1932

Abstract

For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasmic calcium concentrations [Ca2+] and contraction. Key to this process, known as muscle-based nonshivering thermogenesis (MB-NST), are tiny Ca2+ movements and associated ATP turnover coordinated by the plasma membrane, sarcoplasmic reticulum (SR), and the mitochondria. MB-NST has made mammals with gain-of-function SR ryanodine receptor (RyR) variants vulnerable to excessive heat generation that can be potentially lethal, known as malignant hyperthermia. Studies of RyR variants using recently developed techniques have advanced our understanding of MB-NST.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105205
2025-02-10
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105205.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105205&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wyckelsma VL, Venckunas T, Houweling PJ, Schlittler M, Lauschke VM, et al. 2021.. Loss of alpha-actinin-3 during human evolution provides superior cold resilience and muscle heat generation. . Am. J. Hum. Genet. 108::44657
    [Crossref] [Google Scholar]
  2. 2.
    Lømo T, Eken T, Bekkestad Rein E, Njå A. 2020.. Body temperature control in rats by muscle tone during rest or sleep. . Acta Physiol. 228::e13348
    [Crossref] [Google Scholar]
  3. 3.
    Block BA. 1994.. Thermogenesis in muscle. . Annu. Rev. Physiol. 56::53577
    [Crossref] [Google Scholar]
  4. 4.
    Block BA, O'Brien J, Meissner G. 1994.. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. . J. Cell Biol. 127::127587
    [Crossref] [Google Scholar]
  5. 5.
    Rowland LA, Bal NC, Periasamy M. 2015.. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. . Biol. Rev. Camb. Philos. Soc. 90::127997
    [Crossref] [Google Scholar]
  6. 6.
    Cooke R. 2011.. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. . Biophys. Rev. 3::3345
    [Crossref] [Google Scholar]
  7. 7.
    Kong X, Yao T, Zhou P, Kazak L, Tenen D, et al. 2018.. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. . Cell Metab. 28::63143.e3
    [Crossref] [Google Scholar]
  8. 8.
    Blondin DP, Haman F. 2018.. Shivering and nonshivering thermogenesis in skeletal muscles. . Handb. Clin. Neurol. 156::15373
    [Crossref] [Google Scholar]
  9. 9.
    Aydin J, Shabalina IG, Place N, Reiken S, Zhang SJ, et al. 2008.. Nonshivering thermogenesis protects against defective calcium handling in muscle. . FASEB J. 22::391924
    [Crossref] [Google Scholar]
  10. 10.
    Barclay CJ, Woledge RC, Curtin NA. 2009.. Effects of UCP3 genotype, temperature and muscle type on energy turnover of resting mouse skeletal muscle. . Pflügers Arch. 457::85764
    [Crossref] [Google Scholar]
  11. 11.
    Townsend LK, Wang D, Wright DC, Blondin DP. 2023.. Skeletal muscle, not adipose tissue, mediates cold-induced metabolic benefits. . Nat. Metab. 5::107477
    [Crossref] [Google Scholar]
  12. 12.
    Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, et al. 2012.. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. . Nat. Med. 18::157579
    [Crossref] [Google Scholar]
  13. 13.
    Symonds ME, Aldiss P, Pope M, Budge H. 2018.. Recent advances in our understanding of brown and beige adipose tissue: the good fat that keeps you healthy. . F1000Res 2018::7
    [Google Scholar]
  14. 14.
    Din MU, Raiko J, Saari T, Kudomi N, Tolvanen T, et al. 2016.. Human brown adipose tissue [15O]O2 PET imaging in the presence and absence of cold stimulus. . Eur. J. Nucl. Med. Mol. Imag. 43::187886
    [Crossref] [Google Scholar]
  15. 15.
    Zurlo F, Larson K, Bogardus C, Ravussin E. 1990.. Skeletal muscle metabolism is a major determinant of resting energy expenditure. . J. Clin. Investig. 86::142327
    [Crossref] [Google Scholar]
  16. 16.
    Wilson LN, Gardner JD, Wilson JP, Farnsworth A, Perry ZR, et al. 2024.. Global latitudinal gradients and the evolution of body size in dinosaurs and mammals. . Nat. Commun. 15::2864
    [Crossref] [Google Scholar]
  17. 17.
    Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. 2009.. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. . Cell Metab. 9::2039
    [Crossref] [Google Scholar]
  18. 18.
    Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, et al. 2017.. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. . PNAS 114::798186
    [Crossref] [Google Scholar]
  19. 19.
    Pearce L, Meizoso-Huesca A, Seng C, Lamboley CR, Singh DP, Launikonis BS. 2023.. Ryanodine receptor activity and store-operated Ca2+ entry: critical regulators of Ca2+ content and function in skeletal muscle. . J. Physiol. 601::4183202
    [Crossref] [Google Scholar]
  20. 20.
    Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, et al. 2019.. Proteomics-based comparative mapping of the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. . Cell Metab. 30::96375.e7
    [Crossref] [Google Scholar]
  21. 21.
    Wang HJ, Lee CS, Yee RSZ, Groom L, Friedman I, et al. 2020.. Adaptive thermogenesis enhances the life-threatening response to heat in mice with an Ryr1 mutation. . Nat. Commun. 11::5099
    [Crossref] [Google Scholar]
  22. 22.
    Bruton JD, Aydin J, Yamada T, Shabalina IG, Ivarsson N, et al. 2010.. Increased fatigue resistance linked to Ca2+-stimulated mitochondrial biogenesis in muscle fibers of cold-acclimated mice. . J. Physiol. 588::427588
    [Crossref] [Google Scholar]
  23. 23.
    Ivarsson N, Mattsson CM, Cheng AJ, Bruton JD, Ekblom B, et al. 2019.. SR Ca2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance. . J. Gen. Physiol. 151::56777
    [Crossref] [Google Scholar]
  24. 24.
    Melzer W, Herrmann-Frank A, Luttgau HC. 1995.. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibers. . Biochim. Biophys. Acta 1241::59116
    [Crossref] [Google Scholar]
  25. 25.
    Meizoso-Huesca A, Pearce L, Barclay CJ, Launikonis BS. 2022.. Ca2+ leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle. . PNAS 119::e2119203119
    [Crossref] [Google Scholar]
  26. 26.
    Barclay CJ, Launikonis BS. 2021.. Components of activation heat in skeletal muscle. . J. Muscle Res. Cell Motil. 42::116
    [Crossref] [Google Scholar]
  27. 27.
    Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD. 1999.. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. . Am. J. Physiol. 276::C69299
    [Crossref] [Google Scholar]
  28. 28.
    Norris SM, Bombardier E, Smith IC, Vigna C, Tupling AR. 2010.. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. . Am. J. Physiol. Cell Physiol. 298::C52129
    [Crossref] [Google Scholar]
  29. 29.
    Chinet A, Decrouy A, Even PC. 1992.. Ca2+-dependent heat production under basal and near-basal conditions in the mouse soleus muscle. . J. Physiol. 455::66378
    [Crossref] [Google Scholar]
  30. 30.
    Glancy B, Willis WT, Chess DJ, Balaban RS. 2013.. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. . Biochemistry 52::2793809
    [Crossref] [Google Scholar]
  31. 31.
    Wescott AP, Kao JPY, Lederer WJ, Boyman L. 2019.. Voltage-energized calcium-sensitive ATP production by mitochondria. . Nat. Metab. 1::97584
    [Crossref] [Google Scholar]
  32. 32.
    Place N, Ivarsson N, Venckunas T, Neyroud D, Brazaitis M, et al. 2015.. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. . PNAS 112::1549297
    [Crossref] [Google Scholar]
  33. 33.
    Lamboley CR, Pearce L, Seng C, Meizoso-Huesca A, Singh DP, et al. 2021.. Ryanodine receptor leak triggers fiber Ca2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle. . Sci. Adv. 7::eabi7166
    [Crossref] [Google Scholar]
  34. 34.
    Launikonis BS, Barnes M, Stephenson DG. 2003.. Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. . PNAS 100::294144
    [Crossref] [Google Scholar]
  35. 35.
    Marks AR. 2023.. Targeting ryanodine receptors to treat human diseases. . J. Clin. Investig. 133::e162891
    [Crossref] [Google Scholar]
  36. 36.
