M, Bruzzese E, et al. 2017.. HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. . Sci. Rep. 7:(1):7735
    [Crossref] [Google Scholar]
  170. 170.
    Sarnelli G, Seguella L, Pesce M, Lu J, Gigli S, et al. 2018.. HIV-1 Tat-induced diarrhea is improved by the PPARalpha agonist, palmitoylethanolamide, by suppressing the activation of enteric glia. . J. Neuroinflammation 15:(1):94
    [Crossref] [Google Scholar]
  171. 171.
    Lopez CM, Sampah MES, Duess JW, Ishiyama A, Ahmad R, et al. 2023.. Models of necrotizing enterocolitis. . Semin. Perinatol. 47:(1):151695
    [Crossref] [Google Scholar]
  172. 172.
    Huang K, Mukherjee S, DesMarais V, Albanese JM, Rafti E, et al. 2018.. Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. . Pediatr. Res. 83:(5):103140
    [Crossref] [Google Scholar]
  173. 173.
    Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. 2019.. Colorectal cancer. . Lancet 394:(10207):146780
    [Crossref] [Google Scholar]
  174. 174.
    Târtea EA, Florescu C, Donoiu I, Pirici D, Mihailovici AR, et al. 2017.. Implications of inflammation and remodeling of the enteric glial cells in colorectal adenocarcinoma. . Rom. J. Morphol. Embryol. 58:(2):47380
    [Google Scholar]
  175. 175.
    Jaiswal M, Ganapathy A, Singh S, Sarwar S, Quadri JA, et al. 2021.. Morphology of enteric glia in colorectal carcinoma: a comparative study of tumor site and its proximal normal margin. . Morphologie 105:(351):26774
    [Crossref] [Google Scholar]
  176. 176.
    Yuan R, Bhattacharya N, Kenkel JA, Shen J, DiMaio MA, et al. 2020.. Enteric glia play a critical role in promoting the development of colorectal cancer. . Front. Oncol. 10::595892
    [Crossref] [Google Scholar]
  177. 177.
    Valès S, Bacola G, Biraud M, Touvron M, Bessard A, et al. 2019.. Tumor cells hijack enteric glia to activate colon cancer stem cells and stimulate tumorigenesis. . eBioMedicine 49::17288
    [Crossref] [Google Scholar]
  178. 178.
    Wang D, Fu L, Sun H, Guo L, DuBois RN. 2015.. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. . Gastroenterology 149:(7):188495.e4
    [Crossref] [Google Scholar]
  179. 179.
    Duan S, Sawyer TW, Sontz RA, Wieland BA, Diaz AF, Merchant JL. 2022.. GFAP-directed inactivation of Men1 exploits glial cell plasticity in favor of neuroendocrine reprogramming. . Cell. Mol. Gastroenterol. Hepatol. 14:(5):102551
    [Crossref] [Google Scholar]
  180. 180.
    Montalbán-Rodríguez A, Abalo R, López-Gómez L. 2024.. From the gut to the brain: the role of enteric glial cells and their involvement in the pathogenesis of Parkinson's disease. . Int. J. Mol. Sci. 25:(2):1294
    [Crossref] [Google Scholar]
  181. 181.
    de Moraes Thomasi BB, Valdetaro L, Ricciardi MCG, Hayashide L, Neves Fernandes ACM, et al. 2022.. Enteric glial cell reactivity in colonic layers and mucosal modulation in a mouse model of Parkinson's disease induced by 6-hydroxydopamine. . Brain Res. Bull. 187::11121
    [Crossref] [Google Scholar]
  182. 182.
    Heng Y, Li Y-Y, Wen L, Yan J-Q, Chen N-H, Yuan Y-H. 2022.. Gastric enteric glial cells: a new contributor to the synucleinopathies in the MPTP-induced parkinsonism mouse. . Molecules 27:(21):7414
    [Crossref] [Google Scholar]
  183. 183.
    Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, et al. 2014.. Enteric GFAP expression and phosphorylation in Parkinson's disease. . J. Neurochem. 130:(6):80515
    [Crossref] [Google Scholar]
  184. 184.
    Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, et al. 2013.. Colonic inflammation in Parkinson's disease. . Neurobiol. Dis. 50::4248
    [Crossref] [Google Scholar]
  185. 185.
    Dharshika C, Gulbransen BD. 2023.. Enteric neuromics: how high-throughput “omics” deepens our understanding of enteric nervous system genetic architecture. . Cell. Mol. Gastroenterol. Hepatol. 15:(2):487504
    [Crossref] [Google Scholar]
  186. 186.
    Furness JB. 2000.. Types of neurons in the enteric nervous system. . J. Auton. Nerv. Syst. 81:(1–3):8796
    [Crossref] [Google Scholar]
  187. 187.
    Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, et al. 2022.. Unique neural circuit connectivity of mouse proximal, middle and distal colon defines regional colonic motor patterns. . Cell. Mol. Gastroenterol. Hepatol. 13:(1):30937.e3
    [Crossref] [Google Scholar]
  188. 188.
    Spencer NJ, Walsh M, Smith TK. 2000.. Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. . J. Physiol. 522:(2):32131
    [Crossref] [Google Scholar]
  189. 189.
    Chen BN, Humenick AG, Hibberd TJ, Yew WP, Wattchow DA, et al. 2024.. Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry. . Front. Neurosci. 17::1313057
    [Crossref] [Google Scholar]
  190. 190.
    Sundaresan S, Meininger CA, Kang AJ, Photenhauer AL, Hayes MM, et al. 2017.. Gastrin induces nuclear export and proteasome degradation of menin in enteric glial cells. . Gastroenterology 153:(6):155567.e15
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105016
Loading
/content/journals/10.1146/annurev-physiol-022724-105016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error