1932

Abstract

Inositol 1,4,5-trisphosphate receptors (IPRs) are ubiquitous intracellular Ca2+ release channels. Their activation, subcellular localization, abundance, and regulation play major roles in defining the spatiotemporal characteristics of intracellular Ca2+ signals, which are in turn fundamental to the appropriate activation of effectors that control a myriad of cellular events. Over the past decade, ∼100 mutations in s associated with human diseases have been documented. Mutations have been detailed in all three IPR subtypes and all functional domains of the protein, resulting in both gain and loss of receptor function. IPR mutations are associated with a diverse array of pathology including spinocerebellar ataxia, peripheral neuropathy, immunopathy, anhidrosis, hyperparathyroidism, and squamous cell carcinoma. This review focuses on how studying the altered activity of these mutations provides information relating to IPR structure and function, the physiology underpinned by specific IPR subtypes, and the pathological consequences of dysregulated Ca2+ signaling in human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022724-105627
2025-02-10
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-022724-105627.html?itemId=/content/journals/10.1146/annurev-physiol-022724-105627&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bootman MD, Bultynck G. 2020.. Fundamentals of cellular calcium signaling: a primer. . Cold Spring Harb. Perspect. Biol. 12::a038802
    [Crossref] [Google Scholar]
  2. 2.
    Berridge MJ. 2016.. The inositol trisphosphate/calcium signaling pathway in health and disease. . Physiol. Rev. 96::126196
    [Crossref] [Google Scholar]
  3. 3.
    Bezprozvanny I, Watras J, Ehrlich BE. 1991.. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. . Nature 351::75154
    [Crossref] [Google Scholar]
  4. 4.
    Berridge MJ, Lipp P, Bootman MD. 2000.. The versatility and universality of calcium signalling. . Nat. Rev. Mol. Cell Biol. 1::1121
    [Crossref] [Google Scholar]
  5. 5.
    Foskett JK, White C, Cheung KH, Mak DO. 2007.. Inositol trisphosphate receptor Ca2+ release channels. . Physiol. Rev. 87::593658
    [Crossref] [Google Scholar]
  6. 6.
    Emrich SM, Yoast RE, Trebak M. 2022.. Physiological functions of CRAC channels. . Annu. Rev. Physiol. 84::35579
    [Crossref] [Google Scholar]
  7. 7.
    van Rossum DB, Patterson RL, Kiselyov K, Boehning D, Barrow RK, et al. 2004.. Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. . PNAS 101::232327
    [Crossref] [Google Scholar]
  8. 8.
    Chakraborty P, Deb BK, Arige V, Musthafa T, Malik S, et al. 2023.. Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+. . eLife 12::e80447
    [Crossref] [Google Scholar]
  9. 9.
    Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA. 2002.. Signaling microdomains define the specificity of receptor-mediated InsP3 pathways in neurons. . Neuron 34::20920
    [Crossref] [Google Scholar]
  10. 10.
    Iino M. 1990.. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. . J. Gen. Physiol. 95::110322
    [Crossref] [Google Scholar]
  11. 11.
    Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, et al. 1991.. Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. . J. Biol. Chem. 266::110916
    [Crossref] [Google Scholar]
  12. 12.
    Bezprozvanny I, Ehrlich BE. 1993.. ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. . Neuron 10::117584
    [Crossref] [Google Scholar]
  13. 13.
    Yule DI, Betzenhauser MJ, Joseph SK. 2010.. Linking structure to function: recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. . Cell Calcium 47::46979
    [Crossref] [Google Scholar]
  14. 14.
    Prole DL, Taylor CW. 2016.. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. . J. Physiol. 594::284966
    [Crossref] [Google Scholar]
  15. 15.
    Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, et al. 2018.. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. . J. Biol. Chem. 293::1746476
    [Crossref] [Google Scholar]
  16. 16.
    Area-Gomez E, del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, et al. 2012.. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. . EMBO J. 31::410623
    [Crossref] [Google Scholar]
  17. 17.
    Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. 2014.. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. . Nat. Med. 20::142735
    [Crossref] [Google Scholar]
  18. 18.
