1932

Abstract

Epithelial Na+ channels (ENaCs) are known to affect blood pressure through their role in transporting Na+ in the distal nephron of the kidney. While expressed in other epithelial tissues, there is growing evidence that ENaCs are also expressed in nonepithelial tissues where their activity influences blood pressure. This review provides an overview of ENaCs and key mechanisms that regulate channel activity. The role of ENaCs in antigen-presenting dendritic cells is discussed, where ENaC-dependent sensing of increases in the extracellular Na+ concentration leads to activation of a signaling cascade, T cell activation with the release of proinflammatory cytokines, and an increase in blood pressure. The potential contribution of this pathway to human hypertension is discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105050
2025-02-10
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105050.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105050&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kashlan OB, Wang X, Sheng S, Kleyman TR. 2024.. Epithelial Na+ channels function as extracellular sensors. . Compr. Physiol. 14::540747
    [Google Scholar]
  2. 2.
    Mutchler SM, Kirabo A, Kleyman TR. 2021.. Epithelial sodium channel and salt-sensitive hypertension. . Hypertension 77::75967
    [Crossref] [Google Scholar]
  3. 3.
    Jasti J, Furukawa H, Gonzales EB, Gouaux E. 2007.. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. . Nature 449::31623
    [Crossref] [Google Scholar]
  4. 4.
    Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I. 2018.. Structure of the human epithelial sodium channel by cryo-electron microscopy. . eLife 7::e39340
    [Crossref] [Google Scholar]
  5. 5.
    Noreng S, Posert R, Bharadwaj A, Houser A, Baconguis I. 2020.. Molecular principles of assembly, activation, and inhibition in epithelial sodium channel. . eLife 9::e59038
    [Crossref] [Google Scholar]
  6. 6.
    Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. 2023.. Aldosterone: renal action and physiological effects. . Compr. Physiol. 13::440991
    [Crossref] [Google Scholar]
  7. 7.
    Rotin D, Staub O. 2021.. Function and regulation of the epithelial Na+ channel ENaC. . Compr. Physiol. 11::201745
    [Crossref] [Google Scholar]
  8. 8.
    Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, et al. 2001.. Phosphorylation of Nedd4–2 by Sgk1 regulates epithelial Na+ channel cell surface expression. . EMBO J. 20::705259
    [Crossref] [Google Scholar]
  9. 9.
    Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, et al. 2005.. Serum- and glucocorticoid-regulated kinase 1 regulates ubiquitin ligase neural precursor cell-expressed, developmentally down-regulated protein 4-2 by inducing interaction with 14-3-3. . Mol. Endocrinol. 19::307384
    [Crossref] [Google Scholar]
  10. 10.
    Nesterov V, Bertog M, Canonica J, Hummler E, Coleman R, et al. 2021.. Critical role of the mineralocorticoid receptor in aldosterone-dependent and aldosterone-independent regulation of ENaC in the distal nephron. . Am. J. Physiol. Ren. Physiol. 321::F25768
    [Crossref] [Google Scholar]
  11. 11.
    Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C. 2012.. Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. . Am. J. Physiol. Ren. Physiol. 303::F128999
    [Crossref] [Google Scholar]
  12. 12.
    Kleyman TR, Kashlan OB, Hughey RP. 2018.. Epithelial Na+ channel regulation by extracellular and intracellular factors. . Annu. Rev. Physiol. 80::26381
    [Crossref] [Google Scholar]
  13. 13.
    Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. 2006.. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its α subunit. . J. Biol. Chem. 281::189017
    [Crossref] [Google Scholar]
  14. 14.
    Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, et al. 2007.. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the γ-subunit. . J. Biol. Chem. 282::615360
    [Crossref] [Google Scholar]
  15. 15.
    Frindt G, Shi S, Kleyman TR, Palmer LG. 2021.. Cleavage state of γENaC in mouse and rat kidneys. . Am. J. Physiol. Ren. Physiol. 320::F48591
    [Crossref] [Google Scholar]
  16. 16.
    Frindt G, Palmer LG. 2015.. Acute effects of aldosterone on the epithelial Na channel in rat kidney. . Am. J. Physiol. Ren. Physiol. 308::F57278
    [Crossref] [Google Scholar]
  17. 17.
    Frindt G, Yang L, Uchida S, Weinstein AM, Palmer LG. 2017.. Responses of distal nephron Na+ transporters to acute volume depletion and hyperkalemia. . Am. J. Physiol. Ren. Physiol. 313::F6273
    [Crossref] [Google Scholar]
  18. 18.
    Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, et al. 2004.. Epithelial sodium channels are activated by furin-dependent proteolysis. . J. Biol. Chem. 279::1811114
    [Crossref] [Google Scholar]
  19. 19.
    Wang XP, Balchak DM, Gentilcore C, Clark NL, Kashlan OB. 2022.. Activation by cleavage of the epithelial Na+ channel α and γ subunits independently coevolved with the vertebrate terrestrial migration. . eLife 11::e75796
    [Crossref] [Google Scholar]
  20. 20.
    Bohnert BN, Menacher M, Janessa A, Worn M, Schork A, et al. 2018.. Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. . Kidney Int. 93::15972
    [Crossref] [Google Scholar]
  21. 21.
    Frindt G, Yang L, Bamberg K, Palmer LG. 2018.. Na restriction activates epithelial Na channels in rat kidney through two mechanisms and decreases distal Na+ delivery. . J. Physiol. 596::3585602
    [Crossref] [Google Scholar]
  22. 22.
    Ray EC, Nickerson A, Sheng S, Carrisoza-Gaytan R, Lam T, et al. 2024.. Influence of proteolytic cleavage of ENaC's γ subunit upon Na+ and K+ handling. . Am. J. Physiol. Ren. Physiol. 326::F1066107
    [Crossref] [Google Scholar]
  23. 23.
    Ehret E, Stroh S, Auberson M, Ino F, Jager Y, et al. 2023.. Kidney-specific membrane-bound serine proteases CAP1/Prss8 and CAP3/St14 affect ENaC subunit abundances but not its activity. . Cells 12::2342
    [Crossref] [Google Scholar]
  24. 24.
    El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B, et al. 2010.. Tissue kallikrein permits early renal adaptation to potassium load. . PNAS 107::1352631
    [Crossref] [Google Scholar]
  25. 25.
    Planes C, Randrianarison NH, Charles RP, Frateschi S, Cluzeaud F, et al. 2010.. ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1. . EMBO Mol. Med. 2::2637
    [Crossref] [Google Scholar]
  26. 26.
    Malsure S, Wang Q, Charles RP, Sergi C, Perrier R, et al. 2014.. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. . J. Am. Soc. Nephrol. 25::145364
    [Crossref] [Google Scholar]
  27. 27.
    Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. 2006.. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. . Am. J. Physiol. Ren. Physiol. 290::F148896
    [Crossref] [Google Scholar]
  28. 28.
    Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR. 2015.. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. . J. Biol. Chem. 290::56876
    [Crossref] [Google Scholar]
  29. 29.
    Kashlan OB, Boyd CR, Argyropoulos C, Okumura S, Hughey RP, et al. 2010.. Allosteric inhibition of the epithelial Na+ channel through peptide binding at peripheral finger and thumb domains. . J. Biol. Chem. 285::3521623
    [Crossref] [Google Scholar]
  30. 30.
    Zhang L, Wang X, Chen J, Kleyman TR, Sheng S. 2022.. Accessibility of ENaC extracellular domain central core residues. . J. Biol. Chem. 298::101860
    [Crossref] [Google Scholar]
  31. 31.
    Wang X, Chen J, Shi S, Sheng S, Kleyman TR. 2019.. Analyses of epithelial Na+ channel variants reveal that an extracellular beta-ball domain critically regulates ENaC gating. . J. Biol. Chem. 294::1676575
    [Crossref] [Google Scholar]
  32. 32.
    Wang X-P, Srinivasan P, Hamdaoui ME, Blobner BM, Grytz R, Kashlan OB. 2024.. Varying selection pressure for a Na+ sensing site in epithelial Na+ channel subunits reflect divergent roles in Na+ homeostasis. . Mol. Biol. Evol. 41::msae162
    [Crossref] [Google Scholar]
  33. 33.
    Salih M, Gautschi I, van Bemmelen MX, Di Benedetto M, Brooks AS, et al. 2017.. A missense mutation in the extracellular domain of αENaC causes Liddle syndrome. . J. Am. Soc. Nephrol. 28::329199
    [Crossref] [Google Scholar]
  34. 34.
    Matalon S, Bartoszewski R, Collawn JF. 2015.. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. . Am. J. Physiol. Lung Cell. Mol. Physiol. 309::L122938
    [Crossref] [Google Scholar]
  35. 35.
    Hummler E, Planes C. 2010.. Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice. . Cell Physiol. Biochem. 25::6370
    [Crossref] [Google Scholar]
  36. 36.
