1932

Abstract

Over the last decade, single-cell genomics has revealed remarkable heterogeneity and plasticity of cell types in the lungs and airways. The challenge now is to understand how these cell types interact in three-dimensional space to perform lung functions, facilitating airflow and gas exchange while simultaneously providing barrier function to avoid infection. An explosion in novel spatially resolved gene expression technologies, coupled with computational tools that harness machine learning and deep learning, now promise to address this challenge. Here, we review the most commonly used spatial analysis workflows, highlighting their advantages and limitations, and outline recent developments in machine learning and artificial intelligence that will augment how we interpret spatial data. Together these technologies have the potential to transform our understanding of the respiratory system in health and disease, and we showcase studies in lung development, COVID-19, lung cancer, and fibrosis where spatially resolved transcriptomics is already providing novel insights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105144
2025-02-10
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105144.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105144&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Xie M, Liu X, Cao X, Guo M, Li X. 2020.. Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017. . Respir. Res. 21:(1):49
    [Crossref] [Google Scholar]
  2. 2.
    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, et al. 2021.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. . CA Cancer J. Clin. 71:(3):20949
    [Crossref] [Google Scholar]
  3. 3.
    Madissoon E, Wilbrey-Clark A, Miragaia RJ, Saeb-Parsy K, Mahbubani KT, et al. 2019.. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. . Genome Biol. 21:(1):1
    [Crossref] [Google Scholar]
  4. 4.
    Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, et al. 2018.. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. . Nature 560:(7718):37781
    [Crossref] [Google Scholar]
  5. 5.
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, et al. 2019.. A cellular census of human lungs identifies novel cell states in health and in asthma. . Nat. Med. 25:(7):115363
    [Crossref] [Google Scholar]
  6. 6.
    Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, et al. 2020.. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. . Sci. Adv. 6:(28):eaba1983
    [Crossref] [Google Scholar]
  7. 7.
    Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS, et al. 2020.. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. . Nat. Commun. 11:(1):2485
    [Crossref] [Google Scholar]
  8. 8.
    Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, et al. 2020.. A molecular cell atlas of the human lung from single-cell RNA sequencing. . Nature 587:(7835):61925
    [Crossref] [Google Scholar]
  9. 9.
    Deprez M, Zaragosi L-E, Truchi M, Becavin C, Ruiz García S, et al. 2020.. A single-cell atlas of the human healthy airways. . Am. J. Respir. Crit. Care Med. 202:(12):163645
    [Crossref] [Google Scholar]
  10. 10.
    Madissoon E, Oliver AJ, Kleshchevnikov V, Wilbrey-Clark A, Polanski K, et al. 2023.. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. . Nat. Genet. 55:(1):6677
    [Crossref] [Google Scholar]
  11. 11.
    Sikkema L, Ramírez-Suástegui C, Strobl DC, Gillett TE, Zappia L, et al. 2023.. An integrated cell atlas of the lung in health and disease. . Nat. Med. 29:(6):156377
    [Crossref] [Google Scholar]
  12. 12.
    Gaddis N, Fortriede J, Guo M, Bardes EE, Kouril M, et al. 2024.. LungMAP portal ecosystem: systems-level exploration of the lung. . Am. J. Respir. Cell Mol. Biol. 70:(2):12939
    [Crossref] [Google Scholar]
  13. 13.
    Guo M, Morley MP, Jiang C, Wu Y, Li G, et al. 2023.. Guided construction of single cell reference for human and mouse lung. . Nat. Commun. 14::4566
    [Crossref] [Google Scholar]
  14. 14.
    Sun X, Perl A-K, Li R, Bell SM, Sajti E, et al. 2022.. A census of the lung: CellCards from LungMAP. . Dev. Cell 57:(1):11245.e2
    [Crossref] [Google Scholar]
  15. 15.
    Cheng M, Jiang Y, Xu J, Mentis A-FA, Wang S, et al. 2023.. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. . J. Genet. Genom. 50:(9):62540
    [Crossref] [Google Scholar]
  16. 16.
    Bressan D, Battistoni G, Hannon GJ. 2023.. The dawn of spatial omics. . Science 381:(6657):eabq4964
    [Crossref] [Google Scholar]
  17. 17.
    Wang W-J, Chu L-X, He L-Y, Zhang M-J, Dang K-T, et al. 2023.. Spatial transcriptomics: recent developments and insights in respiratory research. . Mil. Med. Res. 10:(1):38
    [Google Scholar]
  18. 18.
