1932

Abstract

Store-operated Ca2+ entry (SOCE) is a widespread mechanism of cellular Ca2+ signaling that arises from Ca2+ influx across the plasma membrane through the Orai family of calcium channels in response to depletion of intracellular Ca2+ stores. Orai channels are a crucial Ca2+ entry mechanism in both neurons and glia and are activated by a unique inside-out gating process involving interactions with the endoplasmic reticulum Ca2+ sensors, STIM1 and STIM2. Recent evidence indicates that SOCE is broadly found across all areas of the nervous system where its physiology and pathophysiology is only now beginning to be understood. Here, we review the growing literature on the mechanisms of SOCE in the nervous system and contributions to gene expression, neuronal excitability, synaptic plasticity, and behavior. We also explore the burgeoning links between SOCE and neurological disease and discuss therapeutic implications of targeting SOCE for brain disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105330
2025-02-10
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105330.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105330&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Prakriya M, Lewis RS. 2015.. Store-operated calcium channels. . Physiol. Rev. 95::1383436
    [Crossref] [Google Scholar]
  2. 2.
    Emrich SM, Yoast RE, Trebak M. 2022.. Physiological functions of CRAC channels. . Annu. Rev. Physiol. 84::35579
    [Crossref] [Google Scholar]
  3. 3.
    Putney JW. 2009.. Capacitative calcium entry: from concept to molecules. . Immunol. Rev. 231::1022
    [Crossref] [Google Scholar]
  4. 4.
    Putney JW Jr. 1977.. Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. . J. Physiol. 268::13949
    [Crossref] [Google Scholar]
  5. 5.
    Casteels R, Droogmans G. 1981.. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. . J. Physiol. 317::26379
    [Crossref] [Google Scholar]
  6. 6.
    Putney JW Jr. 1986.. A model for receptor-regulated calcium entry. . Cell Calcium 7::112
    [Crossref] [Google Scholar]
  7. 7.
    Putney JW Jr. 1990.. Capacitative calcium entry revisited. . Cell Calcium 11::61124
    [Crossref] [Google Scholar]
  8. 8.
    Takemura H, Hughes AR, Thastrup O, Putney JW Jr. 1989.. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. . J. Biol. Chem. 264::1226671
    [Crossref] [Google Scholar]
  9. 9.
    Hoth M, Penner R. 1992.. Depletion of intracellular calcium stores activates a calcium current in mast cells. . Nature 355::35356
    [Crossref] [Google Scholar]
  10. 10.
    Zweifach A, Lewis RS. 1993.. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. . PNAS 90::629599
    [Crossref] [Google Scholar]
  11. 11.
    Lewis RS, Cahalan MD. 1989.. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. . Cell Regul. 1::99112
    [Crossref] [Google Scholar]
  12. 12.
    Takemura H, Ohshika H, Yokosawa N, Oguma K, Thastrup O. 1991.. The thapsigargin-sensitive intracellular Ca2+ pool is more important in plasma membrane Ca2+ entry than the IP3-sensitive intracellular Ca2+ pool in neuronal cell lines. . Biochem. Biophys. Res. Commun. 180::151826
    [Crossref] [Google Scholar]
  13. 13.
    Grudt TJ, Usowicz MM, Henderson G. 1996.. Ca2+ entry following store depletion in SH-SY5Y neuroblastoma cells. . Brain Res. Mol. Brain Res. 36::93100
    [Crossref] [Google Scholar]
  14. 14.
    Fomina AF, Nowycky MC. 1999.. A current activated on depletion of intracellular Ca2+ stores can regulate exocytosis in adrenal chromaffin cells. . J. Neurosci. 19::371122
    [Crossref] [Google Scholar]
  15. 15.
    Usachev YM, Thayer SA. 1999.. Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine-sensitive Ca2+ stores. . J. Physiol. 519:(Part 1):11530
    [Crossref] [Google Scholar]
  16. 16.
    Pizzo P, Burgo A, Pozzan T, Fasolato C. 2001.. Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. . J. Neurochem. 79::98109
    [Crossref] [Google Scholar]
  17. 17.
    Lo KJ, Luk HN, Chin TY, Chueh SH. 2002.. Store depletion-induced calcium influx in rat cerebellar astrocytes. . Br. J. Pharmacol. 135::138392
    [Crossref] [Google Scholar]
  18. 18.
    Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, et al. 2005.. STIM1, an essential and conserved component of store-operated Ca2+ channel function. . J. Cell Biol. 169::43545
    [Crossref] [Google Scholar]
  19. 19.
    Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, et al. 2005.. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. . Nature 437::9025
    [Crossref] [Google Scholar]
  20. 20.
    Liou J, Kim ML, Heo WD, Jones JT, Myers JW, et al. 2005.. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. . Curr. Biol. 15::123541
    [Crossref] [Google Scholar]
  21. 21.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, et al. 2006.. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. . Nature 441::17985
    [Crossref] [Google Scholar]
  22. 22.
    Feske S, Prakriya M, Rao A, Lewis RS. 2005.. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. . J. Exp. Med. 202::65162
    [Crossref] [Google Scholar]
  23. 23.
    Lewis RS. 2001.. Calcium signaling mechanisms in T lymphocytes. . Annu. Rev. Immunol. 19::497521
    [Crossref] [Google Scholar]
  24. 24.
    Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, et al. 2006.. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. . PNAS 103::935762
    [Crossref] [Google Scholar]
  25. 25.
    Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, et al. 2006.. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. . Science 312::122023
    [Crossref] [Google Scholar]
  26. 26.
    Vig M, Beck A, Billingsley JM, Lis A, Parvez S, et al. 2006.. CRACM1 multimers form the ion-selective pore of the CRAC channel. . Curr. Biol. 16::207379
    [Crossref] [Google Scholar]
  27. 27.
    Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. 2006.. Orai1 is an essential pore subunit of the CRAC channel. . Nature 443::23033
    [Crossref] [Google Scholar]
  28. 28.
    Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. 2006.. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. . Nature 443::22629
    [Crossref] [Google Scholar]
  29. 29.
    McNally BA, Yamashita M, Engh A, Prakriya M. 2009.. Structural determinants of ion permeation in CRAC channels. . PNAS 106::2251621
    [Crossref] [Google Scholar]
  30. 30.
    Derler I, Fahrner M, Carugo O, Muik M, Bergsmann J, et al. 2009.. Increased hydrophobicity at the N terminus/membrane interface impairs gating of the severe combined immunodeficiency-related ORAI1 mutant. . J. Biol. Chem. 284::1590315
    [Crossref] [Google Scholar]
  31. 31.
    Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, et al. 2009.. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. . Cell 136::87690
    [Crossref] [Google Scholar]
  32. 32.
    Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S. 2009.. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. . Nat. Cell Biol. 11::33743
    [Crossref] [Google Scholar]
  33. 33.
    Shim AH, Tirado-Lee L, Prakriya M. 2015.. Structural and functional mechanisms of CRAC channel regulation. . J. Mol. Biol. 427::77931
    [Crossref] [Google Scholar]
  34. 34.
    Fahrner M, Muik M, Schindl R, Butorac C, Stathopulos P, et al. 2014.. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1 (STIM1). . J. Biol. Chem. 289::3323144
    [Crossref] [Google Scholar]
  35. 35.
    van Dorp S, Qiu R, Choi UB, Wu MM, Yen M, et al. 2021.. Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1. . eLife 10::e66194
    [Crossref] [Google Scholar]
  36. 36.
    Hirve N, Rajanikanth V, Hogan PG, Gudlur A. 2018.. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm. . Cell Rep. 22::7283
    [Crossref] [Google Scholar]
  37. 37.
    Wu MM, Luik RM, Lewis RS. 2007.. Some assembly required: constructing the elementary units of store-operated Ca2+ entry. . Cell Calcium 42::16372
    [Crossref] [Google Scholar]
  38. 38.
    Hou X, Pedi L, Diver MM, Long SB. 2012.. Crystal structure of the calcium release-activated calcium channel Orai. . Science 338::130813
    [Crossref] [Google Scholar]
  39. 39.
    Yamashita M, Navarro-Borelly L, McNally BA, Prakriya M. 2007.. Orai1 mutations alter ion permeation and Ca2+-dependent fast inactivation of CRAC channels: evidence for coupling of permeation and gating. . J. Gen. Physiol. 130::52540
    [Crossref] [Google Scholar]
  40. 40.
    Yamashita M, Yeung PS, Ing CE, McNally BA, Pomes R, Prakriya M. 2017.. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate. . Nat. Commun. 8::14512
    [Crossref] [Google Scholar]
  41. 41.
