1932

Abstract

Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein–coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-032122-030352
2023-02-10
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-032122-030352.html?itemId=/content/journals/10.1146/annurev-physiol-032122-030352&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    DeVito LM, Dennis EA, Kahn BB, Shulman GI, Witztum JL et al. 2022. Bioactive lipids and metabolic syndrome—a symposium report. Ann. N.Y. Acad. Sci. 1511:187–106
    [Google Scholar]
  2. 2.
    Abumrad NA, Goldberg IJ. 2016. CD36 actions in the heart: lipids, calcium, inflammation, repair and more?. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:101442–49
    [Google Scholar]
  3. 3.
    Goodpaster BH, Sparks LM. 2017. Metabolic flexibility in health and disease. Cell Metab. 25:51027–36
    [Google Scholar]
  4. 4.
    Abumrad NA, Park JH, Park CR. 1984. Permeation of long-chain fatty acid into adipocytes: kinetics, specificity, and evidence for involvement of a membrane protein. J. Biol. Chem. 259:148945–53
    [Google Scholar]
  5. 5.
    Sorrentino D, Robinson RB, Kiang CL, Berk PD. 1989. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration: uptake kinetics are consistent with the conventional theory. J. Clin. Investig. 84:41325–33
    [Google Scholar]
  6. 6.
    Storch J, Lechene C, Kleinfeld AM. 1991. Direct determination of free fatty acid transport across the adipocyte plasma membrane using quantitative fluorescence microscopy. J. Biol. Chem. 266:2113473–76
    [Google Scholar]
  7. 7.
    Richieri GV, Ogata RT, Zimmerman AW, Veerkamp JH, Kleinfeld AM. 2000. Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39:247197–204
    [Google Scholar]
  8. 8.
    Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. 2021. Endothelial cell receptors in tissue lipid uptake and metabolism. Circ. Res. 128:3433–50
    [Google Scholar]
  9. 9.
    Cabodevilla AG, Tang S, Lee S, Mullick AE, Aleman JO et al. 2021. Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. J. Clin. Investig. 131:12e145800
    [Google Scholar]
  10. 10.
    Glatz JFC, Luiken JJFP. 2017. From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake. Biochimie. 136:21–26
    [Google Scholar]
  11. 11.
    Kleinfeld AM. 2000. Lipid phase fatty acid flip-flop, is it fast enough for cellular transport?. J. Membr. Biol. 175:279–86
    [Google Scholar]
  12. 12.
    Kampf JP, Parmley D, Kleinfeld AM. 2007. Free fatty acid transport across adipocytes is mediated by an unknown membrane protein pump. Am. J. Physiol. Endocrinol. Metab. 293:5E1207–14
    [Google Scholar]
  13. 13.
    Carley AN, Kleinfeld AM. 2011. Fatty acid (FFA) transport in cardiomyocytes revealed by imaging unbound FFA is mediated by an FFA pump modulated by the CD36 protein. J. Biol. Chem. 286:64589–97
    [Google Scholar]
  14. 14.
    Stremmel W, Lotz G, Strohmeyer G, Berk PD. 1985. Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J. Clin. Investig. 75:31068–76
    [Google Scholar]
  15. 15.
    Stremmel W, Strohmeyer G, Berk PD. 1986. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. PNAS 83:113584–88
    [Google Scholar]
  16. 16.
    Stump DD, Zhou SL, Berk PD. 1993. Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 265:5G894–902
    [Google Scholar]
  17. 17.
    Isola LM, Zhou SL, Kiang CL, Stump DD, Bradbury MW, Berk PD. 1995. 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. PNAS 92:219866–70
    [Google Scholar]
  18. 18.
    Glatz JFC, Luiken JJFP, Bonen A. 2010. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 90:1367–417
    [Google Scholar]
  19. 19.
    Ge JF, Walewski JL, Anglade D, Berk PD. 2016. Regulation of hepatocellular fatty acid uptake in mouse models of fatty liver disease with and without functional Leptin signaling: roles of NfKB and SREBP-1C and the effects of Spexin. Semin. Liver Dis. 36:4360–72
    [Google Scholar]
  20. 20.