    Wang Y, Liu B, Zhao G, Lee Y, Buzdin A, et al. 2023.. Spatial transcriptomics: technologies, applications and experimental considerations. . Genomics 115:(5):110671
    [Crossref] [Google Scholar]
  19. 19.
    Engblom C, Thrane K, Lin Q, Andersson A, Toosi H, et al. 2023.. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. . Science 382:(6675):eadf8486
    [Crossref] [Google Scholar]
  20. 20.
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016.. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. . Science 353:(6294):7882
    [Crossref] [Google Scholar]
  21. 21.
    Borm LE, Mossi Albiach A, Mannens CCA, Janusauskas J, Özgün C, et al. 2023.. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. . Nat. Biotechnol. 41:(2):22231
    [Google Scholar]
  22. 22.
    Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022.. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. . Cell 185:(10):177792.e21
    [Crossref] [Google Scholar]
  23. 23.
    Stickels RR, Murray E, Kumar P, Li J, Marshall JL, et al. 2021.. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. . Nat. Biotechnol. 39:(3):31319
    [Crossref] [Google Scholar]
  24. 24.
    Cho C-S, Xi J, Si Y, Park S-R, Hsu J-E, et al. 2021.. Microscopic examination of spatial transcriptome using Seq-Scope. . Cell 184:(13):355972.e22
    [Crossref] [Google Scholar]
  25. 25.
    Fu X, Sun L, Dong R, Chen JY, Silakit R, et al. 2022.. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. . Cell 185:(24):462133.e17
    [Crossref] [Google Scholar]
  26. 26.
    Liu Y, Yang M, Deng Y, Su G, Enninful A, et al. 2020.. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. . Cell 183:(6):166581.e18
    [Crossref] [Google Scholar]
  27. 27.
    Su G, Qin X, Enninful A, Bai Z, Deng Y, et al. 2021.. Spatial multi-omics sequencing for fixed tissue via DBiT-seq. . STAR Protoc. 2:(2):100532
    [Crossref] [Google Scholar]
  28. 28.
    Vandereyken K, Sifrim A, Thienpont B, Voet T. 2023.. Methods and applications for single-cell and spatial multi-omics. . Nat. Rev. Genet. 24:(8):494515
    [Crossref] [Google Scholar]
  29. 29.
    Wang F, Flanagan J, Su N, Wang L-C, Bui S, et al. 2012.. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. . J. Mol. Diagn. 14:(1):2229
    [Crossref] [Google Scholar]
  30. 30.
    Resolve Bioscience. 2022.. Molecular cartography system provides 3D spatial genomics data. YouTube, June 3. https://www.youtube.com/watch?v=6fdenoykyOo
    [Google Scholar]
  31. 31.
    Lee H, Marco Salas S, Gyllborg D, Nilsson M. 2022.. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. . Sci. Rep. 12::7976
    [Crossref] [Google Scholar]
  32. 32.
    Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, et al. 2013.. In situ sequencing for RNA analysis in preserved tissue and cells. . Nat. Methods 10:(9):85760
    [Crossref] [Google Scholar]
  33. 33.
    Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016.. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. . PNAS 113:(39):1104651
    [Crossref] [Google Scholar]
  34. 34.
    Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C, Zhuang X. 2016.. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. . PNAS 113:(50):1445661
    [Crossref] [Google Scholar]
  35. 35.
    Wang H, Huang R, Nelson J, Gao C, Tran M, et al. 2023.. Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. . bioRxiv 570603. https://www.biorxiv.org/content/10.1101/2023.12.07.570603v2
  36. 36.
    Cook DP, Jensen KB, Wise K, Roach MJ, Dezem FS, et al. 2023.. A comparative analysis of imaging-based spatial transcriptomics platforms. . bioRxiv 571385. https://www.biorxiv.org/content/10.1101/2023.12.13.571385v1
  37. 37.
    Russell AJC, Weir JA, Nadaf NM, Shabet M, Kumar V, et al. 2024.. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. . Nature 625:(7993):1019
    [Crossref] [Google Scholar]
  38. 38.
    Lee Y, Bogdanoff D, Wang Y, Hartoularos GC, Woo JM, et al. 2021.. XYZeq: spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment. . Sci. Adv. 7:(17):eabg4755
    [Crossref] [Google Scholar]
  39. 39.
