1932

Abstract

Calcium ions mediate the volume homeostasis of human red blood cells (RBCs) in the circulation. The mechanism by which calcium ions affect RBC hydration states always follows the same sequence. Deformation of RBCs traversing capillaries briefly activates mechanosensitive PIEZO1 channels, allowing Ca2+ influx down its steep inward gradient transiently overcoming the calcium pump and elevating [Ca2+]. Elevated [Ca2+] activates the Ca2+-sensitive Gardos channels, inducing KCl loss and cell dehydration, a sequence operated with infinite variations in vivo and under experimental conditions. The selected health and disease themes for this review focus on landmark experimental results that led to the development of highly constrained models of the circulatory changes in RBC homeostasis. Based on model predictions, a new perspective emerged, pointing to PIEZO1 dysfunction as the main trigger in the formation of the profoundly dehydrated irreversible sickle cells, the main pathogenic participants in vaso-occlusion, the root cause of sickle cell disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105119
2025-02-10
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105119.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105119&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Garrahan PJ, Glynn IM. 1967.. The sensitivity of the sodium pump to external sodium. . J. Physiol. 192::17588
    [Crossref] [Google Scholar]
  2. 2.
    Garrahan PJ, Glynn IM. 1967.. Factors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. . J. Physiol. 192::189216
    [Crossref] [Google Scholar]
  3. 3.
    Garrahan PJ, Glynn IM. 1967.. The stoicheiometry of the sodium pump. . J. Physiol. 192::21735
    [Crossref] [Google Scholar]
  4. 4.
    Garrahan PJ, Glynn IM. 1967.. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. . J. Physiol. 192::23756
    [Crossref] [Google Scholar]
  5. 5.
    Garrahan PJ, Glynn IM. 1967.. The behaviour of the sodium pump in red cells in the absence of external potassium. . J. Physiol. 192::15974
    [Crossref] [Google Scholar]
  6. 6.
    Glynn IM, Lew VL. 1970.. Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells. . J. Physiol. 207::393402
    [Crossref] [Google Scholar]
  7. 7.
    Glynn IM, Lew VL, Luthi U. 1970.. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. . J. Physiol. 207::37191
    [Crossref] [Google Scholar]
  8. 8.
    Lew VL, Glynn IM, Ellory JC. 1970.. Net synthesis of ATP by reversal of the sodium pump. . Nature 225::86566
    [Crossref] [Google Scholar]
  9. 9.
    Lew VL, Beaugé LA. 1979.. Passive cation fluxes in red cell membranes. . In Transport Across Biological Membranes, Vol. II, ed. G Giebisch, DC Tosteson, HH Ussing , pp. 85115. Berlin:: Springer-Verlag
    [Google Scholar]
  10. 10.
    Lew VL, Tiffert T. 2017.. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and Gardos channels. . Front. Physiol. 8::977
    [Crossref] [Google Scholar]
  11. 11.
    Gardos G. 1958.. The function of calcium in the potassium permeability of human erythrocytes. . Biochim. Biophys. Acta 30::65354
    [Crossref] [Google Scholar]
  12. 12.
    Gardos G. 1958.. Effect of ethylenediaminetetraacetate on the permeability of human erythrocytes. . Acta Physiol. Acad. Sci. Hung. 14::15
    [Google Scholar]
  13. 13.
    Gardos G. 1959.. The role of calcium in the potassium permeability of human erythrocytes. . Acta Physiol. Acad. Sci. Hung. 15::12125
    [Google Scholar]
  14. 14.
    Lew VL. 1971.. On the ATP dependence of the Ca2+-induced increase in K+ permeability observed in human red cells. . Biochim. Biophys. Acta 233::82730
    [Crossref] [Google Scholar]
  15. 15.
    Schatzmann HJ. 1966.. ATP-dependent Ca++-extrusion from human red cells. . Experientia 22::36465
    [Crossref] [Google Scholar]
  16. 16.
    Lew VL. 1978.. Renewing the search for calcium pumps. . Nature 274::42122
    [Crossref] [Google Scholar]
  17. 17.
    Lew VL. 1974.. On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes. . In Comparative Biochemistry and Physiology of Transport, ed. L Bolis, K Bloch, SE Luria, F Lynen , pp. 31016. Amsterdam:: North-Holland
    [Google Scholar]
  18. 18.
