1932

Abstract

Liver regeneration occurs in response to diverse injuries and is capable of functionally reestablishing the lost parenchyma. This phenomenon has been known since antiquity, encapsulated in the Greek myth where Prometheus was to be punished by Zeus for sharing the gift of fire with humanity by having an eagle eat his liver daily, only to have the liver regrow back, thus ensuring eternal suffering and punishment. Today, this process is actively leveraged clinically during living donor liver transplantation whereby up to a two-thirds hepatectomy (resection or removal of part of the liver) on a donor is used for transplant to a recipient. The donor liver rapidly regenerates to recover the lost parenchymal mass to form a functional tissue. This astonishing regenerative process and unique capacity of the liver are examined in further detail in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-032822-094134
2023-02-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-032822-094134.html?itemId=/content/journals/10.1146/annurev-physiol-032822-094134&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tanaka EM, Reddien PW. 2011. The cellular basis for animal regeneration. Dev. Cell 21:172–85
    [Google Scholar]
  2. 2.
    Iismaa SE, Kaidonis X, Nicks AM, Bogush N, Kikuchi K et al. 2018. Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen. Med. 3:6
    [Google Scholar]
  3. 3.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA et al. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331:1078–80
    [Google Scholar]
  4. 4.
    Talman V, Ruskoaho H. 2016. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 365:563–81
    [Google Scholar]
  5. 5.
    Higgins GM, Anderson RM. 1931. Experimental pathology of the liver. 1. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12:186–202
    [Google Scholar]
  6. 6.
    Power C, Rasko JE. 2008. Whither Prometheus’ liver? Greek myth and the science of regeneration. Ann. Intern. Med. 149:421–26
    [Google Scholar]
  7. 7.
    Middleton PF, Duffield M, Lynch SV, Padbury RT, House T et al. 2006. Living donor liver transplantation–adult donor outcomes: a systematic review. Liver Transpl. 12:24–30
    [Google Scholar]
  8. 8.
    Schmucker DL, Sanchez H. 2011. Liver regeneration and aging: a current perspective. Curr. Gerontol. Geriatr. Res. 2011:526379
    [Google Scholar]
  9. 9.
    Sibulesky L. 2013. Normal liver anatomy. Clin. Liver. Dis. 2:S1–3
    [Google Scholar]
  10. 10.
    Juza RM, Pauli EM. 2014. Clinical and surgical anatomy of the liver: a review for clinicians. Clin. Anat. 27:764–69
    [Google Scholar]
  11. 11.
    Kietzmann T. 2017. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11:622–30
    [Google Scholar]
  12. 12.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–56
    [Google Scholar]
  13. 13.
    Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M et al. 2016. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18:467–79
    [Google Scholar]
  14. 14.
    Lemaigre FP. 2020. Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases. Annu. Rev. Pathol. Mech. Dis. 15:1–22
    [Google Scholar]
  15. 15.
    Colle I, Van Vlierberghe H, Troisi R, De Hemptinne B. 2004. Transplanted liver: consequences of denervation for liver functions. Anat. Rec. Adv. Integ. Anat. Evol. Biol. 280:924–31
    [Google Scholar]
  16. 16.
    Miller BM, Oderberg IM, Goessling W. 2021. Hepatic nervous system in development, regeneration, and disease. Hepatology 74:3513–22
    [Google Scholar]
  17. 17.
    Jensen KJ, Alpini G, Glaser S. 2013. Hepatic nervous system and neurobiology of the liver. Compr. Physiol. 3:655–65
    [Google Scholar]
  18. 18.
    Hejlova I, Honsova E, Sticova E, Lanska V, Hucl T et al. 2016. Prevalence and risk factors of steatosis after liver transplantation and patient outcomes. Liver Transpl. 22:644–55
    [Google Scholar]
  19. 19.
    Ohtani O, Ohtani Y. 2008. Lymph circulation in the liver. Anat. Rec. 291:643–52
    [Google Scholar]
  20. 20.
    Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E et al. 2007. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204:2349–62
    [Google Scholar]
  21. 21.