    Schaar AC, Tajada-Lapuerta A, Palla G, Gutgesell R, et al. 2024.. Nicheformer: a foundation model for single-cell and spatial omics. . bioRxiv 589472. https://doi.org/10.1101/2024.07.10.602965
  40. 40.
    Rosenblatt F. 1958.. The perceptron: a probabilistic model for information storage and organization in the brain. . Psychol. Rev. 65:(6):386408
    [Crossref] [Google Scholar]
  41. 41.
    Werbos PJ. 1994.. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting. New York:: John Wiley & Sons
    [Google Scholar]
  42. 42.
    Ioffe S, Szegedy C. 2015.. Batch normalization: accelerating deep network training by reducing internal covariate shift. . arXiv 1502.03167. https://arxiv.org/abs/1502.03167
  43. 43.
    Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, et al. 2021.. On the opportunities and risks of foundation models. . arXiv 2108.07258. https://arxiv.org/abs/2108.07258
  44. 44.
    Moses L, Pachter L. 2022.. Publisher correction: museum of spatial transcriptomics. . Nat. Methods 19:(5):628
    [Crossref] [Google Scholar]
  45. 45.
    Yue L, Liu F, Hu J, Yang P, Wang Y, et al. 2023.. A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. . Comput. Struct. Biotechnol. J. 21::94055
    [Crossref] [Google Scholar]
  46. 46.
    Velten B, Stegle O. 2023.. Principles and challenges of modeling temporal and spatial omics data. . Nat. Methods 20:(10):146274
    [Crossref] [Google Scholar]
  47. 47.
    Petukhov V, Xu RJ, Soldatov RA, Cadinu P, Khodosevich K, et al. 2022.. Cell segmentation in imaging-based spatial transcriptomics. . Nat. Biotechnol. 40:(3):34554
    [Crossref] [Google Scholar]
  48. 48.
    Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, et al. 2023.. Spatially resolved multiomics of human cardiac niches. . Nature 619:(7971):80110
    [Crossref] [Google Scholar]
  49. 49.
    Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, et al. 2023.. A spatial human thymus cell atlas mapped to a continuous tissue axis. . bioRxiv 562925. https://www.biorxiv.org/content/10.1101/2023.10.25.562925v150
  50. 50.
    Weber LM, Collado-Torres L, Hicks SC. 2024.. Best Practices for Spatial Transcriptomics Analysis with Bioconductor. https://lmweber.org/BestPracticesST/
    [Google Scholar]
  51. 51.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015.. Spatial reconstruction of single-cell gene expression data. . Nat. Biotechnol. 33:(5):495502
    [Crossref] [Google Scholar]
  52. 52.
    Wolf FA, Angerer P, Theis FJ. 2018.. SCANPY: large-scale single-cell gene expression data analysis. . Genome Biol. 19::15
    [Crossref] [Google Scholar]
  53. 53.
    Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, et al. 2022.. Squidpy: a scalable framework for spatial omics analysis. . Nat. Methods 19:(2):17178
    [Crossref] [Google Scholar]
  54. 54.
    Lun ATL, McCarthy DJ, Marioni JC. 2016.. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. . F1000Res. 5::2122
    [Google Scholar]
  55. 55.
    Dries R, Zhu Q, Dong R, Eng C-HL, Li H, et al. 2021.. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. . Genome Biol. 22::78
    [Crossref] [Google Scholar]
  56. 56.
    Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, et al. 2019.. Fast, sensitive and accurate integration of single-cell data with Harmony. . Nat. Methods 16:(12):128996
    [Crossref] [Google Scholar]
  57. 57.
    Haghverdi L, Lun ATL, Morgan Marioni JC. 2018.. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. . Nat. Biotechnol. 36:(5):42127
    [Crossref] [Google Scholar]
  58. 58.
    Polański K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park J-E. 2020.. BBKNN: fast batch alignment of single cell transcriptomes. . Bioinformatics 36:(3):96465
    [Crossref] [Google Scholar]
  59. 59.
    Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. 2018.. Deep generative modeling for single-cell transcriptomics. . Nat. Methods 15:(12):105358
    [Crossref] [Google Scholar]
  60. 60.
    Lotfollahi M, Naghipourfar M, Luecken MD, Khajavi M, Büttner M, et al. 2022.. Mapping single-cell data to reference atlases by transfer learning. . Nat. Biotechnol. 40:(1):12130
    [Crossref] [Google Scholar]
  61. 61.
