1932

Abstract

Driven by increased caloric intake relative to expenditure, obesity is a major health concern placing economic and operational strain on healthcare and social care worldwide. Pharmacologically, one of the most effective avenues for the management of excess adiposity is the suppression of appetite. However, owing to the body's natural physiological defense to weight loss and tolerability issues that typically accompany anorectic agents, leveraging this approach to induce sustained weight loss is often easier said than done. As such, to address these challenges, researchers have coupled a thorough understanding of the gut–brain axis with advancements in peptide engineering to design therapeutics mimicking the actions of endocrine hormones to promote a negative energy balance. Indeed, multireceptor agonists targeting the GLP-1, GIP, and glucagon receptors produce meaningful weight loss in people with obesity. Herein, we provide a rationale for how activation of the GIP receptor in the brain and the glucagon receptor in the liver and adipose tissue functions to synergize with GLP-1 receptor agonism to curb the drive to feed and ignite the combustion of excess calories for providing next-generation weight loss.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105443
2025-02-10
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105443.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105443&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Flanagan EW, Spann R, Berry SE, Berthoud H-R, Broyles S, et al. 2023.. New insights in the mechanisms of weight-loss maintenance: summary from a Pennington symposium. . Obesity 31::2895908
    [Crossref] [Google Scholar]
  2. 2.
    Müller TD, Blüher M, Tschöp MH, DiMarchi RD. 2022.. Anti-obesity drug discovery: advances and challenges. . Nat. Rev. Drug Discov. 21::20123
    [Crossref] [Google Scholar]
  3. 3.
    Kloock S, Ziegler CG, Dischinger U. 2023.. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery?. Pharmacol. Ther. 251::108549
    [Crossref] [Google Scholar]
  4. 4.
    Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, et al. 2013.. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. . BMJ 347::f5934
    [Crossref] [Google Scholar]
  5. 5.
    Arterburn DE, Johnson E, Coleman KJ, Herrinton LJ, Courcoulas AP, et al. 2021.. Weight outcomes of sleeve gastrectomy and gastric bypass compared to nonsurgical treatment. . Ann. Surg. 274::e126976
    [Crossref] [Google Scholar]
  6. 6.
    Jastreboff AM, Kaplan LM, Frias JP, Wu Q, Du Y, et al. 2023.. Triple-hormone-receptor agonist retatrutide for obesity—a phase 2 trial. . N. Engl. J. Med. 389::51426
    [Crossref] [Google Scholar]
  7. 7.
    Anderson JW, Konz EC, Frederich RC, Wood CL. 2001.. Long-term weight-loss maintenance: a meta-analysis of US studies. . Am. J. Clin. Nutr. 74::57984
    [Crossref] [Google Scholar]
  8. 8.
    Aminian A, Al-Kurd A, Wilson R, Bena J, Fayazzadeh H, et al. 2021.. Association of bariatric surgery with major adverse liver and cardiovascular outcomes in patients with biopsy-proven nonalcoholic steatohepatitis. . JAMA 326::203142
    [Crossref] [Google Scholar]
  9. 9.
    Tschöp MH, Finan B, Clemmensen C, Gelfanov V, Perez-Tilve D, et al. 2016.. Unimolecular polypharmacy for treatment of diabetes and obesity. . Cell Metab. 24::5162
    [Crossref] [Google Scholar]
  10. 10.
    Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ. 2010.. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. . Diabetes 59::176570
    [Crossref] [Google Scholar]
  11. 11.
    Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. 1987.. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. . PNAS 84::343438
    [Crossref] [Google Scholar]
  12. 12.
    Mojsov S, Weir GC, Habener JF. 1987.. Insulinotropin: glucagon-like peptide I (7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. . J. Clin. Investig. 79::61619
    [Crossref] [Google Scholar]
  13. 13.
    Drucker DJ, Habener JF, Holst JJ. 2017.. Discovery, characterization, and clinical development of the glucagon-like peptides. . J. Clin. Investig. 127::421727
    [Crossref] [Google Scholar]
  14. 14.
    Drucker DJ. 2018.. Mechanisms of action and therapeutic application of glucagon-like peptide-1. . Cell Metab. 27::74056
    [Crossref] [Google Scholar]
  15. 15.
    Knerr PJ, Mowery SA, Finan B, Perez-Tilve D, Tschöp MH, DiMarchi RD. 2020.. Selection and progression of unimolecular agonists at the GIP, GLP-1, and glucagon receptors as drug candidates. . Peptides 125::170225
    [Crossref] [Google Scholar]
  16. 16.
    Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, et al. 2019.. Glucagon-like peptide 1 (GLP-1). . Mol. Metab. 30::72130
    [Crossref] [Google Scholar]
  17. 17.
    Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA, et al. 2000.. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. . Metabolism 49::70917
    [Crossref] [Google Scholar]
  18. 18.
    Knudsen LB. 2010.. Liraglutide: the therapeutic promise from animal models. . Int. J. Clin. Pract. 64: (Suppl. 167):411
    [Crossref] [Google Scholar]
  19. 19.
    Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, et al. 2022.. Recent advances in incretin-based pharmacotherapies for the treatment of obesity and diabetes. . Front. Endocrinol. 13::838410
    [Crossref] [Google Scholar]
  20. 20.
    Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, et al. 2021.. Once-weekly semaglutide in adults with overweight or obesity. . N. Engl. J. Med. 384::9891002
    [Crossref] [Google Scholar]
  21. 21.
    Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM, et al. 1996.. A role for glucagon-like peptide-1 in the central regulation of feeding. . Nature 379::6972
    [Crossref] [Google Scholar]
  22. 22.
    Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, et al. 2014.. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. . J. Clin. Investig. 124::447388
    [Crossref] [Google Scholar]
  23. 23.
    Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. 1996.. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. . J. Clin. Endocrinol. Metab. 81::32732
    [Google Scholar]
  24. 24.
    Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. 1993.. Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. . Dig. Dis. Sci. 38::66573
    [Crossref] [Google Scholar]
  25. 25.
    Meier JJ. 2012.. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. . Nat. Rev. Endocrinol. 8::72842
    [Crossref] [Google Scholar]
  26. 26.
    Andersen A, Lund A, Knop FK, Vilsbøll T. 2018.. Glucagon-like peptide 1 in health and disease. . Nat. Rev. Endocrinol. 14::390403
    [Crossref] [Google Scholar]
  27. 27.
    Rubino F, Puhl RM, Cummings DE, Eckel RH, Ryan DH, et al. 2020.. Joint international consensus statement for ending stigma of obesity. . Nat. Med. 26::48597
    [Crossref] [Google Scholar]
  28. 28.
    Blüher M. 2019.. Obesity: global epidemiology and pathogenesis. . Nat. Rev. Endocrinol. 15::28898
    [Crossref] [Google Scholar]
  29. 29.
    Kusminski CM, Bickel PE, Scherer PE. 2016.. Targeting adipose tissue in the treatment of obesity-associated diabetes. . Nat. Rev. Drug Discov. 15::63960
    [Crossref] [Google Scholar]
  30. 30.
    Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, et al. 2019.. Projected U.S. state-level prevalence of adult obesity and severe obesity. . N. Engl. J. Med. 381::244050
    [Crossref] [Google Scholar]
  31. 31.
    Sanyaolu A, Okorie C, Qi X, Locke J, Rehman S. 2019.. Childhood and adolescent obesity in the United States: a public health concern. . Glob. Pediatr. Health 2019::6
    [Google Scholar]
  32. 32.
    Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. 2018.. Anti-obesity therapy: from rainbow pills to polyagonists. . Pharmacol. Rev. 70::71246
    [Crossref] [Google Scholar]
  33. 33.
    Hall KD, Farooqi IS, Friedman JM, Klein S, Loos RJF, et al. 2022.. The energy balance model of obesity: beyond calories in, calories out. . Am. J. Clin. Nutr. 115::124354
    [Crossref] [Google Scholar]
  34. 34.
    Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, et al. 2016.. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. . Obesity 24::161219
    [Crossref] [Google Scholar]
  35. 35.
    Dulloo AG. 2021.. Physiology of weight regain: lessons from the classic Minnesota Starvation Experiment on human body composition regulation. . Obes. Rev. 22:(Suppl. 2):e13189
    [Crossref] [Google Scholar]
  36. 36.
    Hall KD. 2022.. Energy compensation and metabolic adaptation: “The Biggest Loser” study reinterpreted. . Obesity 30::1113
    [Crossref] [Google Scholar]
  37. 37.
    Christoffersen B, Sanchez-Delgado G, John LM, Ryan DH, Raun K, Ravussin E. 2022.. Beyond appetite regulation: targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. . Obesity 30::84157
    [Crossref] [Google Scholar]
  38. 38.
    Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, et al. 2022.. Tirzepatide once weekly for the treatment of obesity. . N. Engl. J. Med. 387::20516
    [Crossref] [Google Scholar]
  39. 39.
    Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, et al. 2018.. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. . Mol. Metab. 18::314
    [Crossref] [Google Scholar]
  40. 40.
    Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, et al. 2013.. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. . Sci. Transl. Med. 5::209ra151
    [Crossref] [Google Scholar]
  41. 41.
    Frias JP, Bastyr EJ, Vignati L, Tschöp MH, Schmitt C, et al. 2017.. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. . Cell Metab. 26::34352.e2
    [Crossref] [Google Scholar]
  42. 42.
    Bossart M, Wagner M, Elvert R, Evers A, Hübschle T, et al. 2022.. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. . Cell Metab. 34::5974.e10
    [Crossref] [Google Scholar]
  43. 43.
    Conceição-Furber E, Coskun T, Sloop KW, Samms RJ. 2022.. Is glucagon receptor activation the thermogenic solution for treating obesity?. Front. Endocrinol. 13::868037
    [Crossref] [Google Scholar]
  44. 44.