    Yeung PS, Yamashita M, Prakriya M. 2020.. Molecular basis of allosteric Orai1 channel activation by STIM1. . J. Physiol. 598::170723
    [Crossref] [Google Scholar]
  42. 42.
    Hou X, Outhwaite IR, Pedi L, Long SB. 2020.. Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation. . eLife 9::e62772
    [Crossref] [Google Scholar]
  43. 43.
    Yamashita M, Ing CE, Yeung PS, Maneshi MM, Pomes R, Prakriya M. 2020.. The basic residues in the Orai1 channel inner pore promote opening of the outer hydrophobic gate. . J. Gen. Physiol. 152::e201912397
    [Crossref] [Google Scholar]
  44. 44.
    Yamashita M, Prakriya M. 2014.. Divergence of Ca2+ selectivity and equilibrium Ca2+ blockade in a Ca2+ release-activated Ca2+ channel. . J. Gen. Physiol. 143::32543
    [Crossref] [Google Scholar]
  45. 45.
    Stathopulos PB, Zheng L, Ikura M. 2009.. Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. . J. Biol. Chem. 284::72832
    [Crossref] [Google Scholar]
  46. 46.
    Brandman O, Liou J, Park WS, Meyer T. 2007.. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. . Cell 131::132739
    [Crossref] [Google Scholar]
  47. 47.
    Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J. 2009.. Immunolocalization of STIM1 in the mouse brain. . Acta Neurobiol. Exp. 69::41328
    [Crossref] [Google Scholar]
  48. 48.
    Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, et al. 2014.. STIM1 controls neuronal Ca2+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. . Neuron 82::63544
    [Crossref] [Google Scholar]
  49. 49.
    Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, et al. 2020.. An atlas of the protein-coding genes in the human, pig, and mouse brain. . Science 367::eaay5947
    [Crossref] [Google Scholar]
  50. 50.
    Ramesh G, Jarzembowski L, Schwarz Y, Poth V, Konrad M, et al. 2021.. A short isoform of STIM1 confers frequency-dependent synaptic enhancement. . Cell Rep. 34::108844
    [Crossref] [Google Scholar]
  51. 51.
    Wegierski T, Kuznicki J. 2018.. Neuronal calcium signaling via store-operated channels in health and disease. . Cell Calcium 74::10211
    [Crossref] [Google Scholar]
  52. 52.
    Courjaret R, Prakriya M, Machaca K. 2024.. SOCE as a regulator of neuronal activity. . J. Physiol. 602::144962
    [Crossref] [Google Scholar]
  53. 53.
    Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, et al. 2011.. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. . Exp. Neurol. 232::18594
    [Crossref] [Google Scholar]
  54. 54.
    Darbellay B, Arnaudeau S, Bader CR, Konig S, Bernheim L. 2011.. STIM1L is a new actin-binding splice variant involved in fast repetitive Ca2+ release. . J. Cell Biol. 194::33546
    [Crossref] [Google Scholar]
  55. 55.
    Knapp ML, Alansary D, Poth V, Forderer K, Sommer F, et al. 2022.. A longer isoform of Stim1 is a negative SOCE regulator but increases cAMP-modulated NFAT signaling. . EMBO Rep. 23::e53135
    [Crossref] [Google Scholar]
  56. 56.
    Miederer AM, Alansary D, Schwar G, Lee PH, Jung M, et al. 2015.. A STIM2 splice variant negatively regulates store-operated calcium entry. . Nat. Commun. 6::6899
    [Crossref] [Google Scholar]
  57. 57.
    Rana A, Yen M, Sadaghiani AM, Malmersjo S, Park CY, et al. 2015.. Alternative splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. . J. Cell Biol. 209::65369
    [Crossref] [Google Scholar]
  58. 58.
    Poth V, Do HTT, Förderer K, Tschernig T, Alansary D, et al. 2023.. A better brain? Alternative spliced STIM2 in hominoids arises with synapse formation and creates a gain-of-function variant. . bioRxiv 525873. https://doi.org/10.1101/2023.01.27.525873
  59. 59.
    Somasundaram A, Shum AK, McBride HJ, Kessler JA, Feske S, et al. 2014.. Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. . J. Neurosci. 34::910723
    [Crossref] [Google Scholar]
  60. 60.