    Birk S, Bonafonte-Pardàs I, Feriz AM, Boxall A, Agirre E, et al. 2024.. Quantitative characterization of cell niches in spatial atlases. . bioRxiv 581428. https://www.biorxiv.org/content/10.1101/2024.02.21.581428v3
  62. 62.
    Zhang X, Wang X, Shivashankar GV, Uhler C. 2022.. Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease. . Nat. Commun. 13::7480
    [Crossref] [Google Scholar]
  63. 63.
    Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M, et al. 2022.. Benchmarking atlas-level data integration in single-cell genomics. . Nat. Methods 19:(1):4150
    [Crossref] [Google Scholar]
  64. 64.
    Zhang B, He P, Lawrence JEG, Wang S, Tuck E, et al. 2024.. A human embryonic limb cell atlas resolved in space and time. . Nature 635::66878
    [Crossref] [Google Scholar]
  65. 65.
    To K, Fei L, Pett JP, Roberts K, Polański K, et al. 2024.. A multiomic atlas of human early skeletal development. . bioRxiv 602965. https://www.biorxiv.org/content/10.1101/2024.07.10.602965v1.full.pdf
  66. 66.
    Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, et al. 2022.. Cell2location maps fine-grained cell types in spatial transcriptomics. . Nat. Biotechnol. 40:(5):66171
    [Crossref] [Google Scholar]
  67. 67.
    Lopez R, Li B, Keren-Shaul H, Boyeau P, Kedmi M, et al. 2022.. DestVI identifies continuums of cell types in spatial transcriptomics data. . Nat. Biotechnol. 40:(9):136069
    [Crossref] [Google Scholar]
  68. 68.
    Weibel ER, Gomez DM. 1962.. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. . Science 137:(3530):57785
    [Crossref] [Google Scholar]
  69. 69.
    Mandelbrot BB. 1975.. Les Objets Fractals: Forme, Hasard et Dimension. Paris:: Flammarion
    [Google Scholar]
  70. 70.
    Moran PAP. 1950.. Notes on continuous stochastic phenomena. . Biometrika 37:(1–2):1723
    [Crossref] [Google Scholar]
  71. 71.
    You Y, Fu Y, Li L, Zhang Z, Jia S, et al. 2024.. Systematic comparison of sequencing-based spatial transcriptomic methods. . Nat. Methods 21::174354
    [Crossref] [Google Scholar]
  72. 72.
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020.. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. . Nat. Protoc. 15:(4):1484506
    [Crossref] [Google Scholar]
  73. 73.
    Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, et al. 2021.. Inference and analysis of cell-cell communication using CellChat. . Nat. Commun. 12::1088
    [Crossref] [Google Scholar]
  74. 74.
    Cang Z, Zhao Y, Almet AA, Stabell A, Ramos R, et al. 2023.. Screening cell-cell communication in spatial transcriptomics via collective optimal transport. . Nat. Methods 20:(2):21828
    [Crossref] [Google Scholar]
  75. 75.
    Armingol E, Baghdassarian HM, Lewis NE. 2024.. The diversification of methods for studying cell-cell interactions and communication. . Nat. Rev. Genet. 25::381400
    [Crossref] [Google Scholar]
  76. 76.
    Ren X, Zhong G, Zhang Q, Zhang L, Sun Y, Zhang Z. 2021.. Author corrections: reconstruction of cell spatial organization from single-cell RNA sequencing data based on ligand-receptor mediated self-assembly. . Cell Res. 31:(12):131920
    [Crossref] [Google Scholar]
  77. 77.
    DeTomaso D, Yosef N. 2021.. Hotspot identifies informative gene modules across modalities of single-cell genomics. . Cell Syst. 12:(5):44656.e9
    [Crossref] [Google Scholar]
  78. 78.
    Pham D, Tan X, Balderson B, Xu J, Grice LF, et al. 2023.. Robust mapping of spatiotemporal trajectories and cell-cell interactions in healthy and diseased tissues. . Nat. Commun. 14::7739
    [Crossref] [Google Scholar]
  79. 79.
    Arutyunyan A, Roberts K, Troulé K, Wong FCK, Sheridan MA, et al. 2023.. Spatial multiomics map of trophoblast development in early pregnancy. . Nature 616:(7955):14351
    [Crossref] [Google Scholar]
  80. 80.