    Atakpa P, Thillaiappan NB, Mataragka S, Prole DL, Taylor CW. 2018.. IP3 receptors preferentially associate with ER-lysosome contact sites and selectively deliver Ca2+ to lysosomes. . Cell Rep. 25::318093.e7
    [Crossref] [Google Scholar]
  19. 19.
    Yuan Y, Arige V, Saito R, Mu Q, Brailoiu GC, et al. 2024.. Two-pore channel-2 and inositol trisphos-phate receptors coordinate Ca2+ signals between lysosomes and the endoplasmic reticulum. . Cell Rep. 43::113628
    [Crossref] [Google Scholar]
  20. 20.
    Bartok A, Weaver D, Golenar T, Nichtova Z, Katona M, et al. 2019.. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. . Nat. Commun. 10::3726
    [Crossref] [Google Scholar]
  21. 21.
    Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. 1989.. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. . Nature 342::3238
    [Crossref] [Google Scholar]
  22. 22.
    Sudhof TC, Newton CL, Archer BT 3rd, Ushkaryov YA, Mignery GA. 1991.. Structure of a novel InsP3 receptor. . EMBO J. 10::3199206
    [Crossref] [Google Scholar]
  23. 23.
    Blondel O, Takeda J, Janssen H, Seino S, Bell GI. 1993.. Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. . J. Biol. Chem. 268::1135663
    [Crossref] [Google Scholar]
  24. 24.
    Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K. 1991.. The subtypes of the mouse inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. . PNAS 88::624448
    [Crossref] [Google Scholar]
  25. 25.
    Terry LE, Alzayady KJ, Furati E, Yule DI. 2018.. Inositol 1,4,5-trisphosphate receptor mutations associated with human disease. . Messenger 6::2944
    [Crossref] [Google Scholar]
  26. 26.
    Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, et al. 1996.. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. . Nature 379::16871
    [Crossref] [Google Scholar]
  27. 27.
    Hisatsune C, Miyamoto H, Hirono M, Yamaguchi N, Sugawara T, et al. 2013.. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice. . Front. Neural Circ. 7::156
    [Google Scholar]
  28. 28.
    Sugawara T, Hisatsune C, Le TD, Hashikawa T, Hirono M, et al. 2013.. Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice. . J. Neurosci. 33::1218696
    [Crossref] [Google Scholar]
  29. 29.
    Street VA, Bosma MM, Demas VP, Regan MR, Lin DD, et al. 1997.. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. . J. Neurosci. 17::63545
    [Crossref] [Google Scholar]
  30. 30.
    van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, et al. 2007.. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. . PLOS Genet. 3::e108
    [Crossref] [Google Scholar]
  31. 31.
    Ogura H, Matsumoto M, Mikoshiba K. 2001.. Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. . Behav. Brain Res. 122::21519
    [Crossref] [Google Scholar]
  32. 32.
    Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, et al. 2005.. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. . Science 309::223234
    [Crossref] [Google Scholar]
  33. 33.
    Inaba T, Hisatsune C, Sasaki Y, Ogawa Y, Ebisui E, et al. 2014.. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye. . PLOS ONE 9::e99205
    [Crossref] [Google Scholar]
  34. 34.
    Miyawaki A, Furuichi T, Ryou Y, Yoshikawa S, Nakagawa T, et al. 1991.. Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. . PNAS 88::491115
    [Crossref] [Google Scholar]
  35. 35.
    Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K. 1996.. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. . J. Biol. Chem. 271::1827784
    [Crossref] [Google Scholar]
  36. 36.
    Ando H, Hirose M, Mikoshiba K. 2018.. Aberrant IP3 receptor activities revealed by comprehensive analysis of pathological mutations causing spinocerebellar ataxia 29. . PNAS 115::1225964
    [Crossref] [Google Scholar]
  37. 37.
    Mignery GA, Sudhof TC. 1990.. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. . EMBO J. 9::389398
    [Crossref] [Google Scholar]
  38. 38.
    Schug ZT, da Fonseca PC, Bhanumathy CD, Wagner L 2nd, Zhang X, et al. 2008.. Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. . J. Biol. Chem. 283::293948
    [Crossref] [Google Scholar]
  39. 39.