    Glatz JFC, Luiken JJFP. 2020. Time for a détente in the war on the mechanism of cellular fatty acid uptake. J. Lipid Res. 61:91300–3
    [Google Scholar]
  21. 21.
    Holloway GP, Nickerson JG, Lally JSV, Petrick HL, Dennis KMJH et al. 2022. Co-overexpression of CD36 and FABPpm increases fatty acid transport additively, not synergistically, within muscle. Am. J. Physiol. Cell Physiol. 322:3C546–53
    [Google Scholar]
  22. 22.
    Schaffer JE, Lodish HF. 1994. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79:3427–36
    [Google Scholar]
  23. 23.
    Schaffer JE. 2002. Fatty acid transport: the roads taken. Am. J. Physiol. Endocrinol. Metab. 282:2E239–46
    [Google Scholar]
  24. 24.
    Anderson CM, Stahl A. 2013. Slc27 fatty acid transport proteins. Mol. Aspects Med. 34:2–3516–28
    [Google Scholar]
  25. 25.
    Kazantzis M, Stahl A. 2012. Fatty acid transport proteins, implications in physiology and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821:5852–57
    [Google Scholar]
  26. 26.
    Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J et al. 2010. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464:7290917–21
    [Google Scholar]
  27. 27.
    Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC et al. 2012. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature 490:7420426–30
    [Google Scholar]
  28. 28.
    Robciuc MR, Kivelä R, Williams IM, de Boer JF, van Dijk TH et al. 2016. VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab. 23:4712–24
    [Google Scholar]
  29. 29.
    Ibrahim A, Yucel N, Kim B, Arany Z. 2020. Local mitochondrial ATP production regulates endothelial fatty acid uptake and transport. Cell Metab. 32:2309–19.e7
    [Google Scholar]
  30. 30.
    Harmon CM, Luce P, Beth AH, Abumrad NA. 1991. Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J. Membr. Biol. 121:3261–68
    [Google Scholar]
  31. 31.
    Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA. 1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem. 268:2417665–68
    [Google Scholar]
  32. 32.
    Harmon CM, Abumrad NA. 1993. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133:143–49
    [Google Scholar]
  33. 33.
    Canton J, Neculai D, Grinstein S. 2013. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13:9621–34
    [Google Scholar]
  34. 34.
    Silverstein RL, Febbraio M. 2009. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal. 2:72re3
    [Google Scholar]
  35. 35.
    Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF et al. 2013. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 504:7478172–76
    [Google Scholar]
  36. 36.
    Hsieh F-L, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. 2016. The structural basis for CD36 binding by the malaria parasite. Nat. Commun. 7:12837
    [Google Scholar]
  37. 37.
    Kuda O, Pietka TA, Demianova Z, Kudova E, Cvacka J et al. 2013. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density lipoprotein uptake by macrophages. J. Biol. Chem. 288:2215547–55
    [Google Scholar]
  38. 38.
    Glatz JFC, Luiken JJFP. 2018. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J. Lipid Res. 59:71084–93
    [Google Scholar]
  39. 39.
    Tao N, Wagner SJ, Lublin DM. 1996. CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails. J. Biol. Chem. 271:3722315–20
    [Google Scholar]
  40. 40.
    Wang J, Hao J-W, Wang X, Guo H, Sun H-H et al. 2019. DHHC4 and DHHC5 facilitate fatty acid uptake by palmitoylating and targeting CD36 to the plasma membrane. Cell Rep. 26:1209–21.e5
    [Google Scholar]
  41. 41.
    Hoosdally SJ, Andress EJ, Wooding C, Martin CA, Linton KJ. 2009. The human scavenger receptor CD36: glycosylation status and its role in trafficking and function. J. Biol. Chem. 284:2416277–88
    [Google Scholar]
  42. 42.
    Hsieh J, Longuet C, Maida A, Bahrami J, Xu E et al. 2009. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:3997–1005.e1
    [Google Scholar]
  43. 43.
    Liu J, Marchase RB, Chatham JC. 2007. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J. Mol. Cell. Cardiol. 42:1177–85
    [Google Scholar]
  44. 44.