    Ren H, Walker BL, Cang Z, Nie Q. 2022.. Identifying multicellular spatiotemporal organization of cells with SpaceFlow. . Nat. Commun. 13::4076
    [Crossref] [Google Scholar]
  81. 81.
    Rossi E, Chamberlain B, Frasca F, Eynard D, Monti F, Bronstein M. 2020.. Temporal graph networks for deep learning on dynamic graphs. . arXiv 2006.10637. https://arxiv.org/abs/2006.10637
  82. 82.
    Liu J, Yang C, Lu Z, Chen J, Li Y, et al. 2023.. Towards graph foundation models: a survey and beyond. . arXiv 2310.11829v2. https://arxiv.org/abs/2310.11829
  83. 83.
    Corso G, Stark H, Jegelka S, Jaakkola T, Barzilay R. 2024.. Graph neural networks. . Nat. Rev. Methods Primers 4::17
    [Crossref] [Google Scholar]
  84. 84.
    Bodnar C, Di Giovanni F, Chamberlain BP, Liò P, Bronstein MM. 2022.. Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs. . arXiv 2202.04579. https://arxiv.org/abs/2202.04579
  85. 85.
    Ebli S, Defferrard M, Spreemann G. 2020.. Simplicial neural networks. . arXiv 2010.03633. https://arxiv.org/abs/2010.03633
  86. 86.
    He P, Lim K, Sun D, Pett JP, Jeng Q, et al. 2022.. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. . Cell 185:(25):484160.e25
    [Crossref] [Google Scholar]
  87. 87.
    Sountoulidis A, Marco Salas S, Braun E, Avenel C, Bergenstråhle J, et al. 2023.. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. . Nat. Cell Biol. 25:(2):35165
    [Google Scholar]
  88. 88.
    Quach H, Farrell S, Kanagarajah K, Wu M, Xu X, et al. 2024.. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. . Nat. Commun. 15::5890
    [Crossref] [Google Scholar]
  89. 89.
    Sariyar S, Sountoulidis A, Hansen JN, Salas SM, Mardamshina M, et al. 2024.. High-parametric protein maps reveal the spatial organization in early-developing human lung. . bioRxiv 577163. https://www.biorxiv.org/content/10.1101/2024.01.25.577163v1
  90. 90.
    Sungnak W, Huang N, Bécavin C, Berg M, Queen R, et al. 2020.. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. . Nat. Med. 26:(5):68187
    [Crossref] [Google Scholar]
  91. 91.
    Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, et al. 2020.. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. . Cell 181:(5):101635.e19
    [Crossref] [Google Scholar]
  92. 92.
    Muus C, Luecken MD, Eraslan G, Sikkema L, Waghray A, et al. 2021.. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. . Nat. Med. 27:(3):54659
    [Crossref] [Google Scholar]
  93. 93.
    Yoshida M, Worlock KB, Huang N, Lindeboom RGH, Butler CR, et al. 2022.. Local and systemic responses to SARS-CoV-2 infection in children and adults. . Nature 602:(7896):32127
    [Crossref] [Google Scholar]
  94. 94.
    Ziegler CGK, Miao VN, Owings AH, Navia AW, Tang Y, et al. 2021.. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. . Cell 184:(18):471333.e22
    [Crossref] [Google Scholar]
  95. 95.
    Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, et al. 2020.. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. . Nat. Biotechnol. 38:(8):97079
    [Crossref] [Google Scholar]
  96. 96.
    Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, et al. 2020.. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. . EMBO J. 39:(10):e105114
    [Crossref] [Google Scholar]
  97. 97.
    Loske J, Röhmel J, Lukassen S, Stricker S, Magalhães VG, et al. 2022.. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. . Nat. Biotechnol. 40:(3):31924
    [Crossref] [Google Scholar]
  98. 98.
    Melms JC, Biermann J, Huang H, Wang Y, Nair A, et al. 2021.. A molecular single-cell lung atlas of lethal COVID-19. . Nature 595:(7865):11419
    [Crossref] [Google Scholar]
  99. 99.
    Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. 2021.. Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. . Cell. Mol. Immunol. 18:(10):231324
    [Crossref] [Google Scholar]
  100. 100.
    Kulasinghe A, Tan CW, Ribeiro dos Santos Miggiolaro AF, Monkman J, SadeghiRad H, et al. 2022.. Profiling of lung SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and gene signatures. . Eur. Respir. J. 59::2101881
    [Crossref] [Google Scholar]
  101. 101.