    Toth AB, Hori K, Novakovic MM, Bernstein NG, Lambot L, Prakriya M. 2019.. CRAC channels regulate astrocyte Ca2+ signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. . Sci. Signal. 12::eaaw5450
    [Crossref] [Google Scholar]
  61. 61.
    Tsujikawa S, DeMeulenaere KE, Centeno MV, Ghazisaeidi S, Martin ME, et al. 2023.. Regulation of neuropathic pain by microglial Orai1 channels. . Sci. Adv. 9::eade7002
    [Crossref] [Google Scholar]
  62. 62.
    Gao X, Xia J, Munoz FM, Manners MT, Pan R, et al. 2016.. STIMs and Orai1 regulate cytokine production in spinal astrocytes. . J. Neuroinflamm. 13::126
    [Crossref] [Google Scholar]
  63. 63.
    Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, et al. 2020.. Orai1 channels are essential for amplification of glutamate-evoked Ca2+ signals in dendritic spines to regulate working and associative memory. . Cell Rep. 33::108464
    [Crossref] [Google Scholar]
  64. 64.
    Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. 2015.. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. . Glia 63::65263
    [Crossref] [Google Scholar]
  65. 65.
    Vaeth M, Yang J, Yamashita M, Zee I, Eckstein M, et al. 2017.. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. . Nat. Commun. 8::14714
    [Crossref] [Google Scholar]
  66. 66.
    Tsvilovskyy V, Solis-Lopez A, Schumacher D, Medert R, Roers A, et al. 2018.. Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. . Cell Calcium 71::2433
    [Crossref] [Google Scholar]
  67. 67.
    Emrich SM, Yoast RE, Zhang X, Fike AJ, Wang YH, et al. 2023.. Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells. . eLife 12::e84708
    [Crossref] [Google Scholar]
  68. 68.
    Yoast RE, Emrich SM, Zhang X, Xin P, Johnson MT, et al. 2020.. The native ORAI channel trio underlies the diversity of Ca2+ signaling events. . Nat. Commun. 11::2444
    [Crossref] [Google Scholar]
  69. 69.
    Chen-Engerer HJ, Hartmann J, Karl RM, Yang J, Feske S, Konnerth A. 2019.. Two types of functionally distinct Ca2+ stores in hippocampal neurons. . Nat. Commun. 10::3223
    [Crossref] [Google Scholar]
  70. 70.
    Guzman R, Valente EG, Pretorius J, Pacheco E, Qi M, et al. 2014.. Expression of ORAII, a plasma membrane resident subunit of the CRAC channel, in rodent and non-rodent species. . J. Histochem. Cytochem. 62::86478
    [Crossref] [Google Scholar]
  71. 71.
    Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, et al. 2016.. Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer's disease treatment. . J. Neurosci. 36::1183750
    [Crossref] [Google Scholar]
  72. 72.
    Wei D, Mei Y, Xia J, Hu H. 2017.. Orai1 and Orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons. . Front. Cell. Neurosci. 11::400
    [Crossref] [Google Scholar]
  73. 73.
    Fukushima M, Tomita T, Janoshazi A, Putney JW. 2012.. Alternative translation initiation gives rise to two isoforms of Orai1 with distinct plasma membrane mobilities. . J. Cell Sci. 125::435461
    [Google Scholar]
  74. 74.
    Zhang X, Pathak T, Yoast R, Emrich S, Xin P, et al. 2019.. A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. . Nat. Commun. 10::1971
    [Crossref] [Google Scholar]
  75. 75.
    Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, et al. 2017.. Contacts between the endoplasmic reticulum and other membranes in neurons. . PNAS 114::E485967
    [Google Scholar]
  76. 76.
    Guillen-Samander A, De Camilli P. 2023.. Endoplasmic reticulum membrane contact sites, lipid transport, and neurodegeneration. . Cold Spring Harb. Perspect. Biol. 15::a041257
    [Crossref] [Google Scholar]
  77. 77.
    Chen YJ, Quintanilla CG, Liou J. 2019.. Recent insights into mammalian ER-PM junctions. . Curr. Opin. Cell Biol. 57::99105
    [Crossref] [Google Scholar]
  78. 78.
    Dixon RE, Trimmer JS. 2023.. Endoplasmic reticulum-plasma membrane junctions as sites of depolarization-induced Ca2+ signaling in excitable cells. . Annu. Rev. Physiol. 85::21743
    [Crossref] [Google Scholar]
  79. 79.