    Sanchez C, Berthier C, Tourneur Y, Monteiro L, Allard B, et al. 2021.. Detection of Ca2+ transients near ryanodine receptors by targeting fluorescent Ca2+ sensors to the triad. . J. Gen. Physiol. 153::e202012592
    [Crossref] [Google Scholar]
  37. 37.
    Reddish FN, Miller CL, Deng X, Dong B, Patel AA, et al. 2021.. Rapid subcellular calcium responses and dynamics by calcium sensor G-CatchER+. . iScience 24::102129
    [Crossref] [Google Scholar]
  38. 38.
    Cully TR, Choi RH, Bjorksten AR, Stephenson DG, Murphy RM, Launikonis BS. 2018.. Junctional membrane Ca2+ dynamics in human muscle fibers are altered by malignant hyperthermia causative RyR mutation. . PNAS 115::821520
    [Crossref] [Google Scholar]
  39. 39.
    Soboloff J, Rothberg BS, Madesh M, Gill DL. 2012.. STIM proteins: dynamic calcium signal transducers. . Nat. Rev. Mol. Cell Biol. 13::54965
    [Crossref] [Google Scholar]
  40. 40.
    Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, et al. 2008.. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. . Nat. Cell Biol. 10::68897
    [Crossref] [Google Scholar]
  41. 41.
    Launikonis BS, Rios E. 2007.. Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. . J. Physiol. 583::8197
    [Crossref] [Google Scholar]
  42. 42.
    Collet C, Ma J. 2004.. Calcium-dependent facilitation and graded deactivation of store-operated calcium entry in fetal skeletal muscle. . Biophys. J. 87::26875
    [Crossref] [Google Scholar]
  43. 43.
    Zhang H, Bryson VG, Wang C, Li T, Kerr JP, et al. 2021.. Desmin interacts with STIM1 and coordinates Ca2+ signaling in skeletal muscle. . JCI Insight 6::e143472
    [Crossref] [Google Scholar]
  44. 44.
    Wuytack F, Raeymaekers L, De Smedt H, Eggermont JA, Missiaen L, et al. 1992.. Ca2+-transport ATPases and their regulation in muscle and brain. . Ann. N. Y. Acad. Sci. 671::8291
    [Crossref] [Google Scholar]
  45. 45.
    Brini M, Carafoli E. 2009.. Calcium pumps in health and disease. . Physiol. Rev. 89::134178
    [Crossref] [Google Scholar]
  46. 46.
    Barclay CJ, Launikonis BS. 2022.. A mathematical model to quantify RYR Ca2+ leak and associated heat production in resting human skeletal muscle fibers. . J. Gen. Physiol. 154::e202112994
    [Crossref] [Google Scholar]
  47. 47.
    Rios E. 2010.. RyR1 expression and the cell boundary theorem. . J. Biol. Chem. 285::le13
    [Crossref] [Google Scholar]
  48. 48.
    Balnave CD, Allen DG. 1998.. Evidence for Na+/Ca2+ exchange in intact single skeletal muscle fibers from the mouse. . Am. J. Physiol. 274::C94046
    [Crossref] [Google Scholar]
  49. 49.
    Millour M, Lescaudron L, Kraev A, Levitsky DO. 2003.. Expression of sodium-calcium exchanger genes in heart and skeletal muscle development. Evidence for a role of adjacent cells in regulation of transcription and splicing. . In Signal Transduction and Cardiac Hypertrophy, Progress in Experimental Cardiology, ed. NS Dhalla, LV Hryshko, E Kardami, PK Singal , pp. 10523. Boston:: Kluwer
    [Google Scholar]
  50. 50.
    Koenig X, Choi RH, Launikonis BS. 2018.. Store-operated Ca2+ entry is activated by every action potential in skeletal muscle. . Commun. Biol. 1::31
    [Crossref] [Google Scholar]
  51. 51.
    Koenig X, Choi RH, Schicker K, Singh DP, Hilber K, Launikonis BS. 2019.. Mechanistic insights into store-operated Ca2+ entry during excitation-contraction coupling in skeletal muscle. . Biochim. Biophys. Acta Mol. Cell Res. 1866::123948
    [Crossref] [Google Scholar]
  52. 52.