    Rendeiro AF, Ravichandran H, Bram Y, Chandar V, Kim J, et al. 2021.. The spatial landscape of lung pathology during COVID-19 progression. . Nature 593:(7860):56469
    [Crossref] [Google Scholar]
  102. 102.
    Weeratunga P, Denney L, Bull JA, Repapi E, Sergeant M, et al. 2023.. Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs. . Nat. Commun. 14::7216
    [Crossref] [Google Scholar]
  103. 103.
    Tan X, Grice LF, Tran M, Mulay O, Monkman J, et al. 2023.. A robust platform for integrative spatial multi-omics analysis to map immune responses to SARS-CoV-2 infection in lung tissues. . Immunology 170:(3):40118
    [Crossref] [Google Scholar]
  104. 104.
    Cross AR, de Andrea CE, Villalba-Esparza M, Landecho MF, Cerundolo L, et al. 2023.. Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury. . JCI Insight 8:(2):e157837
    [Crossref] [Google Scholar]
  105. 105.
    Lee JTH, Barnett SN, Roberts K, Ashwin H, Milross L, et al. 2023.. Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19. . bioRxiv 572494. https://www.biorxiv.org/content/10.1101/2023.12.20.572494v1
  106. 106.
    Mao Y, Chen Y, Li Y, Ma L, Wang X, et al. 2024.. Deep spatial proteomics reveals region-specific features of severe COVID-19-related pulmonary injury. . Cell Rep. 43:(2):113689
    [Crossref] [Google Scholar]
  107. 107.
    Lewis SM, Asselin-Labat M-L, Nguyen Q, Berthelet J, Tan X, et al. 2021.. Spatial omics and multiplexed imaging to explore cancer biology. . Nat. Methods 18:(9):9971012
    [Crossref] [Google Scholar]
  108. 108.
    Lyubetskaya A, Rabe B, Fisher A, Lewin A, Neuhaus I, et al. 2022.. Assessment of spatial transcriptomics for oncology discovery. . Cell Rep. Methods 2:(11):100340
    [Crossref] [Google Scholar]
  109. 109.
    Grout JA, Sirven P, Leader AM, Maskey S, Hector E, et al. 2022.. Spatial positioning and matrix programs of cancer-associated fibroblasts promote t-cell exclusion in human lung tumors. . Cancer Discov. 12:(11):260625
    [Crossref] [Google Scholar]
  110. 110.
    Sorin M, Rezanejad M, Karimi E, Fiset B, Desharnais L, et al. 2023.. Single-cell spatial landscapes of the lung tumour immune microenvironment. . Nature 614:(7948):54854
    [Crossref] [Google Scholar]
  111. 111.
    Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, et al. 2024.. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. . Cancer Cell 42::396412
    [Crossref] [Google Scholar]
  112. 112.
    Haga Y, Sakamoto Y, Kajiya K, Kawai H, Oka M, et al. 2023.. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. . Nat. Commun. 14::8375
    [Crossref] [Google Scholar]
  113. 113.
    Dhainaut M, Rose SA, Akturk G, Wroblewska A, Nielsen SR, et al. 2022.. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. . Cell 185:(7):122339.e20
    [Crossref] [Google Scholar]
  114. 114.
    Zhu J, Fan Y, Xiong Y, Wang W, Chen J, et al. 2022.. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. . Exp. Mol. Med. 54:(11):206076
    [Crossref] [Google Scholar]
  115. 115.
    Wang Y, Liu B, Min Q, Yang X, Yan S, et al. 2023.. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. . Cell Discov. 9:(1):96
    [Crossref] [Google Scholar]
  116. 116.
    Xie L, Kong H, Yu J, Sun M, Lu S, et al. 2024.. Spatial transcriptomics reveals heterogeneity of histological subtypes between lepidic and acinar lung adenocarcinoma. . Clin. Transl. Med. 14:(2):e1573
    [Crossref] [Google Scholar]
  117. 117.
    Zhao R, Xu Y, Chen Y, Zhang J, Teng F, et al. 2023.. Clonal dynamics and Stereo-seq resolve origin and phenotypic plasticity of adenosquamous carcinoma. . NPJ Precis Oncol. 7:(1):80
    [Crossref] [Google Scholar]
  118. 118.