    Lew VL, Ferreira HG. 1978.. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes. . In Current Topics in Membranes and Transport, Vol. 10, ed. A Kleinzeller, F Bronner , pp. 21777. New York:: Academic
    [Google Scholar]
  19. 19.
    Lew VL, Muallem S, Seymour CA. 1982.. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. . Nature 296::74244
    [Crossref] [Google Scholar]
  20. 20.
    Brugnara C, De Franceschi L, Alper SL. 1993.. Ca2+-activated K+ transport in erythrocytes. Comparison of binding and transport inhibition by scorpion toxins. . J. Biol. Chem. 268::876068
    [Crossref] [Google Scholar]
  21. 21.
    Alvarez J, García-Sancho J. 1987.. An estimate of the number of Ca2+-dependent K+ channels in the human red cell. . Biochim. Biophys. Acta 903::54346
    [Crossref] [Google Scholar]
  22. 22.
    Lew VL. 2022.. The predictive power of cellular homeostasis models illustrated with a study of the Gardos effect. . Paracelsus Proc. Exp. Med. 1::2436
    [Google Scholar]
  23. 23.
    Blum RM, Hoffman JF. 1970.. Carrier mediation of Ca-induced K transport and its inhibition in red blood cells. . Fed. Proc. 29::663
    [Google Scholar]
  24. 24.
    Schatzmann HJ, Rass B. 1965.. Inhibition of the active Na-K-transport and Na-K-activated membrane ATP-ase of erythrocyte stroma by ouabain. . Helv. Physiol. Pharmacol. Acta 65::C4749
    [Google Scholar]
  25. 25.
    Lew VL. 1971.. Effect of ouabain on the Ca2+-dependent increase in K+ permeability in depleted guinea-pig red cells. . Biochim. Biophys. Acta 249::23639
    [Crossref] [Google Scholar]
  26. 26.
    Tiffert T, Lew VL. 2011.. Elevated intracellular Ca2+ reveals a functional membrane nucleotide pool in intact human red blood cells. . J. Gen. Physiol. 138::38191
    [Crossref] [Google Scholar]
  27. 27.
    Almaraz L, Garcia-Sancho J. 1989.. Activation by calcium of AMP deaminase from the human red cell. . FEBS Lett. 244::41720
    [Crossref] [Google Scholar]
  28. 28.
    Almaraz L, Garcia-Sancho J, Lew VL. 1988.. Calcium-induced conversion of adenine nucleotides to inosine monophosphate in human red cells. . J. Physiol. 407::55767
    [Crossref] [Google Scholar]
  29. 29.
    Reed PW, Lardy HA. 1972.. A23187: a divalent cation ionophore. . J. Biol. Chem. 247::697077
    [Crossref] [Google Scholar]
  30. 30.
    Pressman BC. 1976.. Biological applications of ionophores. . Annu. Rev. Biochem. 45::50130
    [Crossref] [Google Scholar]
  31. 31.
    Bunn HF, Ransil BJ, Chao A. 1971.. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. . J. Biol. Chem. 246::527379
    [Crossref] [Google Scholar]
  32. 32.
    Flatman P, Lew VL. 1977.. Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. . Nature 267::36062
    [Crossref] [Google Scholar]
  33. 33.
    Flatman PW, Lew VL. 1980.. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. . J. Physiol. 305::1330
    [Crossref] [Google Scholar]
  34. 34.
    Raftos JE, Lew VL, Flatman PW. 1999.. Refinement and evaluation of a model of Mg2+ buffering in human red cells. . Eur. J. Biochem. 263::63545
    [Crossref] [Google Scholar]
  35. 35.
    Flatman PW, Lew VL. 1980.. Excess magnesium converts red cell (sodium+potassium) ATPase to the potassium phosphatase. . J. Physiol. 307::18
    [Crossref] [Google Scholar]
  36. 36.
    Flatman PW, Lew VL. 1981.. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells. . J. Physiol. 315::42146
    [Crossref] [Google Scholar]
  37. 37.
    Raftos JE, Lew VL. 1995.. Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells. . J. Physiol. 489:(Part 1):6372
    [Crossref] [Google Scholar]
  38. 38.