    Shannon TR, Ginsburg KS, Bers DM. 2002.. Quantitative assessment of the SR Ca2+ leak-load relationship. . Circ. Res. 91::594600
    [Crossref] [Google Scholar]
  53. 53.
    Seng C, Pearce L, Meizoso-Huesca A, Singh DP, Murphy RM, et al. 2022.. Tiny changes in cytoplasmic [Ca2+] cause large changes in mitochondrial Ca2+: What are the triggers and functional implications?. Am. J. Physiol. Cell Physiol. 323::C128589
    [Crossref] [Google Scholar]
  54. 54.
    Lopez JR, Kaura V, Diggle CP, Hopkins PM, Allen PD. 2018.. Malignant hyperthermia, environmental heat stress, and intracellular calcium dysregulation in a mouse model expressing the p.G2435R variant of RYR1. . Br. J. Anaesth. 121::95361
    [Crossref] [Google Scholar]
  55. 55.
    Pan X, Liu J, Nguyen T, Liu C, Sun J, et al. 2013.. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. . Nat. Cell Biol. 15::146472
    [Crossref] [Google Scholar]
  56. 56.
    Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, et al. 2024.. Summer fades, deer change: photoperiodic control of cellular seasonal acclimatization of skeletal muscle. . iScience 27::108619
    [Crossref] [Google Scholar]
  57. 57.
    Inesi G, de Meis L. 1989.. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. . J. Biol. Chem. 264::592936
    [Crossref] [Google Scholar]
  58. 58.
    Dalton KA, Pilot JD, Mall S, East JM, Lee AG. 1999.. Anionic phospholipids decrease the rate of slippage on the Ca2+-ATPase of sarcoplasmic reticulum. . Biochem. J. 342:(Part 2):43138
    [Crossref] [Google Scholar]
  59. 59.
    Macdonald WA, Stephenson DG. 2001.. Effects of ADP on sarcoplasmic reticulum function in mechanically skinned skeletal muscle fibers of the rat. . J. Physiol. 532::499508
    [Crossref] [Google Scholar]
  60. 60.
    Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Rios E. 2006.. Depletion “skraps” and dynamic buffering inside the cellular calcium store. . PNAS 103::298287
    [Crossref] [Google Scholar]
  61. 61.
    Odermatt A, Becker S, Khanna VK, Kurzydlowski K, Leisner E, et al. 1998.. Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. . J. Biol. Chem. 273::1236069
    [Crossref] [Google Scholar]
  62. 62.
    Valentim MA, Brahmbhatt AN, Tupling AR. 2022.. Skeletal and cardiac muscle calcium transport regulation in health and disease. . Biosci. Rep. 42::BSR20211997
    [Crossref] [Google Scholar]
  63. 63.
    Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, et al. 2016.. Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. . Sci. Signal. 9::ra119
    [Crossref] [Google Scholar]
  64. 64.
    Verkerke ARP, Ferrara PJ, Lin CT, Johnson JM, Ryan TE, et al. 2019.. Phospholipid methylation regulates muscle metabolic rate through Ca2+ transport efficiency. . Nat. Metab. 1::87685
    [Crossref] [Google Scholar]
  65. 65.
    Arai S, Lee SC, Zhai D, Suzuki M, Chang YT. 2014.. A molecular fluorescent probe for targeted visualization of temperature at the endoplasmic reticulum. . Sci. Rep. 4::6701
    [Crossref] [Google Scholar]
  66. 66.
    Schiaffino S, Reggiani C. 2011.. Fiber types in mammalian skeletal muscles. . Physiol. Rev. 91::1447531
    [Crossref] [Google Scholar]
  67. 67.
    Lamboley CR, Murphy RM, McKenna MJ, Lamb GD. 2014.. Sarcoplasmic reticulum Ca2+ uptake and leak properties and SERCA isoform expression in type I and type II fibers of human skeletal muscle. . J. Physiol. 592::138195
    [Crossref] [Google Scholar]
  68. 68.
    Baylor SM, Hollingworth S. 2003.. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibers of mouse muscle. . J. Physiol. 551::12538
    [Crossref] [Google Scholar]
  69. 69.
    Murphy RM, Larkins NT, Mollica JP, Beard NA, Lamb GD. 2009.. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibers of rat. . J. Physiol. 587::44360
    [Crossref] [Google Scholar]
  70. 70.