    Schmitz EA, Takahashi H, Karakas E. 2022.. Structural basis for activation and gating of IP3 receptors. . Nat. Commun. 13::1408
    [Crossref] [Google Scholar]
  40. 40.
    Fan G, Baker MR, Terry LE, Arige V, Chen M, et al. 2022.. Conformational motions and ligand-binding underlying gating and regulation in IP3R channel. . Nat. Commun. 13::6942
    [Crossref] [Google Scholar]
  41. 41.
    Paknejad N, Sapuru V, Hite RK. 2023.. Structural titration reveals Ca2+-dependent conformational landscape of the IP3 receptor. . Nat. Commun. 14::6897
    [Crossref] [Google Scholar]
  42. 42.
    Baker MR, Fan G, Arige V, Yule DI, Serysheva II. 2023.. Understanding IP3R channels: from structural underpinnings to ligand-dependent conformational landscape. . Cell Calcium 114::102770
    [Crossref] [Google Scholar]
  43. 43.
    Paknejad N, Hite RK. 2018.. Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3. . Nat. Struct. Mol. Biol. 25::66068
    [Crossref] [Google Scholar]
  44. 44.
    Arige V, Terry LE, Wagner LE 2nd, Malik S, Baker MR, et al. 2022.. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. . PNAS 119::e2209267119
    [Crossref] [Google Scholar]
  45. 45.
    Kerkhofs M, Seitaj B, Ivanova H, Monaco G, Bultynck G, Parys JB. 2018.. Pathophysiological consequences of isoform-specific IP3 receptor mutations. . Biochim. Biophys. Acta. Mol. Cell Res. 1865::170717
    [Crossref] [Google Scholar]
  46. 46.
    Hamada K, Mikoshiba K. 2020.. IP3 receptor plasticity underlying diverse functions. . Annu. Rev. Physiol. 82::15176
    [Crossref] [Google Scholar]
  47. 47.
    Knight MA, Kennerson ML, Anney RJ, Matsuura T, Nicholson GA, et al. 2003.. Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2–3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. . Neurobiol. Dis. 13::14757
    [Crossref] [Google Scholar]
  48. 48.
    Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, et al. 2008.. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. . Neurology 71::54751
    [Crossref] [Google Scholar]
  49. 49.
    Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, et al. 2008.. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. . J. Med. Genet. 45::3235
    [Crossref] [Google Scholar]
  50. 50.
    Novak MJ, Sweeney MG, Li A, Treacy C, Chandrashekar HS, et al. 2010.. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. . Mov. Disord. 25::217682
    [Crossref] [Google Scholar]
  51. 51.
    Marelli C, van de Leemput J, Johnson JO, Tison F, Thauvin-Robinet C, et al. 2011.. SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. . Arch. Neurol. 68::63743
    [Crossref] [Google Scholar]
  52. 52.
    Wang L, Hao Y, Yu P, Cao Z, Zhang J, et al. 2018.. Identification of a splicing mutation in ITPR1 via WES in a Chinese early-onset spinocerebellar ataxia family. . Cerebellum 17::29499
    [Crossref] [Google Scholar]
  53. 53.
    Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, et al. 2013.. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. . Neurogenetics 14::22532
    [Crossref] [Google Scholar]
  54. 54.
    Ngo KJ, Poke G, Neas K, Fogel BL. 2019.. Spinocerebellar ataxia type 29 in a family of Maori descent. . Cerebellum Ataxias 6::14
    [Crossref] [Google Scholar]
  55. 55.
    Tolonen JP, Parolin Schnekenberg R, McGowan S, Sims D, McEntagart M, et al. 2024.. Detailed analysis of ITPR1 missense variants guides diagnostics and therapeutic design. . Mov. Disord. 39::14151
    [Crossref] [Google Scholar]
  56. 56.