    Smith J, Su X, El-Maghrabi R, Stahl PD, Abumrad NA. 2008. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. J. Biol. Chem. 283:2013578–85
    [Google Scholar]
  45. 45.
    Tran TTT, Poirier H, Clément L, Nassir F, Pelsers MMAL et al. 2011. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J. Biol. Chem. 286:2825201–10
    [Google Scholar]
  46. 46.
    Srikanthan S, Li W, Silverstein RL, McIntyre TM. 2014. Exosome poly-ubiquitin inhibits platelet activation, downregulates CD36 and inhibits pro-atherothombotic cellular functions. J. Thromb. Haemost. 12:111906–17
    [Google Scholar]
  47. 47.
    Kim K-Y, Stevens MV, Akter MH, Rusk SE, Huang RJ et al. 2011. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J. Clin. Investig. 121:93701–12
    [Google Scholar]
  48. 48.
    Sun S, Tan P, Huang X, Zhang W, Kong C et al. 2017. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes. J. Biol. Chem. 293:7):2383–94
    [Google Scholar]
  49. 49.
    Coburn CT, Knapp FF, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. 2000. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275:4232523–29
    [Google Scholar]
  50. 50.
    Son N-H, Basu D, Samovski D, Pietka TA, Peche VS et al. 2018. Endothelial cell CD36 optimizes tissue fatty acid uptake. J. Clin. Investig. 128:104329–42
    [Google Scholar]
  51. 51.
    Drover VA, Ajmal M, Nassir F, Davidson NO, Nauli AM et al. 2005. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Investig. 115:51290–97
    [Google Scholar]
  52. 52.
    Hames KC, Vella A, Kemp BJ, Jensen MD. 2014. Free fatty acid uptake in humans with CD36 deficiency. Diabetes 63:113606–14
    [Google Scholar]
  53. 53.
    Shibao CA, Celedonio JE, Ramirez CE, Love-Gregory L, Arnold AC et al. 2016. A common CD36 variant influences endothelial function and response to treatment with phosphodiesterase 5 inhibition. J. Clin. Endocrinol. Metab. 101:7jc20161294
    [Google Scholar]
  54. 54.
    Love-Gregory L, Kraja AT, Allum F, Aslibekyan S, Hedman ÅK et al. 2016. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. J. Lipid Res. 57:122176–84
    [Google Scholar]
  55. 55.
    Samovski D, Dhule P, Pietka T, Jacome-Sosa M, Penrose E et al. 2018. Regulation of insulin receptor pathway and glucose metabolism by CD36 signaling. Diabetes 67:71272–84
    [Google Scholar]
  56. 56.
    Frank PG, Pavlides S, Lisanti MP. 2009. Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res. 335:141–47
    [Google Scholar]
  57. 57.
    Zhang X, Sessa WC, Fernández-Hernando C. 2018. Endothelial transcytosis of lipoproteins in atherosclerosis. Front. Cardiovasc. Med. 5:130
    [Google Scholar]
  58. 58.
    Simons K, Sampaio JL. 2011. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3:10a004697
    [Google Scholar]
  59. 59.
    Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. 1995. VIP21/caveolin is a cholesterol-binding protein. PNAS 92:2210339–43
    [Google Scholar]
  60. 60.
    Trigatti BL, Anderson RG, Gerber GE. 1999. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255:134–39
    [Google Scholar]
  61. 61.
    D'Aprile C, Prioni S, Mauri L, Prinetti A, Grassi S. 2021. Lipid rafts as platforms for sphingosine 1-phosphate metabolism and signalling. Cell Signal. 80:109929
    [Google Scholar]
  62. 62.
    Head BP, Patel HH, Insel PA. 2014. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim. Biophys. Acta Membr. 1838:2532–45
    [Google Scholar]
  63. 63.
    Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W 2006. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:4416–23
    [Google Scholar]
  64. 64.
    Razani B, Combs TP, Wang XB, Frank PG, Park DS et al. 2002. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277:108635–47
    [Google Scholar]
  65. 65.