    Larroquette M, Guegan J-P, Besse B, Cousin S, Brunet M, et al. 2022.. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. . J. Immunother. Cancer 10:(5):e003890
    [Crossref] [Google Scholar]
  119. 119.
    Chen JH, Nieman LT, Spurrell M, Jorgji V, Richieri P, et al. 2023.. Spatial analysis of human lung cancer reveals organized immune hubs enriched for stem-like CD8 T cells and associated with immunotherapy response. . bioRxiv 535379. https://www.biorxiv.org/content/10.1101/2023.04.04.535379v1
  120. 120.
    He S, Bhatt R, Brown C, Brown EA, Buhr DL, et al. 2022.. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. . Nat. Biotechnol. 40:(12):1794806
    [Crossref] [Google Scholar]
  121. 121.
    Jerby-Arnon L, Regev A. 2022.. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. . Nat. Biotechnol. 40:(10):146777
    [Crossref] [Google Scholar]
  122. 122.
    Varrone M, Tavernari D, Santamaria-Martínez A, Walsh LA, Ciriello G. 2024.. CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity. . Nat. Genet. 56:(1):7484
    [Crossref] [Google Scholar]
  123. 123.
    Wong-Rolle A, Dong Q, Zhu Y, Divakar P, Hor JL, et al. 2022.. Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with lung cancer cells showing a distinct oncogenic signature. . J. Immunother. Cancer 10:(7):e004698
    [Crossref] [Google Scholar]
  124. 124.
    Pentimalli TM, Schallenberg S, León-Periñán D, Legnini I, Theurillat I, et al. 2023.. High-resolution molecular atlas of a lung tumor in 3D. . bioRxiv 539644. https://www.biorxiv.org/content/10.1101/2023.05.10.539644v1
  125. 125.
    Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. 2013.. Animal models of fibrotic lung disease. . Am. J. Respir. Cell Mol. Biol. 49:(2):16779
    [Crossref] [Google Scholar]
  126. 126.
    Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, et al. 2020.. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. . Sci. Adv. 6:(28):eaba1972
    [Crossref] [Google Scholar]
  127. 127.
    Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, et al. 2019.. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. . Am. J. Respir. Crit. Care Med. 199:(12):151736
    [Crossref] [Google Scholar]
  128. 128.
    Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, et al. 2019.. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. . Eur. Respir. J. 54:(2):1802441
    [Crossref] [Google Scholar]
  129. 129.
    McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, et al. 2019.. Transcriptional regulatory model of fibrosis progression in the human lung. . JCI Insight 4:(22):e131597
    [Crossref] [Google Scholar]
  130. 130.
    Heinzelmann K, Hu Q, Hu Y, Dobrinskikh E, Ansari M, et al. 2022.. Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in distal honeycomb cysts in idiopathic pulmonary fibrosis. . Eur. Respir. J. 59:(6):2102373
    [Crossref] [Google Scholar]
  131. 131.
    Merritt CR, Ong GT, Church SE, Barker K, Danaher P, et al. 2020.. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. . Nat. Biotechnol. 38:(5):58699
    [Crossref] [Google Scholar]
  132. 132.
    Eyres M, Bell JA, Davies ER, Fabre A, Alzetani A, et al. 2022.. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. . Cell Rep. 40:(7):111230
    [Crossref] [Google Scholar]
  133. 133.
    Kathiriya JJ, Wang C, Zhou M, Brumwell A, Cassandras M, et al. 2022.. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5 basal cells. . Nat. Cell Biol. 24:(1):1023
    [Crossref] [Google Scholar]
  134. 134.
    Franzén L, Lindvall MO, Hühn M, Ptasinski V, Setyo L, et al. 2024.. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. . Nat. Genet. 56::172536
    [Crossref] [Google Scholar]
  135. 135.
    Mayr CH, Santacruz D, Jarosch S, Lempp C, Neubert L, et al. 2023.. Spatial transcriptomic characterization of novel pathologic niches in IPF. . bioRxiv 571464. https://www.biorxiv.org/content/10.1101/2023.12.13.571464v1
  136. 136.
    Vannan A, Lyu R, Williams AL, Negretti NM, Mee ED, et al. 2023.. Image-based spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. . bioRxiv 571464. https://www.biorxiv.org/content/10.1101/2023.12.13.571464v1
  137. 137.