    Lew VL. 2023.. The circulatory dynamics of human red blood cell homeostasis: oxy-deoxy and PIEZO1-triggered changes. . Biophys. J. 122::48495
    [Crossref] [Google Scholar]
  39. 39.
    Ferreira HG, Lew VL. 1976.. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. . Nature 259::4749
    [Crossref] [Google Scholar]
  40. 40.
    Tiffert T, Lew VL. 1997.. Cytoplasmic calcium buffers in intact human red cells. . J. Physiol. 500:(Part 1):13954
    [Crossref] [Google Scholar]
  41. 41.
    McNamara MK, Wiley JS. 1986.. Passive permeability of human red blood cells to calcium. . Am. J. Physiol. Cell. Physiol. 250::C2631
    [Crossref] [Google Scholar]
  42. 42.
    Tiffert T, Garcia-Sancho J, Lew VL. 1984.. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. . Biochim. Biophys. Acta 773::14356
    [Crossref] [Google Scholar]
  43. 43.
    Lew VL, Ferreira HG. 1976.. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes. . Nature 263::33638
    [Crossref] [Google Scholar]
  44. 44.
    Schatzmann HJ. 1983.. The red cell calcium pump. . Annu. Rev. Physiol. 45::30312
    [Crossref] [Google Scholar]
  45. 45.
    Scharff O. 1981.. Kinetics of calmodulin-dependent Ca, Mg ATPase in plasma membranes and solubilized membranes from erythrocytes. . Arch. Biochem. Biophys. 209::7280
    [Crossref] [Google Scholar]
  46. 46.
    Kosk-Kosicka D, Lopez MM, Fomitcheva I, Lew VL. 1995.. Self-association of plasma membrane Ca2+-ATPase by volume exclusion. . FEBS Lett. 371::5760
    [Crossref] [Google Scholar]
  47. 47.
    Simons TJB. 1976.. Calcium-dependent potassium exchange in human red cell ghosts. . J. Physiol. 256::22744
    [Crossref] [Google Scholar]
  48. 48.
    Simonsen LO, Gomme J, Lew VL. 1982.. Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells. . Biochim. Biophys. Acta 692::43140
    [Crossref] [Google Scholar]
  49. 49.
    Simonsen LO, Lew VL. 1980.. The correlation between ionophore A23187 content and calcium permeability of ATP-depleted human red blood cells. . In Membrane Transport in Erythrocytes, ed. UV Lassen, HH Ussing, JO Wieth , pp. 20812. Copenhagen:: Munksgaard
    [Google Scholar]
  50. 50.
    Tsien RY. 1980.. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. . Biochemistry 19::2396404
    [Crossref] [Google Scholar]
  51. 51.
    Lew VL, Tsien RY, Miner C, Bookchin RM. 1982.. Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. . Nature 298::47881
    [Crossref] [Google Scholar]
  52. 52.
    Dagher G, Lew VL. 1988.. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump. . J. Physiol. 407::56986
    [Crossref] [Google Scholar]
  53. 53.
    Pereira AC, Samellas D, Tiffert T, Lew VL. 1993.. Inhibition of the calcium pump by high cytosolic Ca2+ in intact human red blood cells. . J. Physiol. 461::6373
    [Crossref] [Google Scholar]
  54. 54.
    Ferreira HG, Lew VL. 1975.. Proceedings: Ca transport and Ca pump reversal in human red blood cells. . J. Physiol. 252::86P87P
    [Google Scholar]
  55. 55.
    Wuthrich A, Schatzmann HJ, Romero P. 1979.. Net ATP synthesis by running the red cell calcium pump backwards. . Experientia 35::158990
    [Crossref] [Google Scholar]
  56. 56.
    Garrahan PJ, Glynn IM. 1966.. Driving the sodium pump backwards to form adenosine triphosphate. . Nature 211::141415
    [Crossref] [Google Scholar]
  57. 57.
    de Meis L. 2002.. Ca2+-ATPases (SERCA): energy transduction and heat production in transport ATPases. . J. Membr. Biol. 188::19
    [Crossref] [Google Scholar]
  58. 58.