    Fernández-Rojo MA, Restall C, Ferguson C, Martel N, Martin S et al. 2012. Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology 55:51574–84
    [Google Scholar]
  66. 66.
    Martin S, Parton RG. 2005. Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol. 16:2163–74
    [Google Scholar]
  67. 67.
    Kuo A, Lee MY, Yang K, Gross RW, Sessa WC. 2018. Caveolin-1 regulates lipid droplet metabolism in endothelial cells via autocrine prostacyclin-stimulated, cAMP-mediated lipolysis. J. Biol. Chem. 293:3973–83
    [Google Scholar]
  68. 68.
    Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W 2006. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:4416–23
    [Google Scholar]
  69. 69.
    Parton RG, del Pozo MA. 2013. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14:298–112
    [Google Scholar]
  70. 70.
    Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F et al. 2018. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175:3695–708.e13
    [Google Scholar]
  71. 71.
    Crewe C, Scherer PE. 2021. Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Rev. Endocr. Metab. Disord. 23:161–69
    [Google Scholar]
  72. 72.
    Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. 2020. Free fatty acid receptors in health and disease. Physiol. Rev. 100:1171–210
    [Google Scholar]
  73. 73.
    Zhang D, Leung PS. 2014. Potential roles of GPR120 and its agonists in the management of diabetes. Drug Des. Devel. Ther. 8:1013–27
    [Google Scholar]
  74. 74.
    Ghislain J, Poitout V. 2021. Targeting lipid GPCRs to treat type 2 diabetes mellitus—progress and challenges. Nat. Rev. Endocrinol. 17:3162–75
    [Google Scholar]
  75. 75.
    Feng DD, Luo Z, Roh S-G, Hernandez M, Tawadros N et al. 2006. Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids. Endocrinology 147:2674–82
    [Google Scholar]
  76. 76.
    Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL et al. 2007. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56:41087–94
    [Google Scholar]
  77. 77.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H et al. 2010. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:5687–98
    [Google Scholar]
  78. 78.
    Song T, Yang Y, Zhou Y, Wei H, Peng J. 2017. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue. Cell. Mol. Life Sci. 74:152723–33
    [Google Scholar]
  79. 79.
    Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T et al. 2012. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483:7389350–54
    [Google Scholar]
  80. 80.
    Besnard P, Passilly-Degrace P, Khan NA. 2016. Taste of fat: a sixth taste modality?. Physiol. Rev. 96:1151–76
    [Google Scholar]
  81. 81.
    Auguste S, Fisette A, Fernandes MF, Hryhorczuk C, Poitout V et al. 2016. Central agonism of GPR120 acutely inhibits food intake and food reward and chronically suppresses anxiety-like behavior in mice. Int. J. Neuropsychopharmacol. 19:7pyw014
    [Google Scholar]
  82. 82.
    Samovski D, Sun J, Pietka T, Gross RW, Eckel RH et al. 2015. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation. Diabetes 64:2353–59
    [Google Scholar]
  83. 83.
    Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M et al. 2005. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Investig. 115:113177–84
    [Google Scholar]
  84. 84.
    Pepino MY, Love-Gregory L, Klein S, Abumrad NA. 2012. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J. Lipid Res. 53:3561–66
    [Google Scholar]
  85. 85.
    Liu C, Bookout AL, Lee S, Sun K, Jia L et al. 2014. PPARγ in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab. 19:4722–30
    [Google Scholar]
  86. 86.
    Jacome-Sosa M, Miao Z-F, Peche VS, Morris EF, Narendran R et al. 2021. CD36 maintains the gastric mucosa and associates with gastric disease. Commun. Biol. 4:11247
    [Google Scholar]
  87. 87.
    Teff KL. 2011. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol. Behav. 103:144–50
    [Google Scholar]
  88. 88.
    Sobhani I, Buyse M, Goïot H, Weber N, Laigneau J et al. 2002. Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology 122:2259–63
    [Google Scholar]
  89. 89.
    Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE 2013. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 62:82709–16
    [Google Scholar]
  90. 90.