    Olvera N, Sánchez-Valle J, Núñez-Carpintero I, Rojas-Quintero J, Noell G, et al. 2024.. Lung tissue multilayer network analysis uncovers the molecular heterogeneity of chronic obstructive pulmonary disease. . Am. J. Respir. Crit. Care Med. 210:(10):121929
    [Crossref] [Google Scholar]
  138. 138.
    Rojas-Quintero J, Ochsner SA, New F, Divakar P, Yang CX, et al. 2024.. Spatial transcriptomics resolve an emphysema-specific lymphoid follicle B cell signature in chronic obstructive pulmonary disease. . Am. J. Respir. Crit. Care Med. 209:(1):4858
    [Crossref] [Google Scholar]
  139. 139.
    Joulia R, Puttur F, Stölting H, Traves WJ, Entwistle LJ, et al. 2024.. Mast cell activation disrupts interactions between endothelial cells and pericytes during early life allergic asthma. . J. Clin. Investig. 134:(6):e173676
    [Crossref] [Google Scholar]
  140. 140.
    Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. 2019.. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. . Nat. Commun. 10::1823
    [Crossref] [Google Scholar]
  141. 141.
    Li Q, Wang C, Gou J, Kitanovski S, Tang X, et al. 2024.. Deciphering lung granulomas in HIV & TB co-infection: unveiling macrophages aggregation with IL6R/STAT3 activation. . Emerg. Microbes Infect. 13:(1):2366359
    [Crossref] [Google Scholar]
  142. 142.
    Liu B, Yi D, Li S, Ramirez K, Xia X, et al. 2024.. Single-cell and spatial transcriptomics identified fatty acid-binding proteins controlling endothelial glycolytic and arterial programming in pulmonary hypertension. . bioRxiv 579846. https://www.biorxiv.org/content/10.1101/2024.02.11.579846v2
  143. 143.
    Tuder RM, Gandjeva A, Williams S, Kumar S, Kheyfets VO, et al. 2024.. Digital spatial profiling identifies distinct molecular signatures of vascular lesions in pulmonary arterial hypertension. . Am. J. Respir. Crit. Care Med. 210:(3):32942
    [Crossref] [Google Scholar]
  144. 144.
    Schott M, León-Periñán D, Splendiani E, Strenger L, Licha JR, et al. 2024.. Open-ST: high resolution spatial transcriptomics in 3D. . Cell 187:(15):395372.e6
    [Crossref] [Google Scholar]
  145. 145.
    Walsh CL, Tafforeau P, Wagner WL, Jafree DJ, Bellier A, et al. 2021.. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. . Nat. Methods 18:(12):153241
    [Crossref] [Google Scholar]
  146. 146.
    Rood JE, Stuart T, Ghazanfar S, Biancalani T, Fisher E, et al. 2019.. Toward a common coordinate framework for the human body. . Cell 179:(7):145567
    [Crossref] [Google Scholar]
  147. 147.
    The Tabula Sapiens Consort., Jones RC, Karkanias J, Krasnow MA, Pisco AO, et al. 2022.. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. . Science 376::eabl4896
    [Crossref] [Google Scholar]
  148. 148.
    Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, et al. 2022.. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. . Science 376:(6594):eabl4290
    [Crossref] [Google Scholar]
  149. 149.
    Domínguez Conde C, Xu C, Jarvis LB, Rainbow DB, Wells SB, et al. 2022.. Cross-tissue immune cell analysis reveals tissue-specific features in humans. . Science 376:(6594):eabl5197
    [Crossref] [Google Scholar]
  150. 150.
    Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, et al. 2021.. Cross-tissue organization of the fibroblast lineage. . Nature 593:(7860):57579
    [Crossref] [Google Scholar]
  151. 151.
    Korsunsky I, Wei K, Pohin M, Kim EY, Barone F, et al. 2022.. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. . Medicine 3:(7):481518.e14
    [Crossref] [Google Scholar]
  152. 152.
    Kunes RZ, Walle T, Land M, Nawy T, Pe'er D. 2024.. Supervised discovery of interpretable gene programs from single-cell data. . Nat. Biotechnol. 42::108495
    [Crossref] [Google Scholar]
  153. 153.
    Lotfollahi M, Rybakov S, Hrovatin K, Hediyeh-Zadeh S, Talavera-López C, et al. 2023.. Biologically informed deep learning to query gene programs in single-cell atlases. . Nat. Cell Biol. 25:(2):33750
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105144
Loading
/content/journals/10.1146/annurev-physiol-022724-105144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error