    Samms RJ, Coghlan MP, Sloop KW. 2020.. How may GIP enhance the therapeutic efficacy of GLP-1?. Trends Endocrinol. Metab. 31::41021
    [Crossref] [Google Scholar]
  45. 45.
    Hope DCD, Vincent ML, Tan TMM. 2021.. Striking the balance: GLP-1/glucagon co-agonism as a treatment strategy for obesity. . Front. Endocrinol. 12::735019
    [Crossref] [Google Scholar]
  46. 46.
    Véniant MM, Lu S-C, Atangan L, Komorowski R, Stanislaus S, et al. 2024.. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. . Nat. Metab. 6::290303
    [Crossref] [Google Scholar]
  47. 47.
    Knop FK, Urva S, Rettiganti M, Benson C, Roell W, et al. 2023.. 56-OR: a long-acting glucose-dependent insulinotropic polypeptide receptor agonist shows weight loss without nausea or vomiting. . Diabetes 72::56-OR
    [Crossref] [Google Scholar]
  48. 48.
    Yu X, Chen S, Funcke J-B, Straub LG, Pirro V, et al. 2024.. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. . Cell Metab. https://doi.org/10.1016/j.cmet.2024.11.003
    [Google Scholar]
  49. 49.
    Kim SJ, Nian C, Karunakaran S, Clee SM, Isales CM, McIntosh CH. 2012.. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. . PLOS ONE 7::e40156
    [Crossref] [Google Scholar]
  50. 50.
    Mroz PA, Finan B, Gelfanov V, Yang B, Tschöp MH, et al. 2019.. Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism. . Mol. Metab. 20::5162
    [Crossref] [Google Scholar]
  51. 51.
    Liskiewicz A, Khalil A, Liskiewicz D, Novikoff A, Grandl G, et al. 2023.. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice. . Nat. Metab. 5::207585
    [Crossref] [Google Scholar]
  52. 52.
    Zhang Q, Delessa CT, Augustin R, Bakhti M, Colldén G, et al. 2021.. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. . Cell Metab. 33::83344.e5
    [Crossref] [Google Scholar]
  53. 53.
    Adriaenssens A, Broichhagen J, de Bray A, Ast J, Hasib A, et al. 2023.. Hypothalamic and brainstem glucose-dependent insulinotropic polypeptide receptor neurons employ distinct mechanisms to affect feeding. . JCI Insight 8::e164921
    [Crossref] [Google Scholar]
  54. 54.
    Adriaenssens AE, Biggs EK, Darwish T, Tadross J, Sukthankar T, et al. 2019.. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. . Cell Metab. 30::98796.e6
    [Crossref] [Google Scholar]
  55. 55.
    Finan B, Yang B, Ottaway N, Smiley DL, Ma T, et al. 2015.. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. . Nat. Med. 21::2736
    [Crossref] [Google Scholar]
  56. 56.
    Samms RJ, Cosgrove R, Snider BM, Furber EC, Droz BA, et al. 2022.. GIPR agonism inhibits PYY-induced nausea-like behavior. . Diabetes 71::141023
    [Crossref] [Google Scholar]
  57. 57.
    Samms RJ, Sloop KW, Gribble FM, Reimann F, Adriaenssens AE. 2021.. GIPR function in the central nervous system: implications and novel perspectives for GIP-based therapies in treating metabolic disorders. . Diabetes 70::193844
    [Crossref] [Google Scholar]
  58. 58.
    Schwartz MW, Woods SC, Porte D Jr., Seeley RJ, Baskin DG. 2000.. Central nervous system control of food intake. . Nature 404::66171
    [Crossref] [Google Scholar]
  59. 59.
    Akindehin S, Liskiewicz A, Liskiewicz D, Bernecker M, Garcia-Caceres C, et al. 2024.. Loss of GIPR in LEPR cells impairs glucose control by GIP and GIP:GLP-1 co-agonism without affecting body weight and food intake in mice. . Mol. Metab. 83::101915
    [Crossref] [Google Scholar]
  60. 60.
    Smith C, Patterson-Cross R, Woodward O, Lewis J, Chiarugi D, et al. 2022.. A comparative transcriptomic analysis of glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus. . Appetite 174::106022
    [Crossref] [Google Scholar]
  61. 61.
    Buller S, Blouet C. 2024.. Brain access of incretins and incretin receptor agonists to their central targets relevant for appetite suppression and weight loss. . Am. J. Physiol. Endocrinol. Metab. 326::E47280
    [Crossref] [Google Scholar]
  62. 62.
    McMorrow HE, Lorch CM, Hayes NW, Fleps SW, Frydman JA, et al. 2024.. Incretin hormones and pharmacomimetics rapidly inhibit AgRP neuron activity to suppress appetite. . bioRxiv 585583. https://doi.org/10.1101/2024.03.18.585583
  63. 63.