    Perez FR, Venegas F, Gonzalez M, Andres S, Vallejos C, et al. 2009.. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries. . Hypertension 53::10007
    [Crossref] [Google Scholar]
  37. 37.
    Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, et al. 2014.. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. . Nat. Rev. Nephrol. 10::14657
    [Crossref] [Google Scholar]
  38. 38.
    Tarjus A, Maase M, Jeggle P, Martinez-Martinez E, Fassot C, et al. 2017.. The endothelial αENaC contributes to vascular endothelial function in vivo. . PLOS ONE 12::e0185319
    [Crossref] [Google Scholar]
  39. 39.
    Lu Y, Stec DE, Liu R, Ryan M, Drummond HA. 2022.. βENaC and ASIC2 associate in VSMCs to mediate pressure-induced constriction in the renal afferent arteriole. . Am. J. Physiol. Ren. Physiol. 322::F498511
    [Crossref] [Google Scholar]
  40. 40.
    Menon R, Otto EA, Hoover P, Eddy S, Mariani L, et al. 2020.. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. . JCI Insight 5::e133267
    [Crossref] [Google Scholar]
  41. 41.
    Blobner BM, Kirabo A, Kashlan OB, Sheng S, Arnett DK, et al. 2022.. Rare variants in genes encoding subunits of the epithelial Na+ channel are associated with blood pressure and kidney function. . Hypertension 79::257382
    [Crossref] [Google Scholar]
  42. 42.
    Paudel P, van Hout I, Bunton RW, Parry DJ, Coffey S, et al. 2022.. Epithelial sodium channel δ subunit is expressed in human arteries and has potential association with hypertension. . Hypertension 79::138594
    [Crossref] [Google Scholar]
  43. 43.
    Kirabo A. 2017.. A new paradigm of sodium regulation in inflammation and hypertension. . Am. J. Physiol. Regul. Integr. Comp. Physiol. 313::R70610
    [Crossref] [Google Scholar]
  44. 44.
    Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, et al. 2009.. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. . Nat. Med. 15::54552
    [Crossref] [Google Scholar]
  45. 45.
    Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, et al. 2013.. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. . Hypertension 61::63540
    [Crossref] [Google Scholar]
  46. 46.
    Rossitto G, Mary S, Chen JY, Boder P, Chew KS, et al. 2020.. Tissue sodium excess is not hypertonic and reflects extracellular volume expansion. . Nat. Commun. 11::4222
    [Crossref] [Google Scholar]
  47. 47.
    Liu J, Shelton EL, Crescenzi R, Colvin DC, Kirabo A, et al. 2022.. Kidney injury causes accumulation of renal sodium that modulates renal lymphatic dynamics. . Int. J. Mol. Sci. 23::1428
    [Crossref] [Google Scholar]
  48. 48.
    Ruggeri Barbaro N, Van Beusecum J, Xiao L, do Carmo L, Pitzer A, et al. 2021.. Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. . Cardiovasc. Res. 117::135871
    [Crossref] [Google Scholar]
  49. 49.
    Forrest JN Jr., Stanier MW. 1966.. Kidney composition and renal concentration ability in young rabbits. . J. Physiol. 187::14
    [Crossref] [Google Scholar]
  50. 50.
    Pinter GG, Shohet JL. 1963.. Origin of sodium concentration profile in the renal medulla. . Nature 200::95558
    [Crossref] [Google Scholar]
  51. 51.
    Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, et al. 2015.. High salt primes a specific activation state of macrophages, M(Na). . Cell Res. 25::893910
    [Crossref] [Google Scholar]
  52. 52.
    Jorg S, Kissel J, Manzel A, Kleinewietfeld M, Haghikia A, et al. 2016.. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. . Exp. Neurol. 279::21222
    [Crossref] [Google Scholar]
  53. 53.
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, et al. 2013.. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. . Nature 496::51822
    [Crossref] [Google Scholar]
  54. 54.
    Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, et al. 2013.. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. . Immunity 39::599610
    [Crossref] [Google Scholar]
  55. 55.
    Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, et al. 2014.. DC isoketal-modified proteins activate T cells and promote hypertension. . J. Clin. Investig. 124::464256
    [Crossref] [Google Scholar]
  56. 56.
    Iyer RS, Ghosh S, Salomon RG. 1989.. Levuglandin E2 crosslinks proteins. . Prostaglandins 37::47180
    [Crossref] [Google Scholar]
  57. 57.
    Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, et al. 2017.. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. . Cell Rep. 21::100920
    [Crossref] [Google Scholar]
  58. 58.
    Pitzer A, Elijovich F, Laffer CL, Ertuglu LA, Sahinoz M, et al. 2022.. DC ENaC-dependent inflammasome activation contributes to salt-sensitive hypertension. . Circ. Res. 131::32844
    [Crossref] [Google Scholar]
  59. 59.
    Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, et al. 2020.. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. . Nat. Immunol. 21::3041
    [Crossref] [Google Scholar]
  60. 60.
    Drummond GR, Vinh A, Guzik TJ, Sobey CG. 2019.. Immune mechanisms of hypertension. . Nat. Rev. Immunol. 19::51732
    [Crossref] [Google Scholar]
  61. 61.
    Guzik TJ, Touyz RM. 2017.. Oxidative stress, inflammation, and vascular aging in hypertension. . Hypertension 70::66067
    [Crossref] [Google Scholar]
  62. 62.
    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, et al. 2007.. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. . J. Exp. Med. 204::244960
    [Crossref] [Google Scholar]
  63. 63.
    Alonso J, Sanchez de Miguel L, Monton M, Casado S, Lopez-Farre A. 1997.. Endothelial cytosolic proteins bind to the 3′ untranslated region of endothelial nitric oxide synthase mRNA: regulation by tumor necrosis factor alpha. . Mol. Cell. Biol. 17::571926
    [Crossref] [Google Scholar]
  64. 64.
    Yoshida S, Takeuchi T, Kotani T, Yamamoto N, Hata K, et al. 2014.. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. . J. Hum. Hypertens. 28::16569
    [Crossref] [Google Scholar]
  65. 65.
    Neumann P, Gertzberg N, Johnson A. 2004.. TNF-α induces a decrease in eNOS promoter activity. . Am. J. Physiol. Lung Cell. Mol. Physiol. 286::L45259
    [Crossref] [Google Scholar]
  66. 66.
    Kleinbongard P, Heusch G, Schulz R. 2010.. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. . Pharmacol. Ther. 127::295314
    [Crossref] [Google Scholar]
  67. 67.
    Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. 2021.. Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. . Cardiovasc. Res. 117::127483
    [Crossref] [Google Scholar]
  68. 68.
    Oh S, Yang JY, Park CH, Son KH, Byun K. 2021.. Dieckol reduces muscle atrophy by modulating angiotensin type II type 1 receptor and NADPH oxidase in spontaneously hypertensive rats. . Antioxidants 10::1561
    [Crossref] [Google Scholar]
  69. 69.
    Sharma AK, Mulloy DP, Le LT, Laubach VE. 2014.. NADPH oxidase mediates synergistic effects of IL-17 and TNF-α on CXCL1 expression by epithelial cells after lung ischemia-reperfusion. . Am. J. Physiol. Lung Cell. Mol. Physiol. 306::L6979
    [Crossref] [Google Scholar]
  70. 70.
    Marko L, Kvakan H, Park JK, Qadri F, Spallek B, et al. 2012.. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. . Hypertension 60::143036
    [Crossref] [Google Scholar]
  71. 71.
    Zhang J, Rudemiller NP, Patel MB, Karlovich NS, Wu M, et al. 2016.. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin II-induced hypertension via the NKCC2 co-transporter in the nephron. . Cell Metab. 23::36068
    [Crossref] [Google Scholar]
  72. 72.
    Norlander AE, Saleh MA, Kamat NV, Ko B, Gnecco J, et al. 2016.. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. . Hypertension 68::16774
    [Crossref] [Google Scholar]
  73. 73.
    Lu M, Wang J, Jones KT, Ives HE, Feldman ME, et al. 2010.. mTOR complex-2 activates ENaC by phosphorylating SGK1. . J. Am. Soc. Nephrol. 21::81118
    [Crossref] [Google Scholar]
  74. 74.
    Caohuy H, Yang Q, Eudy Y, Ha TA, Xu AE, et al. 2014.. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR). . J. Biol. Chem. 289::3595368
    [Crossref] [Google Scholar]
  75. 75.
    Rotin D, Staub O. 2012.. Nedd4–2 and the regulation of epithelial sodium transport. . Front. Physiol. 3::212
    [Crossref] [Google Scholar]
  76. 76.
    Diakov A, Korbmacher C. 2004.. A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel's α-subunit. . J. Biol. Chem. 279::3813442
    [Crossref] [Google Scholar]
  77. 77.