    Tsien RY, Pozzan T, Rink TJ. 1984.. Measuring and manipulating cytosolic Ca2+ with trapped indicators. . Trends Biochem. Sci. 9::26366
    [Crossref] [Google Scholar]
  59. 59.
    Garcia-Sancho J. 1985.. Pyruvate prevents the ATP depletion caused by formaldehyde or calcium-chelator esters in the human red cell. . Biochim. Biophys. Acta 813::14850
    [Crossref] [Google Scholar]
  60. 60.
    Lew VL, Etzion Z, Bookchin RM, daCosta R, Väänänen H, et al. 1993.. The distribution of intracellular calcium chelator (fura-2) in a population of intact human red cells. . Biochim. Biophys. Acta Biomembr. 1148::15256
    [Crossref] [Google Scholar]
  61. 61.
    Introini V, Crick A, Tiffert T, Kotar J, Lin YC, et al. 2018.. Evidence against a role of elevated intracellular Ca2+ during Plasmodium falciparum preinvasion. . Biophys. J. 114::1695706
    [Crossref] [Google Scholar]
  62. 62.
    Eaton JW, Skelton TD, Swofford HS, Koplin CE, Jacob HS. 1973.. Elevated erythrocyte calcium in sickle cell disease. . Nature 246::1056
    [Crossref] [Google Scholar]
  63. 63.
    Palek J. 1973.. Calcium accumulation during sickling of hemoglobin S red cells. . Blood 42::9881000
    [Google Scholar]
  64. 64.
    Palek J. 1977.. Red cell calcium content and transmembrane calcium movements in sickle cell anemia. . J. Lab. Clin. Med 89::136574
    [Google Scholar]
  65. 65.
    Lew VL, Bookchin RM. 1986.. Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. . J. Membr. Biol. 92::5774
    [Crossref] [Google Scholar]
  66. 66.
    Lew VL, Freeman CJ, Ortiz OE, Bookchin RM. 1991.. A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration. . J. Clin. Investig. 87::10012
    [Crossref] [Google Scholar]
  67. 67.
    Rogers S, Lew VL. 2021.. PIEZO1 and the mechanism of the long circulatory longevity of human red blood cells. . PLOS Comput. Biol. 17::e1008496
    [Crossref] [Google Scholar]
  68. 68.
    Rogers S, Lew VL. 2021.. Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits. . PLOS Comput. Biol. 17::e1008706
    [Crossref] [Google Scholar]
  69. 69.
    Raftos JE, Bookchin RM, Lew VL. 1996.. Distribution of chloride permeabilities in normal human red cells. . J. Physiol. 491:(Part 3):77377
    [Crossref] [Google Scholar]
  70. 70.
    Raftos JE, Bookchin RM, Lew VL. 1997.. Measurement of the distribution of anion exchange function in normal human red cells. . J. Physiol. 499:(Part 1):1725
    [Crossref] [Google Scholar]
  71. 71.
    Tiffert T, Etzion Z, Bookchin RM, Lew VL. 1993.. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells. . J. Physiol. 464::52944
    [Crossref] [Google Scholar]
  72. 72.
    Etzion Z, Tiffert T, Bookchin RM, Lew VL. 1993.. Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells. . J. Clin. Investig. 92::248998
    [Crossref] [Google Scholar]
  73. 73.
    Ortiz OE, Lew VL, Bookchin RM. 1990.. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. . J. Physiol. 427::21126
    [Crossref] [Google Scholar]
  74. 74.
    Freeman CJ, Bookchin RM, Ortiz OE, Lew VL. 1987.. K-permeabilized human red cells lose an alkaline, hypertonic fluid containing excess K over diffusible anions. . J. Membr. Biol. 96::23541
    [Crossref] [Google Scholar]
  75. 75.
    Swietach P, Tiffert T, Mauritz JM, Seear R, Esposito A, et al. 2010.. Hydrogen ion dynamics in human red blood cells. . J. Physiol. 588::49955014
    [Crossref] [Google Scholar]
  76. 76.
    Cala PM. 1983.. Cell volume regulation by Amphiuma red blood cells. The role of Ca2+ as a modulator of alkali metal/H+ exchange. . J. Gen. Physiol. 82::76184
    [Crossref] [Google Scholar]
  77. 77.