    Golovina VA. 2005.. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. . J. Physiol. 564::73749
    [Crossref] [Google Scholar]
  80. 80.
    Luik RM, Wu MM, Buchanan J, Lewis RS. 2006.. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. . J. Cell. Biol. 174::81525
    [Crossref] [Google Scholar]
  81. 81.
    Petersen OH, Courjaret R, Machaca K. 2017.. Ca2+ tunnelling through the ER lumen as a mechanism for delivering Ca2+ entering via store-operated Ca2+channels to specific target sites. . J. Physiol. 595::29993014
    [Crossref] [Google Scholar]
  82. 82.
    Courjaret R, Dib M, Machaca K. 2018.. Spatially restricted subcellular Ca2+ signaling downstream of store-operated calcium entry encoded by a cortical tunneling mechanism. . Sci. Rep. 8::11214
    [Crossref] [Google Scholar]
  83. 83.
    Courjaret R, Machaca K. 2014.. Mid-range Ca2+ signalling mediated by functional coupling between store-operated Ca2+ entry and IP3-dependent Ca2+ release. . Nat. Commun. 5::3916
    [Crossref] [Google Scholar]
  84. 84.
    Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS. 1994.. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. . PNAS 91::751014
    [Crossref] [Google Scholar]
  85. 85.
    Spacek J, Harris KM. 1997.. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. . J. Neurosci. 17::190203
    [Crossref] [Google Scholar]
  86. 86.
    Korkotian E, Segal M. 1998.. Fast confocal imaging of calcium released from stores in dendritic spines. . Eur. J. Neurosci. 10::207684
    [Crossref] [Google Scholar]
  87. 87.
    Hogan PG, Chen L, Nardone J, Rao A. 2003.. Transcriptional regulation by calcium, calcineurin, and NFAT. . Genes Dev. 17::220532
    [Crossref] [Google Scholar]
  88. 88.
    Kar P, Lin YP, Bhardwaj R, Tucker CJ, Bird GS, et al. 2021.. The N terminus of Orai1 couples to the AKAP79 signaling complex to drive NFAT1 activation by local Ca2+ entry. . PNAS 118::e2012908118
    [Crossref] [Google Scholar]
  89. 89.
    Novakovic MM, Korshunov KS, Grant RA, Martin ME, Valencia HA, et al. 2023.. Astrocyte reactivity and inflammation-induced depression-like behaviors are regulated by Orai1 calcium channels. . Nat. Commun. 14::5500
    [Crossref] [Google Scholar]
  90. 90.
    Mitra R, Richhariya S, Hasan G. 2024.. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. . eLife 12::e88808
    [Crossref] [Google Scholar]
  91. 91.
    Lalonde J, Saia G, Gill G. 2014.. Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. . Sci. Signal. 7::ra51
    [Crossref] [Google Scholar]
  92. 92.
    Park CY, Shcheglovitov A, Dolmetsch R. 2010.. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. . Science 330::1015
    [Crossref] [Google Scholar]
  93. 93.
    Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, et al. 2010.. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. . Science 330::1059
    [Crossref] [Google Scholar]
  94. 94.
    Dittmer PJ, Wild AR, Dell'Acqua ML, Sather WA. 2017.. STIM1 Ca2+ sensor control of L-type Ca2+-channel-dependent dendritic spine structural plasticity and nuclear signaling. . Cell Rep. 19::32134
    [Crossref] [Google Scholar]
  95. 95.
    Bean BP. 2007.. The action potential in mammalian central neurons. . Nat. Rev. Neurosci. 8::45165
    [Crossref] [Google Scholar]
  96. 96.
    Venkiteswaran G, Hasan G. 2009.. Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. . PNAS 106::1032631
    [Crossref] [Google Scholar]
  97. 97.
    Sharma A, Hasan G. 2020.. Modulation of flight and feeding behaviours requires presynaptic IP3Rs in dopaminergic neurons. . eLife 9::e62297
    [Crossref] [Google Scholar]
  98. 98.
    Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. 2017.. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons. . Sci. Rep. 7::42586
    [Crossref] [Google Scholar]
  99. 99.
    Jayakumar S, Richhariya S, Deb BK, Hasan G. 2018.. A multicomponent neuronal response encodes the larval decision to pupariate upon amino acid starvation. . J. Neurosci. 38::1020219
    [Crossref] [Google Scholar]
  100. 100.