    Noushmehr H, D'Amico E, Farilla L, Hui H, Wawrowsky KA et al. 2005. Fatty acid translocase (FAT/CD36) is localized on insulin-containing granules in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 54:2472–81
    [Google Scholar]
  91. 91.
    Wallin T, Ma Z, Ogata H, Jørgensen IH, Iezzi M et al. 2010. Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:2191–97
    [Google Scholar]
  92. 92.
    Nagao M, Esguerra JLS, Asai A, Ofori JK, Edlund A et al. 2020. Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in β-cells. Diabetes 69:61193–205
    [Google Scholar]
  93. 93.
    Sundaresan S, Shahid R, Riehl TE, Chandra R, Nassir F et al. 2013. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 27:31191–1202
    [Google Scholar]
  94. 94.
    Mattes RD. 1997. Physiologic responses to sensory stimulation by food: nutritional implications. J. Am. Diet. Assoc. 97:4406–13
    [Google Scholar]
  95. 95.
    Siegel EG, Trimble ER, Renold AE, Berthoud HR. 1980. Importance of preabsorptive insulin release on oral glucose tolerance: studies in pancreatic islet transplanted rats. Gut 21:111002–9
    [Google Scholar]
  96. 96.
    Shibao CA, Celedonio JE, Tamboli R, Sidani R, Love-Gregory L et al. 2018. CD36 modulates fasting and preabsorptive hormone and bile acid levels. J. Clin. Endocrinol. Metab. 103:51856–66
    [Google Scholar]
  97. 97.
    Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T et al. 2014. CD36- and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146:4995–1005
    [Google Scholar]
  98. 98.
    Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J et al. 2010. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J. Lipid Res. 51:71918–28
    [Google Scholar]
  99. 99.
    Buttet M, Poirier H, Traynard V, Gaire K, Tran TTT et al. 2016. Deregulated lipid sensing by intestinal CD36 in diet-induced hyperinsulinemic obese mouse model. PLOS ONE 11:1e0145626
    [Google Scholar]
  100. 100.
    Nauli AM, Nassir F, Zheng S, Yang Q, Lo C-M et al. 2006. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 131:41197–1207
    [Google Scholar]
  101. 101.
    Fujitani M, Matsumura S, Masuda D, Yamashita S, Fushiki T, Inoue K. 2014. CD36, but not GPR120, is required for efficient fatty acid utilization during endurance exercise. Biosci. Biotechnol. Biochem. 78:111871–78
    [Google Scholar]
  102. 102.
    Zhang W, Lin F, Liu Y, Zhang H, Gilbertson TA, Zhou A. 2020. Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging. PNAS 117:73518–27
    [Google Scholar]
  103. 103.
    Cani PD, Osto M, Geurts L, Everard A 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:4279–88
    [Google Scholar]
  104. 104.
    Winer DA, Luck H, Tsai S, Winer S. 2016. The intestinal immune system in obesity and insulin resistance. Cell Metab. 23:3413–26
    [Google Scholar]
  105. 105.
    Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S et al. 2005. CD36 is a sensor of diacylglycerides. Nature 433:7025523–27
    [Google Scholar]
  106. 106.
    Ballesteros I, Cuartero MI, Pradillo JM, de la Parra J, Pérez-Ruiz A et al. 2014. Rosiglitazone-induced CD36 up-regulation resolves inflammation by PPARγ and 5-LO-dependent pathways. J. Leukoc. Biol. 95:4587–98
    [Google Scholar]
  107. 107.
    Parks BW, Black LL, Zimmerman KA, Metz AE, Steele C et al. 2013. CD36, but not G2A, modulates efferocytosis, inflammation, and fibrosis following bleomycin-induced lung injury. J. Lipid Res. 54:41114–23
    [Google Scholar]
  108. 108.
    Cifarelli V, Ivanov S, Xie Y, Son N-H, Saunders BT et al. 2017. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cell. Mol. Gastroenterol. Hepatol. 3:182–98
    [Google Scholar]
  109. 109.
    Cifarelli V, Appak-Baskoy S, Peche VS, Kluzak A, Shew T et al. 2021. Visceral obesity and insulin resistance associate with CD36 deletion in lymphatic endothelial cells. Nat. Commun. 12:13350
    [Google Scholar]
  110. 110.