    Hoffmann EK, Lambert IH, Simonsen LO. 1986.. Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells. . J. Membrane Biol. 91::22744
    [Crossref] [Google Scholar]
  78. 78.
    Garcia-Sancho J, Lew VL. 1988.. Detection and separation of human red cells with different calcium contents following uniform calcium permeabilization. . J. Physiol. 407::50522
    [Crossref] [Google Scholar]
  79. 79.
    Garcia-Sancho J, Lew VL. 1988.. Heterogeneous calcium and adenosine triphosphate distribution in calcium-permeabilized human red cells. . J. Physiol. 407::52339
    [Crossref] [Google Scholar]
  80. 80.
    Lew VL, Daw N, Perdomo D, Etzion Z, Bookchin RM, Tiffert T. 2003.. Distribution of plasma membrane Ca2+ pump activity in normal human red blood cells. . Blood 102::420613
    [Crossref] [Google Scholar]
  81. 81.
    Franco RS. 2012.. Measurement of red cell lifespan and aging. . Transfus. Med. Hemother. 39::3027
    [Crossref] [Google Scholar]
  82. 82.
    Lew VL, Daw N, Etzion Z, Tiffert T, Muoma A, et al. 2007.. Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells. . Blood 110::133442
    [Crossref] [Google Scholar]
  83. 83.
    Romero PJ, Romero EA. 1997.. Differences in Ca2+ pumping activity between sub-populations of human red cells. . Cell Calcium 21::35358
    [Crossref] [Google Scholar]
  84. 84.
    Arese P, Bosia A, Pescarmona GP, Till U. 1981.. The connection between ionophore-mediated Ca2+-movements and intermediary metabolism in human red cells. II. Site and mode of glycolytic activation during Ca2+-loading. . Cell Calcium 2::50924
    [Crossref] [Google Scholar]
  85. 85.
    Till U, Petermann H, Wenz I, Arese P. 1981.. The connection between ionophore-mediated Ca2+-movements and intermediary metabolism in human red cells. I. Relationships between Ca2+-loading, ATP-consumption and glycolytic flux. . Cell Calcium 2::495507
    [Crossref] [Google Scholar]
  86. 86.
    Tiffert T, Daw N, Etzion Z, Bookchin RM, Lew VL. 2007.. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells. . J. Gen. Physiol. 129::42936
    [Crossref] [Google Scholar]
  87. 87.
    Lew VL, Tiffert T, Etzion Z, Perdomo D, Daw N, et al. 2005.. Distribution of dehydration rates generated by maximal Gardos-channel activation in normal and sickle red blood cells. . Blood 105::36167
    [Crossref] [Google Scholar]
  88. 88.
    Carter MW, Matrone G, Metzler C. 1965.. Estimation of the life span of red blood cells in the growing animal in different nutritional states. . J. Gen. Physiol. 49::5767
    [Crossref] [Google Scholar]
  89. 89.
    Tiffert T, Spivak JL, Lew VL. 1988.. Magnitude of calcium influx required to induce dehydration of normal human red cells. . Biochim. Biophys. Acta Biomembr. 943::15765
    [Crossref] [Google Scholar]
  90. 90.
    Vandorpe DH, Xu C, Shmukler BE, Otterbein LE, Trudel M, et al. 2010.. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes. . PLOS ONE 5::e8732
    [Crossref] [Google Scholar]
  91. 91.
    Bunn HF, Forget BG. 1986.. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia:: W.B. Saunders
    [Google Scholar]
  92. 92.
    Eaton WA. 2020.. Hemoglobin S polymerization and sickle cell disease: a retrospective on the occasion of the 70th anniversary of Pauling's Science paper. . Am. J. Hematol. 95::20511
    [Crossref] [Google Scholar]
  93. 93.
    Henry ER, Cellmer T, Dunkelberger EB, Metaferia B, Hofrichter J, et al. 2020.. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. . PNAS 117::1501827
    [Crossref] [Google Scholar]
  94. 94.
    Liu Z, Weng W, Bookchin RM, Lew VL, Ferrone FA. 2008.. Free energy of sickle hemoglobin polymerization: a scaled-particle treatment for use with dextran as a crowding agent. . Biophys. J. 94::362934
    [Crossref] [Google Scholar]
  95. 95.