    Gerber S, Alzayady KJ, Burglen L, Bremond-Gignac D, Marchesin V, et al. 2016.. Recessive and dominant de novo ITPR1 mutations cause Gillespie syndrome. . Am. J. Hum. Genet. 98::97180
    [Crossref] [Google Scholar]
  57. 57.
    van Dijk T, Barth P, Reneman L, Appelhof B, Baas F, Poll-The BT. 2017.. A de novo missense mutation in the inositol 1,4,5-triphosphate receptor type 1 gene causing severe pontine and cerebellar hypoplasia: expanding the phenotype of ITPR1-related spinocerebellar ataxia's. . Am. J. Med. Genet. A 173::20712
    [Crossref] [Google Scholar]
  58. 58.
    Cetani F, Pardi E, Aretini P, Saponaro F, Borsari S, et al. 2020.. Whole exome sequencing in familial isolated primary hyperparathyroidism. . J. Endocrinol. Investig. 43::23145
    [Crossref] [Google Scholar]
  59. 59.
    Klar J, Hisatsune C, Baig SM, Tariq M, Johansson AC, et al. 2014.. Abolished InsP3R2 function inhibits sweat secretion in both humans and mice. . J. Clin. Investig. 124::477380
    [Crossref] [Google Scholar]
  60. 60.
    Hedberg ML, Goh G, Chiosea SI, Bauman JE, Freilino ML, et al. 2016.. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. . J. Clin. Investig. 126::16980
    [Crossref] [Google Scholar]
  61. 61.
    Ronkko J, Molchanova S, Revah-Politi A, Pereira EM, Auranen M, et al. 2020.. Dominant mutations in ITPR3 cause Charcot-Marie-Tooth disease. . Ann. Clin. Transl. Neurol. 7::196272
    [Crossref] [Google Scholar]
  62. 62.
    Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, et al. 2023.. Disrupted Ca2+ homeostasis and immunodeficiency in patients with functional IP3 receptor subtype 3 defects. . Cell Mol. Immunol. 20::1125
    [Crossref] [Google Scholar]
  63. 63.
    Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K. 2003.. Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. . J. Biol. Chem. 278::1655160
    [Crossref] [Google Scholar]
  64. 64.
    Schug ZT, Joseph SK. 2006.. The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. . J. Biol. Chem. 281::2443140
    [Crossref] [Google Scholar]
  65. 65.
    Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M. 2005.. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. . Mol. Cell 17::193203
    [Crossref] [Google Scholar]
  66. 66.
    Casey JP, Hirouchi T, Hisatsune C, Lynch B, Murphy R, et al. 2017.. A novel gain-of-function mutation in the ITPR1 suppressor domain causes spinocerebellar ataxia with altered Ca2+ signal patterns. . J. Neurol. 264::144453
    [Crossref] [Google Scholar]
  67. 67.
    Khan SA, Rossi AM, Riley AM, Potter BV, Taylor CW. 2013.. Subtype-selective regulation of IP3 receptors by thimerosal via cysteine residues within the IP3-binding core and suppressor domain. . Biochem. J. 451::17784
    [Crossref] [Google Scholar]
  68. 68.
    Paganini L, Pesenti C, Milani D, Fontana L, Motta S, et al. 2018.. A novel splice site variant in ITPR1 gene underlying recessive Gillespie syndrome. . Am. J. Med. Genet. A 176::142731
    [Crossref] [Google Scholar]
  69. 69.
    Prasad A, Rabionet R, Espinet B, Zapata L, Puiggros A, et al. 2016.. Identification of gene mutations and fusion genes in patients with Sezary syndrome. . J. Investig. Dermatol. 136::149099
    [Crossref] [Google Scholar]
  70. 70.
    Ferris CD, Huganir RL, Bredt DS, Cameron AM, Snyder SH. 1991.. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. . PNAS 88::223235
    [Crossref] [Google Scholar]
  71. 71.
    Patterson RL, van Rossum DB, Barrow RK, Snyder SH. 2004.. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. . PNAS 101::232832
    [Crossref] [Google Scholar]
  72. 72.
    Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, et al. 2002.. Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. . Biochem. J. 365::26977
    [Crossref] [Google Scholar]
  73. 73.
    Chandrasekhar R, Alzayady KJ, Wagner LE 2nd, Yule DI. 2016.. Unique regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. . J. Biol. Chem. 291::484660
    [Crossref] [Google Scholar]
  74. 74.