    Wong BW, Wang X, Zecchin A, Thienpont B, Cornelissen I et al. 2017. The role of fatty acid β-oxidation in lymphangiogenesis. Nature 542:763949–54
    [Google Scholar]
  111. 111.
    Schoors S, Bruning U, Missiaen R, Queiroz KC, Borgers G et al. 2015. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520:7546192–97
    [Google Scholar]
  112. 112.
    Zhang F, Zarkada G, Han J, Li J, Dubrac A et al. 2018. Lacteal junction zippering protects against diet-induced obesity. Science 361:6402599–603
    [Google Scholar]
  113. 113.
    Lampugnani MG, Dejana E, Giampietro C. 2018. Vascular endothelial (VE)-Cadherin, endothelial adherens junctions, and vascular disease. Cold Spring Harb. Perspect. Biol. 9:a029322
    [Google Scholar]
  114. 114.
    Patella F, Schug ZT, Persi E, Neilson LJ, Erami Z et al. 2015. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability. Mol. Cell. Proteom. 14:3621–34
    [Google Scholar]
  115. 115.
    Knobloch M, Widmann C. 2018. Burning fat to keep your stem cells? The role of fatty acid oxidation in various tissue stem cells. Curr. Opin. Lipidol. 29:5426–27
    [Google Scholar]
  116. 116.
    Ito K, Carracedo A, Weiss D, Arai F, Ala U et al. 2012. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18:91350–58
    [Google Scholar]
  117. 117.
    Knobloch M, Pilz G-A, Ghesquière B, Kovacs WJ, Wegleiter T et al. 2017. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep. 20:92144–55
    [Google Scholar]
  118. 118.
    Mihaylova MM, Cheng C-W, Cao AQ, Tripathi S, Mana MD et al. 2018. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22:5769–78.e4
    [Google Scholar]
  119. 119.
    Crewe C, Funcke J-B, Li S, Joffin N, Gliniak CM et al. 2021. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33:91853–68.e11
    [Google Scholar]
  120. 120.
    Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA, Mills JC. 2012. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 142:121–24.e7
    [Google Scholar]
  121. 121.
    Nahlé Z, Hsieh M, Pietka T, Coburn CT, Grimaldi PA et al. 2008. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARδ/β-mediated adaptation to metabolic stress. J. Biol. Chem. 283:2114317–26
    [Google Scholar]
  122. 122.
    Mistry JJ, Hellmich C, Moore JA, Jibril A, Macaulay I et al. 2021. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12:17130
    [Google Scholar]
  123. 123.
    Ma X, Bacci S, Mlynarski W, Gottardo L, Soccio T et al. 2004. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 13:192197–2205
    [Google Scholar]
  124. 124.
    Love-Gregory L, Sherva R, Sun L, Wasson J, Schappe T et al. 2008. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17:111695–1704
    [Google Scholar]
  125. 125.
    Farook VS, Puppala S, Schneider J, Fowler SP, Chittoor G et al. 2012. Metabolic syndrome is linked to chromosome 7q21 and associated with genetic variants in CD36 and GNAT3 in Mexican Americans. Obesity 20:102083–92
    [Google Scholar]
  126. 126.
    Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL et al. 2009. Genomewide association studies of stroke. N. Engl. J. Med. 360:171718–28
    [Google Scholar]
  127. 127.
    Masuda D, Hirano K, Oku H, Sandoval JC, Kawase R et al. 2009. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J. Lipid Res. 50:5999–1011
    [Google Scholar]
  128. 128.
    Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A et al. 2012. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44:101084–89
    [Google Scholar]
  129. 129.
    Keller KL, Liang LCH, Sakimura J, May D, van Belle C et al. 2012. Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity 20:51066–73
    [Google Scholar]
  130. 130.
    Ramos-Lopez O, Roman S, Martinez-Lopez E, Fierro NA, Gonzalez-Aldaco K et al. 2016. CD36 genetic variation, fat intake and liver fibrosis in chronic hepatitis C virus infection. World J. Hepatol. 8:251067–74
    [Google Scholar]
  131. 131.