    Bertles JF, Milner PFA. 1968.. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle cell anemia. . J. Clin. Investig. 47::173141
    [Crossref] [Google Scholar]
  96. 96.
    Bertles JF, Rabinowitz R, Dobler J. 1970.. Hemoglobin interaction: modification of solid phase composition in the sickling phenomenon. . Science 169::37577
    [Crossref] [Google Scholar]
  97. 97.
    Shen SC, Fleming EM, Castle AB, Castle WB. 1949.. Studies on the destruction of red blood cells. V. Irreversibly sickled erythrocytes: their experimental production in vitro. . Blood 4::498504
    [Crossref] [Google Scholar]
  98. 98.
    Rapoport SM. 1986.. The Reticulocyte. Boca Raton, FL:: CRC Press
    [Google Scholar]
  99. 99.
    Coulombel L, Tchernia G, Mohandas N. 1979.. Human reticulocyte maturation and its relevance to erythropoietic stress. . J. Lab. Clin. Med. 94::46774
    [Google Scholar]
  100. 100.
    Mohandas N, Clark MR, Wyatt JL, Garcia JF, Eisenberg PD, Shohet SB. 1980.. Erythropoietic stress, macrocytosis, and hemoglobin switching in HbAA sheep. . Blood 55::75761
    [Crossref] [Google Scholar]
  101. 101.
    Steinberg MH, Nagel RL, Brugnara C. 1997.. Cellular effects of hydroxyurea in Hb SC disease. . Br. J. Haematol. 98::83844
    [Crossref] [Google Scholar]
  102. 102.
    Bookchin RM, Etzion Z, Sorette M, Mohandas N, Skepper JN, Lew VL. 2000.. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells. . PNAS 97::804550
    [Crossref] [Google Scholar]
  103. 103.
    Lew VL, Bookchin RM. 2005.. Ion transport pathology in the mechanism of sickle cell dehydration. . Physiol. Rev. 85::179200
    [Crossref] [Google Scholar]
  104. 104.
    Clark MR. 1988.. Senescence of red blood cells: progress and problems. . Physiol. Rev. 68::50354
    [Crossref] [Google Scholar]
  105. 105.
    Franco RS, Lohmann J, Silberstein EB, Mayfield-Pratt G, Palascak M, et al. 1998.. Time-dependent changes in the density and hemoglobin F content of biotin-labeled sickle cells. . J. Clin. Investig. 101::273040
    [Crossref] [Google Scholar]
  106. 106.
    Franco RS, Yasin Z, Lohmann JM, Palascak MB, Nemeth TA, et al. 2000.. The survival characteristics of dense sickle cells. . Blood 96::361017
    [Crossref] [Google Scholar]
  107. 107.
    Yasin Z, Witting S, Palascak MB, Joiner CH, Rucknagel DL, Franco RS. 2003.. Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density, and hemoglobin F. . Blood 102::36570
    [Crossref] [Google Scholar]
  108. 108.
    Franco RS, Yasin Z, Palascak MB, Ciraolo P, Joiner CH, Rucknagel DL. 2006.. The effect of fetal hemoglobin on the survival characteristics of sickle cells. . Blood 108::107376
    [Crossref] [Google Scholar]
  109. 109.
    Fabry ME, Romero JR, Nagel RL, Canessa M. 1989.. Sickle cells are heterogeneous in volume response: a mechanism for irreversibly sickled cells (ISC) formation. . Clin. Res. 37::380A ( Abstr. )
    [Google Scholar]
  110. 110.
    Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A. 2014.. Fetal hemoglobin in sickle cell anemia: A glass half full?. Blood 123::48185
    [Crossref] [Google Scholar]
  111. 111.
    Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, et al. 2021.. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. . N. Engl. J. Med. 384::20515
    [Crossref] [Google Scholar]
  112. 112.
    Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, et al. 2021.. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. . N. Engl. J. Med. 384::25260
    [Crossref] [Google Scholar]
  113. 113.
    Nagel RL, Fabry ME. 1985.. The many pathophysiologies of sickle cell anemia. . Am. J. Hematol. 20::19599
    [Crossref] [Google Scholar]
  114. 114.