    Alzayady KJ, Wagner LE 2nd, Chandrasekhar R, Monteagudo A, Godiska R, et al. 2013.. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. . J. Biol. Chem. 288::2977284
    [Crossref] [Google Scholar]
  75. 75.
    Teos LY, Zhang Y, Cotrim AP, Swaim W, Won JH, et al. 2015.. IP3R deficit underlies loss of salivary fluid secretion in Sjögren's Syndrome. . Sci. Rep. 5::13953
    [Crossref] [Google Scholar]
  76. 76.
    Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI. 2016.. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. . Sci. Signal 9::ra35
    [Crossref] [Google Scholar]
  77. 77.
    Alzayady KJ, Sebe-Pedros A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI. 2015.. Tracing the evolutionary history of inositol, 1,4,5-trisphosphate receptor: insights from analyses of Capsaspora owczarzaki Ca2+ release channel orthologs. . Mol. Biol. Evol. 32::223653
    [Crossref] [Google Scholar]
  78. 78.
    Smith HA, Thillaiappan NB, Rossi AM. 2023.. IP3 receptors: an “elementary” journey from structure to signals. . Cell Calcium 113::102761
    [Crossref] [Google Scholar]
  79. 79.
    Barresi S, Niceta M, Alfieri P, Brankovic V, Piccini G, et al. 2017.. Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia. . Clin. Genet. 91::8691
    [Crossref] [Google Scholar]
  80. 80.
    Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, et al. 2002.. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. . Nature 420::696700
    [Crossref] [Google Scholar]
  81. 81.
    Sasaki M, Ohba C, Iai M, Hirabayashi S, Osaka H, et al. 2015.. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene. . J. Neurol. 262::127884
    [Crossref] [Google Scholar]
  82. 82.
    Martinez-Rubio D, Hinarejos I, Sancho P, Gorria-Redondo N, Bernado-Fonz R, et al. 2022.. Mutations, genes, and phenotypes related to movement disorders and ataxias. . Int. J. Mol. Sci. 23::11847
    [Crossref] [Google Scholar]
  83. 83.
    Gauquelin L, Hartley T, Tarnopolsky M, Dyment DA, Brais B, et al. 2020.. Channelopathies are a frequent cause of genetic ataxias associated with cerebellar atrophy. . Mov. Disord. Clin. Pract. 7::94049
    [Crossref] [Google Scholar]
  84. 84.
    Zambonin JL, Bellomo A, Ben-Pazi H, Everman DB, Frazer LM, et al. 2017.. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. . Orphanet J. Rare Dis. 12::121
    [Crossref] [Google Scholar]
  85. 85.
    Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, et al. 2015.. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. . Nature 527::33641
    [Crossref] [Google Scholar]
  86. 86.
    Synofzik M, Helbig KL, Harmuth F, Deconinck T, Tanpaiboon P, et al. 2018.. De novo ITPR1 variants are a recurrent cause of early-onset ataxia, acting via loss of channel function. . Eur. J. Hum. Genet. 26::162334
    [Crossref] [Google Scholar]
  87. 87.
    Terry LE, Alzayady KJ, Wahl AM, Malik S, Yule DI. 2020.. Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. . J. Biol. Chem. 295::1816078
    [Crossref] [Google Scholar]
  88. 88.
    Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, et al. 2014.. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. . JAMA Neurol. 71::123746
    [Crossref] [Google Scholar]
  89. 89.
    Malathi K, Li X, Krizanova O, Ondrias K, Sperber K, et al. 2005.. Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate receptor (type 1) functions. . J. Immunol. 175::620510
    [Crossref] [Google Scholar]
  90. 90.
    Huang L, Chardon JW, Carter MT, Friend KL, Dudding TE, et al. 2012.. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. . Orphanet J. Rare Dis. 7::67
    [Crossref] [Google Scholar]
  91. 91.
    Parolin Schnekenberg R, Perkins EM, Miller JW, Davies WI, D'Adamo MC, et al. 2015.. De novo point mutations in patients diagnosed with ataxic cerebral palsy. . Brain 138::181732
    [Crossref] [Google Scholar]
  92. 92.