    Gailly P, Boland B, Himpens B, Casteels R, Gillis JM. 1993.. Critical evaluation of cytosolic calcium determination in resting muscle fibers from normal and dystrophic (mdx) mice. . Cell Calcium 14::47383
    [Crossref] [Google Scholar]
  71. 71.
    Shaikh SA, Sahoo SK, Periasamy M. 2016.. Phospholamban and sarcolipin: Are they functionally redundant or distinct regulators of the Sarco(Endo)Plasmic Reticulum Calcium ATPase?. J. Mol. Cell. Cardiol. 91::8191
    [Crossref] [Google Scholar]
  72. 72.
    Stokes DL. 1997.. Keeping calcium in its place: Ca2+-ATPase and phospholamban. . Curr. Opin. Struct. Biol. 7::55056
    [Crossref] [Google Scholar]
  73. 73.
    Glaves JP, Primeau JO, Espinoza-Fonseca LM, Lemieux MJ, Young HS. 2019.. The phospholamban pentamer alters function of the sarcoplasmic reticulum calcium pump SERCA. . Biophys. J. 116::63347
    [Crossref] [Google Scholar]
  74. 74.
    Fajardo VA, Bombardier E, Vigna C, Devji T, Bloemberg D, et al. 2013.. Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. . PLOS ONE 8::e84304
    [Crossref] [Google Scholar]
  75. 75.
    Oyama K, Zeeb V, Yamazawa T, Kurebayashi N, Kobirumaki-Shimozawa F, et al. 2022.. Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating. . PNAS 119::e2201286119
    [Crossref] [Google Scholar]
  76. 76.
    Tsuboi Y, Oyama K, Kobirumaki-Shimozawa F, Murayama T, Kurebayashi N, et al. 2022.. Mice with R2509C-RYR1 mutation exhibit dysfunctional Ca2+ dynamics in primary skeletal myocytes. . J. Gen. Physiol. 154::e202213136
    [Crossref] [Google Scholar]
  77. 77.
    Singh DP, Pearce L, Choi RH, Meizoso-Huesca A, Wette SG, et al. 2023.. Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals. . PNAS 120::e2117503120
    [Crossref] [Google Scholar]
  78. 78.
    Rafael Lopez J, Kaura V, Hopkins P, Liu X, Uryach A, et al. 2020.. Transient receptor potential cation channels and calcium dyshomeostasis in a mouse model relevant to malignant hyperthermia. . Anesthesiology 133::36476
    [Crossref] [Google Scholar]
  79. 79.
    Feng W, Lopez JR, Antrobus S, Zheng J, Uryash A, et al. 2023.. Putative malignant hyperthermia mutation CaV1.1-R174W is insufficient to trigger a fulminant response to halothane or confer heat stress intolerance. . J. Biol. Chem. 299::104992
    [Crossref] [Google Scholar]
  80. 80.
    Monnier N, Procaccio V, Stieglitz P, Lunardi J. 1997.. Malignant-hyperthermia susceptibility is associated with a mutation of the a1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. . Am. J. Hum. Genet. 60::131625
    [Crossref] [Google Scholar]
  81. 81.
    Michelucci A, Paolini C, Canato M, Wei-Lapierre L, Pietrangelo L, et al. 2015.. Antioxidants protect calsequestrin-1 knockout mice from halothane- and heat-induced sudden death. . Anesthesiology 123::60317
    [Crossref] [Google Scholar]
  82. 82.
    Eisner D, Neher E, Taschenberger H, Smith G. 2023.. Physiology of intracellular calcium buffering. . Physiol. Rev. 103::2767845
    [Crossref] [Google Scholar]
  83. 83.
    Hopkins PM, Gupta PK, Bilmen JG. 2018.. Malignant hyperthermia. . Handb. Clin. Neurol. 157::64561
    [Crossref] [Google Scholar]
  84. 84.
    Posterino GS, Lamb GD. 2003.. Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibers. . J. Physiol. 551::21937
    [Crossref] [Google Scholar]
  85. 85.