    Hansford R, Buller S, Tsang AH, Benoit S, Roberts A, et al. 2024.. Glucose-dependent insulinotropic polypeptide receptor signalling in oligodendrocytes increases the weight loss action of GLP-1R agonism. . Cell Metab. In press
    [Google Scholar]
  64. 64.
    Miller AD, Leslie RA. 1994.. The area postrema and vomiting. . Front. Neuroendocrinol. 15::30120
    [Crossref] [Google Scholar]
  65. 65.
    Srivastava G, Apovian CM. 2018.. Current pharmacotherapy for obesity. . Nat. Rev. Endocrinol. 14::1224
    [Crossref] [Google Scholar]
  66. 66.
    Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. 2021.. Area postrema cell types that mediate nausea-associated behaviors. . Neuron 109::46172.e5
    [Crossref] [Google Scholar]
  67. 67.
    Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, et al. 2020.. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. . Cell Metab. 31::30112.e5
    [Crossref] [Google Scholar]
  68. 68.
    Borner T, Geisler CE, Fortin SM, Cosgrove R, Alsina-Fernandez J, et al. 2021.. GIP receptor agonism attenuates GLP-1 receptor agonist-induced nausea and emesis in preclinical models. . Diabetes 70::254553
    [Crossref] [Google Scholar]
  69. 69.
    Borner T, Reiner BC, Crist RC, Furst CD, Doebley SA, et al. 2023.. GIP receptor agonism blocks chemotherapy-induced nausea and vomiting. . Mol. Metab. 73::101743
    [Crossref] [Google Scholar]
  70. 70.
    Spiller RC. 2001.. ABC of the upper gastrointestinal tract: anorexia, nausea, vomiting, and pain. . BMJ 323::135457
    [Crossref] [Google Scholar]
  71. 71.
    Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR. 2012.. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. . Neuropharmacology 62::191627
    [Crossref] [Google Scholar]
  72. 72.
    Borner T, Tinsley IC, Doyle RP, Hayes MR, De Jonghe BC. 2022.. Glucagon-like peptide-1 in diabetes care: Can glycaemic control be achieved without nausea and vomiting?. Br. J. Pharmacol. 179::54256
    [Crossref] [Google Scholar]
  73. 73.
    Borner T, De Jonghe BC, Hayes MR. 2024.. The antiemetic actions of GIP receptor agonism. . Am. J. Physiol. Endocrinol. Metab. 326::E52836
    [Crossref] [Google Scholar]
  74. 74.
    Costa A, Ai M, Nunn N, Culotta I, Hunter J, et al. 2022.. Anorectic and aversive effects of GLP-1 receptor agonism are mediated by brainstem cholecystokinin neurons, and modulated by GIP receptor activation. . Mol. Metab. 55::101407
    [Crossref] [Google Scholar]
  75. 75.
    Yip RG, Boylan MO, Kieffer TJ, Wolfe MM. 1998.. Functional GIP receptors are present on adipocytes. . Endocrinology 139::40047
    [Crossref] [Google Scholar]
  76. 76.
    Rudovich N, Kaiser S, Engeli S, Osterhoff M, Gogebakan O, et al. 2007.. GIP receptor mRNA expression in different fat tissue depots in postmenopausal non-diabetic women. . Regul. Pept. 142::13845
    [Crossref] [Google Scholar]
  77. 77.
    Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, et al. 2019.. Physiological roles of the GIP receptor in murine brown adipose tissue. . Mol. Metab. 28::1425
    [Crossref] [Google Scholar]
  78. 78.
    Ceperuelo-Mallafre V, Duran X, Pachon G, Roche K, Garrido-Sanchez L, et al. 2014.. Disruption of GIP/GIPR axis in human adipose tissue is linked to obesity and insulin resistance. . J. Clin. Endocrinol. Metab. 99::E90819
    [Crossref] [Google Scholar]
  79. 79.
    Song DH, Getty-Kaushik L, Tseng E, Simon J, Corkey BE, Wolfe MM. 2007.. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. . Gastroenterology 133::1796805
    [Crossref] [Google Scholar]
  80. 80.
    Kim SJ, Nian C, McIntosh CH. 2011.. Adipocyte expression of the glucose-dependent insulinotropic polypeptide receptor involves gene regulation by PPARγ and histone acetylation. . J. Lipid Res. 52::75970
    [Crossref] [Google Scholar]
  81. 81.
    Weaver RE, Donnelly D, Wabitsch M, Grant PJ, Balmforth AJ. 2008.. Functional expression of glucose-dependent insulinotropic polypeptide receptors is coupled to differentiation in a human adipocyte model. . Int. J. Obes. 32::170511
    [Crossref] [Google Scholar]
  82. 82.
    Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, et al. 2022.. A single-cell atlas of human and mouse white adipose tissue. . Nature 603::92633
    [Crossref] [Google Scholar]
  83. 83.