    Ganesamoorthy D, Bruno DL, Schoumans J, Storey E, Delatycki MB, et al. 2009.. Development of a multiplex ligation-dependent probe amplification assay for diagnosis and estimation of the frequency of spinocerebellar ataxia type 15. . Clin. Chem. 55::141518
    [Crossref] [Google Scholar]
  93. 93.
    Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. 2003.. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. . J. Biol. Chem. 278::1060212
    [Crossref] [Google Scholar]
  94. 94.
    Berger P, Niemann A, Suter U. 2006.. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). . Glia 54::24357
    [Crossref] [Google Scholar]
  95. 95.
    Martinez-Gomez A, Dent MA. 2007.. Expression of IP3 receptor isoforms at the nodes of Ranvier in rat sciatic nerve. . Neuroreport 18::44750
    [Crossref] [Google Scholar]
  96. 96.
    Terry LE, Arige V, Neumann J, Wahl AM, Knebel TR, et al. 2022.. Missense mutations in inositol 1,4,5-trisphosphate receptor type 3 result in leaky Ca2+ channels and activation of store-operated Ca2+ entry. . iScience 25::105523
    [Crossref] [Google Scholar]
  97. 97.
    Bourguignon LY, Jin H, Iida N, Brandt NR, Zhang SH. 1993.. The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. . J. Biol. Chem. 268::729097
    [Crossref] [Google Scholar]
  98. 98.
    Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, et al. 2009.. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. . Cell Death Differ. 16::100617
    [Crossref] [Google Scholar]
  99. 99.
    White C, Yang J, Monteiro MJ, Foskett JK. 2006.. CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. . J. Biol. Chem. 281::2082533
    [Crossref] [Google Scholar]
  100. 100.
    Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, et al. 2009.. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. . PNAS 106::14397402
    [Crossref] [Google Scholar]
  101. 101.
    Fujimoto T, Machida T, Tanaka Y, Tsunoda T, Doi K, et al. 2011.. KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells. . Biochem. Biophys. Res. Commun. 407::43843
    [Crossref] [Google Scholar]
  102. 102.
    Matsuzaki H, Fujimoto T, Ota T, Ogawa M, Tsunoda T, et al. 2012.. Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. . FEBS Open Bio 2::25559
    [Crossref] [Google Scholar]
  103. 103.
    Thillaiappan NB, Smith HA, Atakpa-Adaji P, Taylor CW. 2021.. KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals. . Nat. Commun. 12::4514
    [Crossref] [Google Scholar]
  104. 104.
    Arige V, Terry LE, Malik S, Knebel TR, Wagner LE 2nd, Yule DI. 2021.. CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. . J. Cell Sci. 134::jcs258875
    [Crossref] [Google Scholar]
  105. 105.
    Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, et al. 2006.. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. . J. Cell Biol. 175::90111
    [Crossref] [Google Scholar]
  106. 106.
    Carvalho DR, Medeiros JEG, Ribeiro DSM, Martins B, Sobreira NLM. 2018.. Additional features of Gillespie syndrome in two Brazilian siblings with a novel ITPR1 homozygous pathogenic variant. . Eur. J. Med. Genet. 61::13438
    [Crossref] [Google Scholar]
  107. 107.
    Lassuthova P, Safka Brozkova D, Krutova M, Neupauerova J, Haberlova J, et al. 2016.. Improving diagnosis of inherited peripheral neuropathies through gene panel analysis. . Orphanet J. Rare Dis. 11::118
    [Crossref] [Google Scholar]
  108. 108.
    Yamazaki H, Nozaki H, Onodera O, Michikawa T, Nishizawa M, Mikoshiba K. 2011.. Functional characterization of the P1059L mutation in the inositol 1,4,5-trisphosphate receptor type 1 identified in a Japanese SCA15 family. . Biochem. Biophys. Res. Commun. 410::75458
    [Crossref] [Google Scholar]
  109. 109.