    Fujii R, Hishida A, Suzuki K, Imaeda N, Goto C et al. 2019. Cluster of differentiation 36 gene polymorphism (rs1761667) is associated with dietary MUFA intake and hypertension in a Japanese population. Br. J. Nutr. 121:111215–22
    [Google Scholar]
  132. 132.
    Vallée Marcotte B, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl M-C 2017. Polymorphisms in FFAR4 (GPR120) gene modulate insulin levels and sensitivity after fish oil supplementation. J. Pers. Med. 7:415
    [Google Scholar]
  133. 133.
    Vestmar MA, Andersson EA, Christensen CR, Hauge M, Glümer C et al. 2016. Functional and genetic epidemiological characterization of the FFAR4 (GPR120) p.r270h variant in the Danish population. J. Med. Genet. 53:9616–23
    [Google Scholar]
  134. 134.
    Vettor R, Granzotto M, De Stefani D, Trevellin E, Rossato M et al. 2008. Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J. Clin. Endocrinol. Metab. 93:93541–50
    [Google Scholar]
  135. 135.
    Wang Y, Koch M, di Giuseppe R, Evans K, Borggrefe J et al. 2019. Associations of plasma CD36 and body fat distribution. J. Clin. Endocrinol. Metab. 104:94016–23
    [Google Scholar]
  136. 136.
    Heebøll S, Poulsen MK, Ornstrup MJ, Kjær TN, Pedersen SB et al. 2016. Circulating sCD36 levels in patients with non-alcoholic fatty liver disease and controls. Int. J. Obes. 41:2262–67
    [Google Scholar]
  137. 137.
    García-Monzón C, Lo Iacono O, Crespo J, Romero-Gómez M, García-Samaniego J et al. 2014. Increased soluble CD36 is linked to advanced steatosis in nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 44:165–73
    [Google Scholar]
  138. 138.
    Ramakrishnan DP, Hajj-Ali RA, Chen Y, Silverstein RL 2016. Extracellular vesicles activate a CD36-dependent signaling pathway to inhibit microvascular endothelial cell migration and tube formation. Arterioscler. Thromb. Vasc. Biol. 36:3534–44
    [Google Scholar]
  139. 139.
    Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R et al. 2003. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422:6928173–76
    [Google Scholar]
  140. 140.
    Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. 2005. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 1:4245–58
    [Google Scholar]
  141. 141.
    Lan H, Hoos LM, Liu L, Tetzloff G, Hu W et al. 2008. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes 57:112999–3006
    [Google Scholar]
  142. 142.
    Wang L, Zhao Y, Gui B, Fu R, Ma F et al. 2011. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet α-cells. J. Endocrinol. 210:2173–79
    [Google Scholar]
  143. 143.
    Liou AP, Lu X, Sei Y, Zhao X, Pechhold S et al. 2011. The G-protein–coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140:3903–12
    [Google Scholar]
  144. 144.
    Dragano NRV, Solon C, Ramalho AF, de Moura RF, Razolli DS et al. 2017. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation. J. Neuroinflamm. 14:191
    [Google Scholar]
  145. 145.
    Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R et al. 2010. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30:258376–82
    [Google Scholar]
  146. 146.
    Quesada-López T, Cereijo R, Turatsinze J-V, Planavila A, Cairó M et al. 2016. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat. Commun. 7:13479
    [Google Scholar]
  147. 147.
    Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T et al. 2005. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11:190–94
    [Google Scholar]
  148. 148.
    Iwasaki K, Harada N, Sasaki K, Yamane S, Iida K et al. 2015. Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion. Endocrinology 156:3837–46
    [Google Scholar]
  149. 149.
    Sankoda A, Harada N, Iwasaki K, Yamane S, Murata Y et al. 2017. Long-chain free fatty acid receptor GPR120 mediates oil-induced GIP secretion through CCK in male mice. Endocrinology 158:51172–80
    [Google Scholar]
  150. 150.
    Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sörhede Winzell M et al. 2014. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57:61182–91
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-032122-030352
Loading
/content/journals/10.1146/annurev-physiol-032122-030352
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error