    Tharp WG, Gupta D, Sideleva O, Deacon CF, Holst JJ, et al. 2020.. Effects of pioglitazone on glucose-dependent insulinotropic polypeptide-mediated insulin secretion and adipocyte receptor expression in patients with type 2 diabetes. . Diabetes 69::14657
    [Crossref] [Google Scholar]
  84. 84.
    Samms RJ, Zhang G, He W, Ilkayeva O, Droz BA, et al. 2022.. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. . Mol. Metab. 64::101550
    [Crossref] [Google Scholar]
  85. 85.
    Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, et al. 2021.. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. . J. Clin. Investig. 131::e146353
    [Crossref] [Google Scholar]
  86. 86.
    Varol C, Zvibel I, Spektor L, Mantelmacher FD, Vugman M, et al. 2014.. Long-acting glucose-dependent insulinotropic polypeptide ameliorates obesity-induced adipose tissue inflammation. . J. Immunol. 193::40029
    [Crossref] [Google Scholar]
  87. 87.
    Mohammad S, Ramos LS, Buck J, Levin LR, Rubino F, McGraw TE. 2011.. Gastric inhibitory peptide controls adipose insulin sensitivity via activation of cAMP-response element-binding protein and p110beta isoform of phosphatidylinositol 3-kinase. . J. Biol. Chem. 286::4306270
    [Crossref] [Google Scholar]
  88. 88.
    Finan B, Muller TD, Clemmensen C, Perez-Tilve D, DiMarchi RD, Tschop MH. 2016.. Reappraisal of GIP pharmacology for metabolic diseases. . Trends Mol. Med. 22::35976
    [Crossref] [Google Scholar]
  89. 89.
    Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, et al. 2012.. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. . Nat. Med. 18::153949
    [Crossref] [Google Scholar]
  90. 90.
    Scherer PE. 2016.. The multifaceted roles of adipose tissue-therapeutic targets for diabetes and beyond: the 2015 Banting Lecture. . Diabetes 65::145261
    [Crossref] [Google Scholar]
  91. 91.
    Stern JH, Rutkowski JM, Scherer PE. 2016.. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. . Cell Metab. 23::77084
    [Crossref] [Google Scholar]
  92. 92.
    Lin F, Yu B, Ling B, Lv G, Shang H, et al. 2023.. Weight loss efficiency and safety of tirzepatide: a systematic review. . PLOS ONE 18::e0285197
    [Crossref] [Google Scholar]
  93. 93.
    Geisler JG. 2019.. 2,4 Dinitrophenol as medicine. . Cells 8::280
    [Crossref] [Google Scholar]
  94. 94.
    Cutting WC, Mehrtens HG, Tainter ML. 1933.. Actions and uses of dinitrophenol: promising metabolic applications. . J. Am. Med. Assoc. 101::19395
    [Crossref] [Google Scholar]
  95. 95.
    Tainter ML, Stockton AB, Cutting WC. 1935.. Dinitrophenol in the treatment of obesity: final report. . J. Am. Med. Assoc. 105::33237
    [Crossref] [Google Scholar]
  96. 96.
    Dunlop DM. 1934.. The use of 2:4-dinitrophenol as a metabolic stimulant. . Br. Med. J. 1::52427
    [Crossref] [Google Scholar]
  97. 97.
    Kazak L. 2023.. Promoting metabolic inefficiency for metabolic disease. . iScience 26::107843
    [Crossref] [Google Scholar]
  98. 98.
    Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, et al. 2020.. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. . J. Biol. Chem. 295::192642
    [Crossref] [Google Scholar]
  99. 99.
    Coskun T, Urva S, Roell WC, Qu H, Loghin C, et al. 2022.. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. . Cell Metab. 34::123447.e9
    [Crossref] [Google Scholar]
  100. 100.
    Ji L, Jiang H, Cheng Z, Qiu W, Liao L, et al. 2023.. A phase 2 randomised controlled trial of mazdutide in Chinese overweight adults or adults with obesity. . Nat. Commun. 14::8289
    [Crossref] [Google Scholar]
  101. 101.
    Kleinert M, Sachs S, Habegger KM, Hofmann SM, Müller TD. 2019.. Glucagon regulation of energy expenditure. . Int. J. Mol. Sci. 20::5407
    [Crossref] [Google Scholar]
  102. 102.
    Leichter SB. 1980.. Clinical and metabolic aspects of glucagonoma. . Medicine 59::10013
    [Crossref] [Google Scholar]
  103. 103.
    Calles-Escandón J. 1994.. Insulin dissociates hepatic glucose cycling and glucagon-induced thermogenesis in man. . Metabolism 43::10005
    [Crossref] [Google Scholar]
  104. 104.
    Tan TM, Field BC, McCullough KA, Troke RC, Chambers ES, et al. 2013.. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. . Diabetes 62::113138
    [Crossref] [Google Scholar]
  105. 105.
    Whytock KL, Carnero EA, Vega RB, Tillner J, Bock C, et al. 2021.. Prolonged glucagon infusion does not affect energy expenditure in individuals with overweight/obesity: a randomized trial. . Obesity 29::100313
    [Crossref] [Google Scholar]
  106. 106.