    Elert-Dobkowska E, Stepniak I, Krysa W, Ziora-Jakutowicz K, Rakowicz M, et al. 2019.. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. . Neurogenetics 20::2738
    [Crossref] [Google Scholar]
  110. 110.
    Azumaya CM, Linton EA, Risener CJ, Nakagawa T, Karakas E. 2020.. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. . J. Biol. Chem. 295::174353
    [Crossref] [Google Scholar]
  111. 111.
    Al-Shamsi A, Hertecant JL, Souid AK, Al-Jasmi FA. 2016.. Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates. . Orphanet J. Rare Dis. 11::94
    [Crossref] [Google Scholar]
  112. 112.
    Tu H, Tang TS, Wang Z, Bezprozvanny I. 2004.. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. . J. Biol. Chem. 279::1937582
    [Crossref] [Google Scholar]
  113. 113.
    Arige V, Yule DI. 2022.. Spatial and temporal crosstalk between the cAMP and Ca2+ signaling systems. . Biochim. Biophys. Acta. Mol. Cell Res. 1869::119293
    [Crossref] [Google Scholar]
  114. 114.
    Hirota J, Ando H, Hamada K, Mikoshiba K. 2003.. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. . Biochem. J. 372::43541
    [Crossref] [Google Scholar]
  115. 115.
    Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C. 2010.. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. . J. Biol. Chem. 285::1367884
    [Crossref] [Google Scholar]
  116. 116.
    Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, et al. 2004.. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. . J. Cell Biol. 166::193203
    [Crossref] [Google Scholar]
  117. 117.
    Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, et al. 2008.. Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. . Dev. Biol. 320::40213
    [Crossref] [Google Scholar]
  118. 118.
    Schabhuttl M, Wieland T, Senderek J, Baets J, Timmerman V, et al. 2014.. Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. . J. Neurol. 261::97082
    [Crossref] [Google Scholar]
  119. 119.
    Shadrina MI, Shulskaya MV, Klyushnikov SA, Nikopensius T, Nelis M, et al. 2016.. ITPR1 gene p.Val1553Met mutation in Russian family with mild Spinocerebellar ataxia. . Cerebellum Ataxias 3::2
    [Crossref] [Google Scholar]
  120. 120.
    Soulsby MD, Wojcikiewicz RJ. 2005.. The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. . Biochem. J. 392::49397
    [Crossref] [Google Scholar]
  121. 121.
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015.. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. . Nucleic Acids Res. 43::D51220
    [Crossref] [Google Scholar]
  122. 122.
    Klar J, Ali Z, Farooq M, Khan K, Wikstrom J, et al. 2017.. A missense variant in ITPR1 provides evidence for autosomal recessive SCA29 with asymptomatic cerebellar hypoplasia in carriers. . Eur. J. Hum. Genet. 25::84853
    [Crossref] [Google Scholar]
  123. 123.
    Chen B, Qi CY, Chen L, Dai MJ, Miao YY, et al. 2020.. A C1976Y missense mutation in the mouse Ip3r1 gene leads to short-term mydriasis and unfolded protein response in the iris constrictor muscles. . Exp. Anim. 69::4553
    [Crossref] [Google Scholar]
  124. 124.
    Xu L, Chirasani VR, Carter JS, Pasek DA, Dokholyan NV, et al. 2018.. Ca2+-mediated activation of the skeletal-muscle ryanodine receptor ion channel. . J. Biol. Chem. 293::195019
    [Crossref] [Google Scholar]
  125. 125.
    Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJH. 2013.. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. . J. Biol. Chem. 288::2534049
    [Crossref] [Google Scholar]
  126. 126.
    Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K. 2005.. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. . Cell 120::8598
    [Crossref] [Google Scholar]
  127. 127.
    Boehning D, Joseph SK. 2000.. Functional properties of recombinant type I and type III inositol 1, 4,5-trisphosphate receptor isoforms expressed in COS-7 cells. . J. Biol. Chem. 275::2149299
    [Crossref] [Google Scholar]
  128. 128.
    McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A, et al. 2016.. A restricted repertoire of de novo mutations in ITPR1 cause Gillespie syndrome with evidence for dominant-negative effect. . Am. J. Hum. Genet. 98::98192
    [Crossref] [Google Scholar]
  129. 129.