    Billett HH, Kim K, Fabry ME, Nagel RL. 1986.. The percentage of dense red cells does not predict incidence of sickle cell painful crisis. . Blood 68::3013
    [Crossref] [Google Scholar]
  115. 115.
    Billett HH, Nagel RL, Fabry ME. 1988.. Evolution of laboratory parameters during sickle cell painful crisis: evidence compatible with dense red cell sequestration without thrombosis. . Am. J. Med. Sci. 296::29398
    [Crossref] [Google Scholar]
  116. 116.
    Pearson HA, Spencer RP, Cornelius EA. 1969.. Functional asplenia in sickle-cell anemia. . N. Engl. J. Med. 281::92326
    [Crossref] [Google Scholar]
  117. 117.
    Pearson HA, Cornelius EA, Schwartz AD, Zelson JH, Wolfson SL, Spencer RP. 1970.. Transfusion-reversible functional asplenia in young children with sickle-cell anemia. . N. Engl. J. Med. 283::33437
    [Crossref] [Google Scholar]
  118. 118.
    Steinberg MH, Lu ZH, Barton FB, Terrin ML, Charache S, Dover GJ. 1997.. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. . Blood 89::107888
    [Crossref] [Google Scholar]
  119. 119.
    De Souza DC, Hebert N, Esrick EB, Ciuculescu MF, Archer NM, et al. 2023.. Genetic reversal of the globin switch concurrently modulates both fetal and sickle hemoglobin and reduces red cell sickling. . Nat. Commun. 14::5850
    [Crossref] [Google Scholar]
  120. 120.
    Orringer EP, Blythe DS, Johnson AE, Phillips G Jr., Dover GJ, Parker JC. 1991.. Effects of hydroxyurea on hemoglobin F and water content in the red blood cells of dogs and of patients with sickle cell anemia. . Blood 78::21216
    [Crossref] [Google Scholar]
  121. 121.
    Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, et al. 1996.. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. . Medicine 75::30026
    [Crossref] [Google Scholar]
  122. 122.
    Franco RS, Puchulu-Campanella ME, Barber LA, Palascak MB, Joiner CH, et al. 2013.. Changes in the properties of normal human red blood cells during in vivo aging. . Am. J. Hematol. 88::4451
    [Crossref] [Google Scholar]
  123. 123.
    Cohen RM, Franco RS, Khera PK, Smith EP, Lindsell CJ, et al. 2008.. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. . Blood 112::428491
    [Crossref] [Google Scholar]
  124. 124.
    Holtzclaw JD, Jiang M, Yasin Z, Joiner CH, Franco RS. 2002.. Rehydration of high-density sickle erythrocytes in vitro. . Blood 100::301725
    [Crossref] [Google Scholar]
  125. 125.
    Lew VL, Tiffert T. 2013.. The terminal density reversal phenomenon of aging human red blood cells. . Front. Physiol. 4::171
    [Crossref] [Google Scholar]
  126. 126.
    Wiley JS, Shaller CC. 1977.. Selective loss of calcium permeability on maturation of reticulocytes. . J. Clin. Investig. 59::111319
    [Crossref] [Google Scholar]
  127. 127.
    Bookchin RM, Ortiz OE, Lew VL. 1991.. Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia. . J. Clin. Investig. 87::11324
    [Crossref] [Google Scholar]
  128. 128.
    Harrison DG, Long C. 1968.. The calcium content of human erythrocytes. . J. Physiol. 199::36781
    [Crossref] [Google Scholar]
  129. 129.
    Bookchin RM, Lew VL. 1980.. Progressive inhibition of the Ca pump and Ca:Ca exchange in sickle red cells. . Nature 284::56163
    [Crossref] [Google Scholar]
  130. 130.
    Eisner D, Neher E, Taschenberger H, Smith G. 2023.. Physiology of intracellular calcium buffering. . Physiol. Rev. 103::2767845
    [Crossref] [Google Scholar]
  131. 131.
    Lew VL, Hockaday A, Sepulveda MI, Somlyo AP, Somlyo AV, et al. 1985.. Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles. . Nature 315::58689
    [Crossref] [Google Scholar]
  132. 132.