    Habegger KM, Stemmer K, Cheng C, Müller TD, Heppner KM, et al. 2013.. Fibroblast growth factor 21 mediates specific glucagon actions. . Diabetes 62::145363
    [Crossref] [Google Scholar]
  107. 107.
    Krimphove M, Opitz K. 1975.. The calorigenic effect of glucagon. . Arch. Int. Pharmacodyn. Ther. 216::32850
    [Google Scholar]
  108. 108.
    Davidson IWF, Salter JM, Best CH. 1960.. The effect of glucagon on the metabolic rate of rats. . Am. J. Clin. Nutr. 8::54046
    [Crossref] [Google Scholar]
  109. 109.
    Barre H, Rouanet JL. 1983.. Calorigenic effect of glucagon and catecholamines in king penguin chicks. . Am. J. Physiol. 244::R75863
    [Google Scholar]
  110. 110.
    Ingram DL, Kaciuba-Uscilko H. 1980.. Metabolic effects of glucagon in the young pig. . Horm. Metab. Res. 12::43033
    [Crossref] [Google Scholar]
  111. 111.
    Corbin KD, Carnero EA, Allerton TD, Tillner J, Bock CP, et al. 2023.. Glucagon-like peptide-1/glucagon receptor agonism associates with reduced metabolic adaptation and higher fat oxidation: A randomized trial. . Obesity 31::35062
    [Crossref] [Google Scholar]
  112. 112.
    Rui L. 2014.. Energy metabolism in the liver. . Compr. Physiol. 4::17797
    [Crossref] [Google Scholar]
  113. 113.
    Watt MJ, Miotto PM, De Nardo W, Montgomery MK. 2019.. The liver as an endocrine organ—linking NAFLD and insulin resistance. . Endocr. Rev. 40::136793
    [Crossref] [Google Scholar]
  114. 114.
    Loffler MC, Betz MJ, Blondin DP, Augustin R, Sharma AK, et al. 2021.. Challenges in tackling energy expenditure as obesity therapy: from preclinical models to clinical application. . Mol. Metab. 51::101237
    [Crossref] [Google Scholar]
  115. 115.
    Ravussin E, Smith SR, Ferrante AW Jr. 2021.. Physiology of energy expenditure in the weight-reduced state. . Obesity 29:(Suppl. 1):S3138
    [Google Scholar]
  116. 116.
    Ravussin E, Redman LM. 2020.. Metabolic adaptation: Is it really an illusion?. Am. J. Clin. Nutr. 112::165354
    [Crossref] [Google Scholar]
  117. 117.
    Unger RH. 1971.. Glucagon physiology and pathophysiology. . N. Engl. J. Med. 285::44349
    [Crossref] [Google Scholar]
  118. 118.
    Svoboda M, Tastenoy M, Vertongen P, Robberecht P. 1994.. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. . Mol. Cell. Endocrinol. 105::13137
    [Crossref] [Google Scholar]
  119. 119.
    Campbell JE, Drucker DJ. 2015.. Islet α cells and glucagon–critical regulators of energy homeostasis. . Nat. Rev. Endocrinol. 11::32938
    [Crossref] [Google Scholar]
  120. 120.
    Habegger KM. 2022.. Cross talk between insulin and glucagon receptor signaling in the hepatocyte. . Diabetes 71::184251
    [Crossref] [Google Scholar]
  121. 121.
    Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. 2017.. The new biology and pharmacology of glucagon. . Physiol. Rev. 97::72166
    [Crossref] [Google Scholar]
  122. 122.
    Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. 2019. Glucagon receptor signaling and lipid metabolism. . Front. Physiol. 10::413
    [Crossref] [Google Scholar]
  123. 123.
    Kim T, Nason S, Holleman C, Pepin M, Wilson L, et al. 2018.. Glucagon receptor signaling regulates energy metabolism via hepatic farnesoid X receptor and fibroblast growth factor 21. . Diabetes 67::177382
    [Crossref] [Google Scholar]
  124. 124.
    Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschop MH. 2010.. The metabolic actions of glucagon revisited. . Nat. Rev. Endocrinol. 6::68997
    [Crossref] [Google Scholar]
  125. 125.
    Nason SR, Kim T, Antipenko JP, Finan B, DiMarchi R, et al. 2020.. Glucagon-receptor signaling reverses hepatic steatosis independent of leptin receptor expression. . Endocrinology 161::bqz013
    [Crossref] [Google Scholar]
  126. 126.
    Breton L, Clot JP, Baudry M. 1983.. Effects of glucagon on basal metabolic rate and oxidative phosphorylation of rat liver mitochondria. . Horm. Metab. Res. 15::42932
    [Crossref] [Google Scholar]
  127. 127.
    Jones BJ, Tan T, Bloom SR. 2012.. Minireview: glucagon in stress and energy homeostasis. . Endocrinology 153::104954
    [Crossref] [Google Scholar]
  128. 128.