    Hori K, Tsujikawa S, Novakovic MM, Yamashita M, Prakriya M. 2020.. Regulation of chemoconvulsant-induced seizures by store-operated Orai1 channels. . J. Physiol. 598::5391409
    [Crossref] [Google Scholar]
  101. 101.
    Dou Y, Xia J, Gao R, Gao X, Munoz FM, et al. 2018.. Orai1 plays a crucial role in central sensitization by modulating neuronal excitability. . J. Neurosci. 38::887900
    [Crossref] [Google Scholar]
  102. 102.
    Ryu C, Jang DC, Jung D, Kim YG, Shim HG, et al. 2017.. STIM1 regulates somatic Ca2+ signals and intrinsic firing properties of cerebellar Purkinje neurons. . J. Neurosci. 37::887694
    [Crossref] [Google Scholar]
  103. 103.
    Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. 2018.. Molecular mechanisms of fast neurotransmitter release. . Annu. Rev. Biophys. 47::46997
    [Crossref] [Google Scholar]
  104. 104.
    Emptage NJ, Reid CA, Fine A. 2001.. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. . Neuron 29::197208
    [Crossref] [Google Scholar]
  105. 105.
    Savic N, Sciancalepore M. 1998.. Intracellular calcium stores modulate miniature GABA-mediated synaptic currents in neonatal rat hippocampal neurons. . Eur. J. Neurosci. 10::337986
    [Crossref] [Google Scholar]
  106. 106.
    Korkotian E, Oni-Biton E, Segal M. 2017.. The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity. . J. Physiol. 595::12540
    [Crossref] [Google Scholar]
  107. 107.
    Chanaday NL, Nosyreva E, Shin OH, Zhang H, Aklan I, et al. 2021.. Presynaptic store-operated Ca2+ entry drives excitatory spontaneous neurotransmission and augments endoplasmic reticulum stress. . Neuron 109::131432.e5
    [Crossref] [Google Scholar]
  108. 108.
    Majewski Ł, Maciąg F, Boguszewski PM, Wasilewska I, Wiera G, et al. 2017.. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression. . Biochim. Biophys. Acta Mol. Cell Res. 1864::107187
    [Crossref] [Google Scholar]
  109. 109.
    Lynch MA. 2004.. Long-term potentiation and memory. . Physiol. Rev. 84::87136
    [Crossref] [Google Scholar]
  110. 110.
    Herring BE, Nicoll RA. 2016.. Long-term potentiation: from CaMKII to AMPA receptor trafficking. . Annu. Rev. Physiol. 78::35165
    [Crossref] [Google Scholar]
  111. 111.
    Lisman J, Yasuda R, Raghavachari S. 2012.. Mechanisms of CaMKII action in long-term potentiation. . Nat. Rev. Neurosci. 13::16982
    [Crossref] [Google Scholar]
  112. 112.
    Coultrap SJ, Bayer KU. 2012.. CaMKII regulation in information processing and storage. . Trends Neurosci. 35::60718
    [Crossref] [Google Scholar]
  113. 113.
    Emptage N, Bliss TV, Fine A. 1999.. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. . Neuron 22::11524
    [Crossref] [Google Scholar]
  114. 114.
    Alford S, Frenguelli BG, Schofield JG, Collingridge GL. 1993.. Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. . J. Physiol. 469::693716
    [Crossref] [Google Scholar]
  115. 115.
    Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, et al. 2003.. Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. . J. Neurosci. 23::773741
    [Crossref] [Google Scholar]
  116. 116.
    Labonne JD, Lee KH, Iwase S, Kong IK, Diamond MP, et al. 2016.. An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. . Hum. Genet. 135::75771
    [Crossref] [Google Scholar]
  117. 117.
    Michelucci A, Garcia-Castaneda M, Boncompagni S, Dirksen RT. 2018.. Role of STIM1/ORAI1-mediated store-operated Ca2+ entry in skeletal muscle physiology and disease. . Cell Calcium 76::10115
    [Crossref] [Google Scholar]
  118. 118.
    Tshuva RY, Korkotian E, Segal M. 2017.. ORAI1-dependent synaptic plasticity in rat hippocampal neurons. . Neurobiol. Learn. Mem. 140::110
    [Crossref] [Google Scholar]
  119. 119.
    Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, et al. 2014.. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. . Neuron 82::7993
    [Crossref] [Google Scholar]
  120. 120.
    Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, et al. 2015.. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer's disease. . J. Neurosci. 35::1327586
    [Crossref] [Google Scholar]
  121. 121.
    Garcia-Alvarez G, Lu B, Yap KA, Wong LC, Thevathasan JV, et al. 2015.. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. . Mol. Biol. Cell 26::114159
    [Crossref] [Google Scholar]
  122. 122.
    Garcia-Alvarez G, Shetty MS, Lu B, Yap KA, Oh-Hora M, et al. 2015.. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. . Front. Behav. Neurosci. 9::180
    [Crossref] [Google Scholar]
  123. 123.
    Yap KA, Shetty MS, Garcia-Alvarez G, Lu B, Alagappan D, et al. 2017.. STIM2 regulates AMPA receptor trafficking and plasticity at hippocampal synapses. . Neurobiol. Learn. Mem. 138::5461
    [Crossref] [Google Scholar]
  124. 124.
    Gonzalez-Sanchez P, Del Arco A, Esteban JA, Satrustegui J. 2017.. Store-operated calcium entry is required for mGluR-dependent long term depression in cortical neurons. . Front. Cell. Neurosci. 11::363
    [Crossref] [Google Scholar]
  125. 125.
    Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, et al. 2009.. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. . Sci. Signal. 2::ra67
    [Crossref] [Google Scholar]
  126. 126.
    Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J. 2011.. Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. . PLOS ONE 6::e19285
    [Crossref] [Google Scholar]
  127. 127.
    Jorntell H, Hansel C. 2006.. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. . Neuron 52::22738
    [Crossref] [Google Scholar]
  128. 128.
    Mermelstein PG, Bito H, Deisseroth K, Tsien RW. 2000.. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. . J. Neurosci. 20::26673
    [Crossref] [Google Scholar]
  129. 129.
    Heo DK, Lim HM, Nam JH, Lee MG, Kim JY. 2015.. Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. . Cell Signal. 27::17786
    [Crossref] [Google Scholar]
  130. 130.
    Mizuma A, Kim JY, Kacimi R, Stauderman K, Dunn M, et al. 2019.. Microglial calcium release-activated calcium channel inhibition improves outcome from experimental traumatic brain injury and microglia-induced neuronal death. . J. Neurotrauma 36::9961007
    [Crossref] [Google Scholar]
  131. 131.
    Murray PD, Kingsbury TJ, Krueger BK. 2009.. Failure of Ca2+-activated, CREB-dependent transcription in astrocytes. . Glia 57::82834
    [Crossref] [Google Scholar]
  132. 132.
    Perea G, Navarrete M, Araque A. 2009.. Tripartite synapses: astrocytes process and control synaptic information. . Trends Neurosci. 32::42131
    [Crossref] [Google Scholar]
  133. 133.
    Halassa MM, Haydon PG. 2010.. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. . Annu. Rev. Physiol. 72::33555
    [Crossref] [Google Scholar]
  134. 134.
    Horvat A, Muhic M, Smolic T, Begic E, Zorec R, et al. 2021.. Ca2+ as the prime trigger of aerobic glycolysis in astrocytes. . Cell Calcium 95::102368
    [Crossref] [Google Scholar]
  135. 135.
    Rossi A, Pizzo P, Filadi R. 2019.. Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. . Biochim. Biophys. Acta Mol. Cell Res. 1866::106878
    [Crossref] [Google Scholar]
  136. 136.
    Shum A, Zaichick S, McElroy GS, D'Alessandro K, Alasady MJ, et al. 2023.. Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. . PNAS 120::e2217396120
    [Crossref] [Google Scholar]
  137. 137.
    Feske S. 2019.. CRAC channels and disease—from human CRAC channelopathies and animal models to novel drugs. . Cell Calcium 80::11216
    [Crossref] [Google Scholar]
  138. 138.
    Popugaeva E, Chernyuk D, Bezprozvanny I. 2020.. Reversal of calcium dysregulation as potential approach for treating Alzheimer's disease. . Curr. Alzheimer Res. 17::34454
    [Crossref] [Google Scholar]
  139. 139.
    Berridge MJ. 2010.. Calcium hypothesis of Alzheimer's disease. . Pflügers Arch. Eur. J. Physiol. 459::44149
    [Crossref] [Google Scholar]
  140. 140.
    Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. 2000.. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. . J. Cell Biol. 149::79398
    [Crossref] [Google Scholar]
  141. 141.
    Pascual-Caro C, Berrocal M, Lopez-Guerrero AM, Alvarez-Barrientos A, Pozo-Guisado E, et al. 2018.. STIM1 deficiency is linked to Alzheimer's disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca2+ entry. . J. Mol. Med. 96::106179
    [Crossref] [Google Scholar]
  142. 142.
    Tong BC, Lee CS, Cheng WH, Lai KO, Foskett JK, Cheung KH. 2016.. Familial Alzheimer's disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. . Sci. Signal. 9::ra89
    [Crossref] [Google Scholar]
  143. 143.
    Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, et al. 2018.. Epilepsy. . Nat. Rev. Dis. Primers 4::18024
    [Crossref] [Google Scholar]
  144. 144.
    Maciąg F, Majewski Ł, Boguszewski PM, Gupta RK, Wasilewska I, et al. 2019.. Behavioral and electrophysiological changes in female mice overexpressing ORAI1 in neurons. . Biochim. Biophys. Acta Mol. Cell Res. 1866::113750
    [Crossref] [Google Scholar]
  145. 145.
    Sullivan R, Yau WY, O'Connor E, Houlden H. 2019.. Spinocerebellar ataxia: an update. . J. Neurol. 266::53344
    [Crossref] [Google Scholar]
  146. 146.
    Ruano L, Melo C, Silva MC, Coutinho P. 2014.. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. . Neuroepidemiology 42::17483
    [Crossref] [Google Scholar]
  147. 147.
    Meera P, Pulst S, Otis T. 2017.. A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. . eLife 6::e26377
    [Crossref] [Google Scholar]
  148. 148.
    Liu J, Tang TS, Tu H, Nelson O, Herndon E, et al. 2009.. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. . J. Neurosci. 29::914862
    [Crossref] [Google Scholar]
  149. 149.
    Egorova PA, Marinina KS, Bezprozvanny IB. 2023.. Chronic suppression of STIM1-mediated calcium signaling in Purkinje cells rescues the cerebellar pathology in spinocerebellar ataxia type 2. . Biochim. Biophys. Acta Mol. Cell Res. 1870::119466
    [Crossref] [Google Scholar]
  150. 150.
    Surmeier DJ, Halliday GM, Simuni T. 2017.. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. . Exp. Neurol. 298::2029
    [Crossref] [Google Scholar]
  151. 151.
    Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, et al. 2016.. Impairment of PARK14-dependent Ca2+ signalling is a novel determinant of Parkinson's disease. . Nat. Commun. 7::10332
    [Crossref] [Google Scholar]
  152. 152.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. 2008.. From inflammation to sickness and depression: when the immune system subjugates the brain. . Nat. Rev. Neurosci. 9::4656
    [Crossref] [Google Scholar]
  153. 153.
    Lee CH, Giuliani F. 2019.. The role of inflammation in depression and fatigue. . Front. Immunol. 10::1696
    [Crossref] [Google Scholar]
  154. 154.
    Widman AJ, McMahon LL. 2018.. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. . PNAS 115::E300716
    [Crossref] [Google Scholar]
  155. 155.
    Gemes G, Bangaru ML, Wu HE, Tang Q, Weihrauch D, et al. 2011.. Store-operated Ca2+ entry in sensory neurons: functional role and the effect of painful nerve injury. . J. Neurosci. Off. J. Soc. Neurosci. 31::353649
    [Crossref] [Google Scholar]
  156. 156.
    Mei Y, Barrett JE, Hu H. 2018.. Calcium release-activated calcium channels and pain. . Cell Calcium 74::18085
    [Crossref] [Google Scholar]
  157. 157.
    Salter MW, Stevens B. 2017.. Microglia emerge as central players in brain disease. . Nat. Med. 23::101827
    [Crossref] [Google Scholar]
  158. 158.
    Ji RR, Chamessian A, Zhang YQ. 2016.. Pain regulation by non-neuronal cells and inflammation. . Science 354::57277
    [Crossref] [Google Scholar]
  159. 159.
    Stauderman KA. 2018.. CRAC channels as targets for drug discovery and development. . Cell Calcium 74::14759
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105330
Loading
/content/journals/10.1146/annurev-physiol-022724-105330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error