    Bakker AJ, Cully TR, Wingate CD, Barclay CJ, Launikonis BS. 2017.. Doublet stimulation increases Ca2+ binding to troponin C to ensure rapid force development in skeletal muscle. . J. Gen. Physiol. 149::32334
    [Crossref] [Google Scholar]
  86. 86.
    Barclay CJ. 2012.. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles. . J. Physiol. 590::6199212
    [Crossref] [Google Scholar]
  87. 87.
    Endo M, Tanaka M, Ogawa Y. 1970.. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibers. . Nature 228::3436
    [Crossref] [Google Scholar]
  88. 88.
    Bers DM. 2002.. Cardiac excitation-contraction coupling. . Nature 415::198205
    [Crossref] [Google Scholar]
  89. 89.
    Lea TJ, Ashley CC. 1990.. Ca2+ release from the sarcoplasmic reticulum of barnacle myofibrillar bundles initiated by photolysis of caged Ca2+. . J. Physiol. 427::43553
    [Crossref] [Google Scholar]
  90. 90.
    Shirokova N, Garcia J, Rios E. 1998.. Local calcium release in mammalian skeletal muscle. . J. Physiol. 512:(Part 2):37784
    [Crossref] [Google Scholar]
  91. 91.
    Meissner G. 2017.. The structural basis of ryanodine receptor ion channel function. . J. Gen. Physiol. 149::106589
    [Crossref] [Google Scholar]
  92. 92.
    Block BA, Franzini-Armstrong C. 1988.. The structure of the membrane systems in a novel muscle cell modified for heat production. . J. Cell Biol. 107::1099112
    [Crossref] [Google Scholar]
  93. 93.
    Morrissette JM, Franck JP, Block BA. 2003.. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). . J. Exp. Biol. 206::80512
    [Crossref] [Google Scholar]
  94. 94.
    O'Brien J, Block BA. 1996.. Effects of Ca2+ on oxidative phosphorylation in mitochondria from the thermogenic organ of marlin. . J. Exp. Biol. 199::267987
    [Crossref] [Google Scholar]
  95. 95.
    Nelson FE, Hollingworth S, Rome LC, Baylor SM. 2014.. Intracellular calcium movements during relaxation and recovery of superfast muscle fibers of the toadfish swimbladder. . J. Gen. Physiol. 143::60520
    [Crossref] [Google Scholar]
  96. 96.
    Rome LC, Klimov AA, Young IS. 1999.. A new approach for measuring real-time calcium pumping and SR function in muscle fibers. . Biol. Bull. 197::22728
    [Crossref] [Google Scholar]
  97. 97.
    Kim DH, Sreter FA, Ohnishi ST, Ryan JF, Roberts J, et al. 1984.. Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. . Biochim. Biophys. Acta 775::32027
    [Crossref] [Google Scholar]
  98. 98.
    Gronert GA, Theye RA. 1976.. Halothane-induced porcine malignant hyperthermia: metabolic and hemodynamic changes. . Anesthesiology 44::3643
    [Crossref] [Google Scholar]
  99. 99.
    Valberg SJ. 2018.. Muscle conditions affecting sport horses. . Vet. Clin. North Am. Equine Pract. 34::25376
    [Crossref] [Google Scholar]
  100. 100.
    Wang D, Townsend LK, DesOrmeaux GJ, Frangos SM, Batchuluun B, et al. 2023.. GDF15 promotes weight loss by enhancing energy expenditure in muscle. . Nature 619::14350
    [Crossref] [Google Scholar]
  101. 101.
    Bidwell PA, Yuen SL, Li J, Berg K, Rebbeck RT, et al. 2022.. A large-scale high-throughput screen for modulators of SERCA activity. . Biomolecules 12::1789
    [Crossref] [Google Scholar]
  102. 102.
    Cully TR, Murphy RM, Roberts L, Raastad T, Fassett RG, et al. 2017.. Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise. . Nat. Commun. 8::14266
    [Crossref] [Google Scholar]
  103. 103.
    Rebbeck RT, Singh DP, Janicek KA, Bers DM, Thomas DD, et al. 2020.. RyR1-targeted drug discovery pipeline integrating FRET-based high-throughput screening and human myofiber dynamic Ca2+ assays. . Sci. Rep. 10::1791
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105205
Loading
/content/journals/10.1146/annurev-physiol-022724-105205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error