    Woods SC, Lutz TA, Geary N, Langhans W. 2006.. Pancreatic signals controlling food intake; insulin, glucagon and amylin. . Philos. Trans. R. Soc. B 361::121935
    [Crossref] [Google Scholar]
  129. 129.
    Schulman JL, Carleton JL, Whitney G, Whitehorn JC. 1957.. Effect of glucagon on food intake and body weight in man. . J. Appl. Physiol. 11::41921
    [Crossref] [Google Scholar]
  130. 130.
    Langhans W, Zeiger U, Scharrer E, Geary N. 1982.. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. . Science 218::89496
    [Crossref] [Google Scholar]
  131. 131.
    Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, et al. 2012.. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. . Obesity 20::156671
    [Crossref] [Google Scholar]
  132. 132.
    More VR, Lao J, McLaren DG, Cumiskey AM, Murphy BA, et al. 2017.. Glucagon like receptor 1/glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice. . PLOS ONE 12::e0186586
    [Crossref] [Google Scholar]
  133. 133.
    Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, et al. 2016.. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. . Diabetes Obes. Metab. 18::117690
    [Crossref] [Google Scholar]
  134. 134.
    Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, et al. 2009.. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. . Nat. Chem. Biol. 5::74957
    [Crossref] [Google Scholar]
  135. 135.
    Hope DCD, Hinds CE, Lopes T, Vincent ML, Shrewsbury JV, et al. 2022.. Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss. . Cell Rep. Med. 3::100810
    [Crossref] [Google Scholar]
  136. 136.
    Kliewer SA, Mangelsdorf DJ. 2019.. A dozen years of discovery: insights into the physiology and pharmacology of FGF21. . Cell Metab. 29::24653
    [Crossref] [Google Scholar]
  137. 137.
    Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB. 2014.. Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism. . PLOS ONE 9::e94996
    [Crossref] [Google Scholar]
  138. 138.
    Arafat AM, Kaczmarek P, Skrzypski M, Pruszynska-Oszmalek E, Kolodziejski P, et al. 2013.. Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis?. Diabetologia 56::58897
    [Crossref] [Google Scholar]
  139. 139.
    Song KH, Chiang JY. 2006.. Glucagon and cAMP inhibit cholesterol 7α-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. . Hepatology 43::11725
    [Crossref] [Google Scholar]
  140. 140.
    Chiang JY. 2013.. Bile acid metabolism and signaling. . Compr. Physiol. 3::1191212
    [Crossref] [Google Scholar]
  141. 141.
    Cyphert HA, Ge X, Kohan AB, Salati LM, Zhang Y, Hillgartner FB. 2012.. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. . J. Biol. Chem. 287::2512338
    [Crossref] [Google Scholar]
  142. 142.
    Cariou B, Bouchaert E, Abdelkarim M, Dumont J, Caron S, et al. 2007.. FXR-deficiency confers increased susceptibility to torpor. . FEBS Lett. 581::519198
    [Crossref] [Google Scholar]
  143. 143.
    Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, et al. 2015.. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. . Cell Metab. 22::41826
    [Crossref] [Google Scholar]
  144. 144.
    Teodoro JS, Zouhar P, Flachs P, Bardova K, Janovska P, et al. 2014.. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. . Int. J. Obes. 38::102734
    [Crossref] [Google Scholar]
  145. 145.
    Zietak M, Kozak LP. 2016.. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. . Am. J. Physiol. Endocrinol. Metab. 310::E34654
    [Crossref] [Google Scholar]
  146. 146.
    Tsuchida T, Friedman SL. 2017.. Mechanisms of hepatic stellate cell activation. . Nat. Rev. Gastroenterol. Hepatol. 14::397411
    [Crossref] [Google Scholar]
  147. 147.
    Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. 2022.. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. . Rev. Endocr. Metab. Disord. 23::12131
    [Crossref] [Google Scholar]
  148. 148.
    Bertin R. 1976.. Glycerokinase activity and lipolysis regulation in brown adipose tissue of cold acclimated rats. . Biochimie 58::43134
    [Crossref] [Google Scholar]
  149. 149.
    Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, et al. 2015.. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. . Cell 163::64355
    [Crossref] [Google Scholar]
  150. 150.
    Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, et al. 2017.. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. . Nat. Med. 23::145465
    [Crossref] [Google Scholar]
  151. 151.
    Nedergaard J, Cannon B. 2010.. The changed metabolic world with human brown adipose tissue: therapeutic visions. . Cell Metab. 11::26872
    [Crossref] [Google Scholar]
  152. 152.
    Chondronikola M, Volpi E, Børsheim E, Porter C, Saraf MK, et al. 2016.. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. . Cell Metab. 23::12006
    [Crossref] [Google Scholar]
  153. 153.