    Diakov A, Nesterov V, Dahlmann A, Korbmacher C. 2022.. Correction to: Two adjacent phosphorylation sites in the C-terminus of the channel's α-subunit have opposing effects on epithelial sodium channel (ENaC) activity. . Pflügers Arch. 474::1037
    [Crossref] [Google Scholar]
  78. 78.
    Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, et al. 2007.. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel α. . J. Clin. Investig. 117::77383
    [Crossref] [Google Scholar]
  79. 79.
    Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC. 2013.. An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the αENaC gene. . Am. J. Physiol. Ren. Physiol. 304::F36775
    [Crossref] [Google Scholar]
  80. 80.
    Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, et al. 2019.. High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. . Hypertension 74::55563
    [Crossref] [Google Scholar]
  81. 81.
    Pitzer AL, Van Beusecum JP, Kleyman TR, Kirabo A. 2020.. ENaC in salt-sensitive hypertension: kidney and beyond. . Curr. Hypertens. Rep. 22::69
    [Crossref] [Google Scholar]
  82. 82.
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, et al. 2013.. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. . Nature 496::51317
    [Crossref] [Google Scholar]
  83. 83.
    Wu C, Chen Z, Xiao S, Thalhamer T, Madi A, et al. 2018.. SGK1 governs the reciprocal development of Th17 and regulatory T cells. . Cell Rep. 22::65365
    [Crossref] [Google Scholar]
  84. 84.
    Dai Y, Zhou J, Shi C. 2023.. Inflammasome: structure, biological functions, and therapeutic targets. . MedComm 4::e391
    [Crossref] [Google Scholar]
  85. 85.
    Zheng X, Wan J, Tan G. 2023.. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. . Front. Immunol. 14::1151185
    [Crossref] [Google Scholar]
  86. 86.
    Koumangoye R. 2022.. The role of Cl and K+ efflux in NLRP3 inflammasome and innate immune response activation. . Am. J. Physiol. Cell Physiol. 322::C64552
    [Crossref] [Google Scholar]
  87. 87.
    Zheng Y, Xu L, Dong N, Li F. 2022.. NLRP3 inflammasome: the rising star in cardiovascular diseases. . Front. Cardiovasc. Med. 9::927061
    [Crossref] [Google Scholar]
  88. 88.
    Zhou R, Yazdi AS, Menu P, Tschopp J. 2011.. A role for mitochondria in NLRP3 inflammasome activation. . Nature 469::22125
    [Crossref] [Google Scholar]
  89. 89.
    Liu T, Zhang L, Joo D, Sun SC. 2017.. NF-κB signaling in inflammation. . Signal Transduct. Target. Ther. 2::17023
    [Crossref] [Google Scholar]
  90. 90.
    Sahinoz M, Elijovich F, Ertuglu LA, Ishimwe J, Pitzer A, et al. 2021.. Salt sensitivity of blood pressure in blacks and women: a role of inflammation, oxidative stress, and epithelial Na+ channel. . Antioxid. Redox Signal. 35::147793
    [Crossref] [Google Scholar]
  91. 91.
    Li QZ, Deng Q, Li JQ, Yi GH, Zhao SP. 2005.. Valsartan reduces interleukin-1beta secretion by peripheral blood mononuclear cells in patients with essential hypertension. . Clin. Chim. Acta 355::13136
    [Crossref] [Google Scholar]
  92. 92.
    De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. 2021.. Emerging role of the inflammasome and pyroptosis in hypertension. . Int. J. Mol. Sci. 22::1064
    [Crossref] [Google Scholar]
  93. 93.
    Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, et al. 2016.. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. . Br. J. Pharmacol. 173::75265
    [Crossref] [Google Scholar]
  94. 94.
    Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, et al. 2019.. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. . Cardiovasc. Res. 115::77687
    [Crossref] [Google Scholar]
  95. 95.
    Rodríguez-Iturbe B, Ferrebuz A, Vanegas V, Quiroz Y, Mezzano S, Vaziri ND. 2005.. Early and sustained inhibition of nuclear factor-κB prevents hypertension in spontaneously hypertensive rats. . J. Pharmacol. Exp. Ther. 315::5157
    [Crossref] [Google Scholar]
  96. 96.
    Zambom FFF, Oliveira KC, Foresto-Neto O, Faustino VD, Ávila VF, et al. 2019.. Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. . Am. J. Physiol. Ren. Physiol. 317::F105867
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105050
Loading
/content/journals/10.1146/annurev-physiol-022724-105050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error