    Hirata K, Pusl T, O'Neill AF, Dranoff JA, Nathanson MH. 2002.. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. . Gastroenterology 122::1088100
    [Crossref] [Google Scholar]
  130. 130.
    Arige V, Yule DI. 2020.. Pivotal role of type-1 inositol 1,4,5-trisphosphate receptor for glucagon-induced gluconeogenesis. . Cell Calcium 90::102243
    [Crossref] [Google Scholar]
  131. 131.
    Hsiao CT, Liu YT, Liao YC, Hsu TY, Lee YC, Soong BW. 2017.. Mutational analysis of ITPR1 in a Taiwanese cohort with cerebellar ataxias. . PLOS ONE 12::e0187503
    [Crossref] [Google Scholar]
  132. 132.
    Baker MR, Fan G, Seryshev AB, Agosto MA, Baker ML, Serysheva II. 2021.. Cryo-EM structure of type 1 IP3R channel in a lipid bilayer. . Commun. Biol. 4::625
    [Crossref] [Google Scholar]
  133. 133.
    Dentici ML, Barresi S, Nardella M, Bellacchio E, Alfieri P, et al. 2017.. Identification of novel and hotspot mutations in the channel domain of ITPR1 in two patients with Gillespie syndrome. . Gene 628::14145
    [Crossref] [Google Scholar]
  134. 134.
    Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, et al. 2015.. Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. . Cell Rep. 12::116983
    [Crossref] [Google Scholar]
  135. 135.
    Hayashi S, Uehara DT, Tanimoto K, Mizuno S, Chinen Y, et al. 2017.. Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH). . PLOS ONE 12::e0181791
    [Crossref] [Google Scholar]
  136. 136.
    Yoo SH, Lewis MS. 1995.. Thermodynamic study of the pH-dependent interaction of chromogranin A with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. . Biochemistry 34::63238
    [Crossref] [Google Scholar]
  137. 137.
    Yoo SH, Lewis MS. 2000.. Interaction of chromogranin B and the near N-terminal region of chromogranin B with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. . J. Biol. Chem. 275::30293300
    [Crossref] [Google Scholar]
  138. 138.
    Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH. 2003.. A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. . J. Biol. Chem. 278::49699706
    [Crossref] [Google Scholar]
  139. 139.
    Bhanumathy C, da Fonseca PC, Morris EP, Joseph SK. 2012.. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors. . J. Biol. Chem. 287::4367484
    [Crossref] [Google Scholar]
  140. 140.
    Galvan DL, Mignery GA. 2002.. Carboxyl-terminal sequences critical for inositol 1,4,5-trisphosphate receptor subunit assembly. . J. Biol. Chem. 277::4824860
    [Crossref] [Google Scholar]
  141. 141.
    Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB, Fissore RA. 2009.. Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. . Cell Calcium 46::5664
    [Crossref] [Google Scholar]
  142. 142.
    Boehning D, van Rossum DB, Patterson RL, Snyder SH. 2005.. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. . PNAS 102::146671
    [Crossref] [Google Scholar]
  143. 143.
    White C, Li C, Yang J, Petrenko NB, Madesh M, et al. 2005.. The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. . Nat. Cell Biol. 7::102128
    [Crossref] [Google Scholar]
  144. 144.
    Hedgepeth SC, Garcia MI, Wagner LE 2nd, Rodriguez AM, Chintapalli SV, et al. 2015.. The BRCA1 tumor suppressor binds to inositol 1,4,5-trisphosphate receptors to stimulate apoptotic calcium release. . J. Biol. Chem. 290::730413
    [Crossref] [Google Scholar]
  145. 145.
    Ronkko J, Rodriguez Y, Rasila T, Torregrosa-Munumer R, Pennonen J, et al. 2023.. Human IP3 receptor triple knockout stem cells remain pluripotent despite altered mitochondrial metabolism. . Cell Calcium 114::102782
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-022724-105627
Loading
/content/journals/10.1146/annurev-physiol-022724-105627
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error