    Rubin E, Schlegel RA, Williamson P. 1986.. Endocytosis in sickle erythrocytes: a mechanism for elevated intracellular Ca2+ levels. . J. Cell. Physiol. 126::5359
    [Crossref] [Google Scholar]
  133. 133.
    Tosteson DC, Carlsen E, Dunham ET. 1955.. The effects of sickling on ion transport: I. Effect of sickling on potassium transport. . J. Gen. Physiol. 39::3153
    [Crossref] [Google Scholar]
  134. 134.
    Tosteson DC. 1955.. The effects of sickling on ion transport: II. The effect of sickling on sodium and cesium transport. . J. Gen. Physiol. 39::5567
    [Crossref] [Google Scholar]
  135. 135.
    Fabry ME, Nagel RL. 1982.. The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia. . Blood 60::137077
    [Crossref] [Google Scholar]
  136. 136.
    Lauf PK, Adragna NC, Dupre N, Bouchard JP, Rouleau GA. 2006.. K-Cl cotransport in red blood cells from patients with KCC3 isoform mutants. . Biochem. Cell. Biol. 84::103444
    [Crossref] [Google Scholar]
  137. 137.
    Lauf PK, Adragna NC. 2000.. K-Cl cotransport: properties and molecular mechanism. . Cell. Physiol. Biochem. 10::34154
    [Crossref] [Google Scholar]
  138. 138.
    Gnanasambandam R, Bae C, Gottlieb PA, Sachs F. 2015.. Ionic selectivity and permeation properties of human PIEZO1 channels. . PLOS ONE 10::e0125503
    [Crossref] [Google Scholar]
  139. 139.
    Lew VL, Ortiz OE, Bookchin RM. 1997.. Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability. . J. Clin. Investig. 99::272735
    [Crossref] [Google Scholar]
  140. 140.
    Bookchin RM, Lew VL. 1981.. Effect of a ‘sickling pulse’ on calcium and potassium transport in sickle cell trait red cells. . J. Physiol. 312::26580
    [Crossref] [Google Scholar]
  141. 141.
    Hladky SB, Rink TJ. 1977.. pH equilibrium across the red cell membrane. . In Membrane Transport in Red Cells, ed. JC Ellory, VL Lew , pp. 11535. London:: Academic
    [Google Scholar]
  142. 142.
    Brugnara C, Van Ha T, Tosteson DC. 1989.. Acid pH induces formation of dense cells in sickle erythrocytes. . Blood 74::48795
    [Crossref] [Google Scholar]
  143. 143.
    Dyrda A, Cytlak U, Ciuraszkiewicz A, Lipinska A, Cueff A, et al. 2010.. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells. . PLOS ONE 5::e9447
    [Crossref] [Google Scholar]
  144. 144.
    Vaisey G, Banerjee P, North AJ, Haselwandter CA, MacKinnon R. 2022.. Piezo1 as a force-through-membrane sensor in red blood cells. . eLife 11::e82621
    [Crossref] [Google Scholar]
  145. 145.
    Garay RP, Garrahan PJ. 1973.. The interaction of sodium and potassium with the sodium pump in red cells. . J. Physiol. 231::297325
    [Crossref] [Google Scholar]
  146. 146.
    Rivera A, Ferreira A, Bertoni D, Romero JR, Brugnara C. 2005.. Abnormal regulation of Mg2+ transport via Na/Mg exchanger in sickle erythrocytes. . Blood 105::38286
    [Crossref] [Google Scholar]
  147. 147.
    Romero JR, Inostroza-Nieves Y, Pulido-Perez P, Lopez P, Wohlgemuth JG, et al. 2022.. Magnesium homeostasis in deoxygenated sickle erythrocytes is modulated by endothelin-1 via Na+/Mg2+ exchange. . FASEB J. 36::e22638
    [Crossref] [Google Scholar]
  148. 148.
    Minetti G, Kaestner L, Dorn I. 2023.. Terminal maturation of human reticulocytes to red blood cells by extensive remodelling and progressive liquid ordering of membrane lipids. . bioRxiv 543386. https://doi.org/10.1101/2023.06.02.543386
/content/journals/10.1146/annurev-physiol-022724-105119
Loading
/content/journals/10.1146/annurev-physiol-022724-105119
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error