    Chondronikola M, Yoshino J, Ramaswamy R, Giardina JD, Laforest R, et al. 2024.. Very-low-density lipoprotein triglyceride and free fatty acid plasma kinetics in women with high or low brown adipose tissue volume and overweight/obesity. . Cell Rep. Med. 5::101370
    [Crossref] [Google Scholar]
  154. 154.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, et al. 2009.. Identification and importance of brown adipose tissue in adult humans. . N. Engl. J. Med. 360::150917
    [Crossref] [Google Scholar]
  155. 155.
    Becher T, Palanisamy S, Kramer DJ, Eljalby M, Marx SJ, et al. 2021.. Brown adipose tissue is associated with cardiometabolic health. . Nat. Med. 27::5865
    [Crossref] [Google Scholar]
  156. 156.
    Wang CH, Wei YH. 2021.. Therapeutic perspectives of thermogenic adipocytes in obesity and related complications. . Int. J. Mol. Sci. 22::7177
    [Crossref] [Google Scholar]
  157. 157.
    Porter C, Chondronikola M, Sidossis LS. 2015.. The therapeutic potential of brown adipocytes in humans. . Front. Endocrinol. 6::156
    [Crossref] [Google Scholar]
  158. 158.
    Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, et al. 2019.. The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice. . Mol. Metab. 22::3748
    [Crossref] [Google Scholar]
  159. 159.
    Kuroshima A, Doi K, Yahata T, Kurahashi M, Ohno T. 1981.. Glucagon and temperature acclimation. . In Contributions to Thermal Physiology, ed. Z Szelényi, M Székely , pp. 3057. Amsterdam:: Elsevier
    [Google Scholar]
  160. 160.
    Kinoshita K, Ozaki N, Takagi Y, Murata Y, Oshida Y, Hayashi Y. 2014.. Glucagon is essential for adaptive thermogenesis in brown adipose tissue. . Endocrinology 155::348492
    [Crossref] [Google Scholar]
  161. 161.
    Townsend LK, Medak KD, Knuth CM, Peppier WT, Charron MJ, Wright DC. 2019.. Loss of glucagon signaling alters white adipose tissue browning. . FASEB J. 33::482435
    [Crossref] [Google Scholar]
  162. 162.
    Heim T, Hull D. 1966.. The effect of propranalol on the calorigenic response in brown adipose tissue of new-born rabbits to catecholamines, glucagon, corticotrophin and cold exposure. . J. Physiol. 187::27183
    [Crossref] [Google Scholar]
  163. 163.
    Joel CD. 1966.. Stimulation of metabolism of rat brown adipose tissue by addition of lipolytic hormones in vitro. . J. Biol. Chem. 241::81421
    [Crossref] [Google Scholar]
  164. 164.
    Kuroshima A, Yahata T. 1979.. Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat-acclimated and cold-acclimated rats. . Jpn. J. Physiol. 29::68390
    [Crossref] [Google Scholar]
  165. 165.
    Yahata T, Habara Y, Kuroshima A. 1983.. Effects of glucagon and noradrenaline on the blood flow through brown adipose tissue in temperature-acclimated rats. . Jpn. J. Physiol. 33::36776
    [Crossref] [Google Scholar]
  166. 166.
    Fonseca VA, Capehorn MS, Garg SK, Jódar Gimeno E, Hansen OH, et al. 2019.. Reductions in insulin resistance are mediated primarily via weight loss in subjects with type 2 diabetes on semaglutide. . J. Clin. Endocrinol. Metab. 104::407886
    [Crossref] [Google Scholar]
  167. 167.
    Heymsfield SB, Smith B, Dahle J, Kennedy S, Fearnbach N, et al. 2021.. Resting energy expenditure: from cellular to whole-body level, a mechanistic historical perspective. . Obesity 29::50011
    [Crossref] [Google Scholar]
  168. 168.
    Chouchani ET, Kazak L, Spiegelman BM. 2019.. New advances in adaptive thermogenesis: UCP1 and beyond. . Cell Metab. 29::2737
    [Crossref] [Google Scholar]
  169. 169.
    Salem V, Izzi-Engbeaya C, Coello C, Thomas DB, Chambers ES, et al. 2016.. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. . Diabetes Obes. Metab. 18::7281
    [Crossref] [Google Scholar]
  170. 170.
    Campos RV, Lee YC, Drucker DJ. 1994.. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. . Endocrinology 134::215664
    [Crossref] [Google Scholar]
  171. 171.
    Hagen JH. 1961.. Effect of glucagon on the metabolism of adipose tissue. . J. Biol. Chem. 236::102327
    [Crossref] [Google Scholar]
  172. 172.
    Vaughan M. 1961.. Effect of hormones on glucose metabolism in adipose tissue. . J. Biol. Chem. 236::219699
    [Crossref] [Google Scholar]
  173. 173.
    Billington CJ, Bartness TJ, Briggs J, Levine AS, Morley JE. 1987.. Glucagon stimulation of brown adipose tissue growth and thermogenesis. . Am. J. Physiol. 252::R16065
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105443
Loading
/content/journals/10.1146/annurev-physiol-022724-105443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error