    Tabibian JH, Masyuk AI, Masyuk TV, O'Hara SP, LaRusso NF 2013. Physiology of cholangiocytes. Compr. Physiol. 3:541–65
    [Google Scholar]
  22. 22.
    Michalopoulos GK, Bhushan B. 2021. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18:40–55
    [Google Scholar]
  23. 23.
    MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM et al. 2018. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9:4383
    [Google Scholar]
  24. 24.
    Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R et al. 2017. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66:212–27
    [Google Scholar]
  25. 25.
    Gupta V, Gupta I, Park J, Bram Y, Schwartz RE. 2020. Hedgehog signaling demarcates a niche of fibrogenic peribiliary mesenchymal cells. Gastroenterology 159:624–38.e9
    [Google Scholar]
  26. 26.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X et al. 2013. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4:2823
    [Google Scholar]
  27. 27.
    Tsuchida T, Friedman SL. 2017. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14:397–411
    [Google Scholar]
  28. 28.
    Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. 2013. Kupffer cells in the liver. Compr. Physiol. 3:785–97
    [Google Scholar]
  29. 29.
    Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. 2017. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Rep. 7:44356
    [Google Scholar]
  30. 30.
    Ben-Moshe S, Shapira Y, Moor AE, Manco R, Veg T et al. 2019. Spatial sorting enables comprehensive characterization of liver zonation. Nat Metab 1:899–911
    [Google Scholar]
  31. 31.
    Su T, Yang Y, Lai S, Jeong J, Jung Y et al. 2021. Single-cell transcriptomics reveals zone-specific alterations of liver sinusoidal endothelial cells in cirrhosis. Cell. Mol. Gastroenterol. Hepatol. 11:1139–61
    [Google Scholar]
  32. 32.
    Leibing T, Geraud C, Augustin I, Boutros M, Augustin HG et al. 2018. Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology 68:707–22
    [Google Scholar]
  33. 33.
    Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G. 2002. Functional heterogeneity of cholangiocytes. Semin. Liver Dis. 22:227–40
    [Google Scholar]
  34. 34.
    Benedetti A, Bassotti C, Rapino K, Marucci L, Jezequel AM. 1996. A morphometric study of the epithelium lining the rat intrahepatic biliary tree. J. Hepatol. 24:335–42
    [Google Scholar]
  35. 35.
    Hallett JM, Ferreira-Gonzalez S, Man TY, Kilpatrick AM, Esser H et al. 2022. Human biliary epithelial cells from discarded donor livers rescue bile duct structure and function in a mouse model of biliary disease. Cell Stem Cell 29:355–71.e10
    [Google Scholar]
  36. 36.
    Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE et al. 2021. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371:839–46
    [Google Scholar]
  37. 37.
    de Haan W, Oie C, Benkheil M, Dheedene W, Vinckier S et al. 2020. Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am. J. Physiol. Gastrointest. Liver Physiol. 318:G803–15
    [Google Scholar]
  38. 38.
    Gomez-Salinero JM, Izzo F, Lin Y, Houghton S, Itkin T et al. 2022. Specification of fetal liver endothelial progenitors to functional zonated adult sinusoids requires c-Maf induction. Cell Stem Cell 29:593–609.e7
    [Google Scholar]
  39. 39.
    Friedman SL, Roll FJ, Boyles J, Bissell DM. 1985. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. PNAS 82:8681–85
    [Google Scholar]
  40. 40.
    Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. 2019. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. Cells 8:503
    [Google Scholar]
  41. 41.
    Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP et al. 2019. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29:1832–47.e8
    [Google Scholar]
  42. 42.
    Payen VL, Lavergne A, Sarika NA, Colonval M, Karim L et al. 2021. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep. 3:100278
    [Google Scholar]
  43. 43.
    Wen Y, Lambrecht J, Ju C, Tacke F. 2021. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 18:45–56
    [Google Scholar]
  44. 44.
    Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P et al. 2016. Specification of tissue-resident macrophages during organogenesis. Science 353: https://doi.org/10.1126/science.aaf4238
    [Crossref] [Google Scholar]
  45. 45.
    Wang J, Kubes P. 2016. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165:668–78
    [Google Scholar]
  46. 46.
    Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ et al. 2017. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47:374–88.e6
    [Google Scholar]
  47. 47.
    David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA et al. 2016. Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151:1176–91
    [Google Scholar]
  48. 48.
    Beattie L, Sawtell A, Mann J, Frame TCM, Teal B et al. 2016. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J. Hepatol. 65:758–68
    [Google Scholar]
  49. 49.
    Marongiu F, Marongiu M, Contini A, Serra M, Cadoni E et al. 2017. Hyperplasia versus hypertrophy in tissue regeneration after extensive liver resection. World J. Gastroenterol. 23:1764–70
    [Google Scholar]
  50. 50.
    Lindroos PM, Zarnegar R, Michalopoulos GK. 1991. Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 13:743–50
    [Google Scholar]
  51. 51.
    Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O'Duibhir E et al. 2017. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547:350–54
    [Google Scholar]
  52. 52.
    Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. 2012. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22:1166–75
    [Google Scholar]
  53. 53.
    Michalopoulos GK. 2017. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 65:1384–92
    [Google Scholar]
  54. 54.
    MacDonald RA. 1961.. “ Lifespan” of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch. Intern. Med. 107:335–43
    [Google Scholar]
  55. 55.
    Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY et al. 2020. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26:27–33.e4
    [Google Scholar]
  56. 56.
    Wei Y, Wang YG, Jia Y, Li L, Yoon J et al. 2021. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371: https://doi.org/10.1126/science.abb1625
    [Crossref] [Google Scholar]
  57. 57.
    He L, Pu W, Liu X, Zhang Z, Han M et al. 2021. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371: https://doi.org/10.1126/science.abc4346
    [Crossref] [Google Scholar]
  58. 58.
    Wang B, Zhao L, Fish M, Logan CY, Nusse R. 2015. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524:180–85
    [Google Scholar]
  59. 59.
    Sun T, Pikiolek M, Orsini V, Bergling S, Holwerda S et al. 2020. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26:97–107.e6
    [Google Scholar]
  60. 60.
    Planas-Paz L, Sun T, Pikiolek M, Cochran NR, Bergling S et al. 2019. YAP, but not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25:39–53.e10
    [Google Scholar]
  61. 61.
    Kamimoto K, Kaneko K, Kok CY, Okada H, Miyajima A, Itoh T. 2016. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 5:e15034
    [Google Scholar]
  62. 62.
    Dorrell C, Erker L, Schug J, Kopp JL, Canaday PS et al. 2011. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 25:1193–203
    [Google Scholar]
  63. 63.
    Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H et al. 2008. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48:1964–78
    [Google Scholar]
  64. 64.
    De Minicis S, Kisseleva T, Francis H, Baroni GS, Benedetti A et al. 2013. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig. Liver Dis. 45:450–59
    [Google Scholar]
  65. 65.
    Chacon-Martinez CA, Koester J, Wickstrom SA. 2018. Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145:dev165399
    [Google Scholar]
  66. 66.
    Stravitz RT, Lee WM. 2019. Acute liver failure. Lancet 394:869–81
    [Google Scholar]
  67. 67.
    Mitchell C, Willenbring H. 2008. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 3:1167–70
    [Google Scholar]
  68. 68.
    Michalopoulos GK. 2010. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol. 176:2–13
    [Google Scholar]
  69. 69.
    Walesky CM, Kolb KE, Winston CL, Henderson J, Kruft B et al. 2020. Functional compensation precedes recovery of tissue mass following acute liver injury. Nat. Commun. 11:5785
    [Google Scholar]
  70. 70.
    Grisham JW. 1962. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 22:842–49
    [Google Scholar]
  71. 71.
    Ding BS, Nolan DJ, Butler JM, James D, Babazadeh AO et al. 2010. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468:310–15
    [Google Scholar]
  72. 72.
    DeLeve LD. 2013. Liver sinusoidal endothelial cells and liver regeneration. J. Clin. Investig. 123:1861–66
    [Google Scholar]
  73. 73.
    De Rudder M, Dili A, Stärkel P, Leclercq IA. 2021. Critical role of LSEC in post-hepatectomy liver regeneration and failure. Int. J. Mol. Sci. 22:8053
    [Google Scholar]
  74. 74.
    Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. 2016. Acetaminophen-induced hepatotoxicity: a comprehensive update. J. Clin. Transl. Hepatol. 4:131–42
    [Google Scholar]
  75. 75.
    Manyike PT, Kharasch ED, Kalhorn TF, Slattery JT. 2000. Contribution of CYP2E1 and CYP3A to acetaminophen reactive metabolite formation. Clin. Pharmacol. Ther. 67:275–82
    [Google Scholar]
  76. 76.
    Mirochnitchenko O, Weisbrot-Lefkowitz M, Reuhl K, Chen L, Yang C, Inouye M. 1999. Acetaminophen toxicity: opposite effects of two forms of glutathione peroxidase. J. Biol. Chem. 274:10349–55
    [Google Scholar]
  77. 77.
    Allaire M, Gilgenkrantz H. 2020. The aged liver: beyond cellular senescence. Clin Res. Hepatol. Gastroenterol. 44:6–11
    [Google Scholar]
  78. 78.
    Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ 2021. Cellular senescence in liver disease and regeneration. Semin. Liver Dis. 41:50–66
    [Google Scholar]
  79. 79.
    Nishikawa T, Bell A, Brooks JM, Setoyama K, Melis M et al. 2015. Resetting the transcription factor network reverses terminal chronic hepatic failure. J. Clin. Investig. 125:1533–44
    [Google Scholar]
  80. 80.
    Ding BS, Cao Z, Lis R, Nolan DJ, Guo P et al. 2014. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97–102
    [Google Scholar]
  81. 81.
    Popper H, Kent G, Stein R. 1957. Ductular cell reaction in the liver in hepatic injury. J. Mt. Sinai Hosp. N.Y. 24:551–56
    [Google Scholar]
  82. 82.
    Desmet VJ. 2011. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch. 458:251–59
    [Google Scholar]
  83. 83.
    Gouw AS, Clouston AD, Theise ND. 2011. Ductular reactions in human liver: diversity at the interface. Hepatology 54:1853–63
    [Google Scholar]
  84. 84.
    Desmet VJ. 2011. Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology. Virchows Arch. 458:271–79
    [Google Scholar]
  85. 85.
    Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D et al. 2012. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology 55:1215–26
    [Google Scholar]
  86. 86.
    Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM et al. 2015. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17:971–83
    [Google Scholar]
  87. 87.
    Takase HM, Itoh T, Ino S, Wang T, Koji T et al. 2013. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 27:169–81
    [Google Scholar]
  88. 88.
    Kamimoto K, Nakano Y, Kaneko K, Miyajima A, Itoh T. 2020. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun. Biol. 3:289
    [Google Scholar]
  89. 89.
    Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T et al. 2002. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat. Genet. 31:320–25
    [Google Scholar]
  90. 90.
    Fabris L, Strazzabosco M. 2011. Epithelial-mesenchymal interactions in biliary diseases. Semin. Liver Dis. 31:11–32
    [Google Scholar]
  91. 91.
    Miura Y, Matsui S, Miyata N, Harada K, Kikkawa Y et al. 2018. Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration. eLife 7:e36572
    [Google Scholar]
  92. 92.
    Rahuel C, Filipe A, Ritie L, El Nemer W, Patey-Mariaud N et al. 2008. Genetic inactivation of the laminin alpha5 chain receptor Lu/BCAM leads to kidney and intestinal abnormalities in the mouse. Am. J. Physiol. Renal. Physiol. 294:F393–406
    [Google Scholar]
  93. 93.
    Van Eyken P, Sciot R, Desmet VJ. 1989. A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express ‘bile duct-type’ cytokeratins. Histopathology 15:125–35
    [Google Scholar]
  94. 94.
    Libbrecht L, Spinner NB, Moore EC, Cassiman D, Van Damme-Lombaerts R, Roskams T. 2005. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation. Am. J. Surg. Pathol. 29:820–26
    [Google Scholar]
  95. 95.
    Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R et al. 2007. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am. J. Pathol. 171:641–53
    [Google Scholar]
  96. 96.
    Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM et al. 2014. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–18
    [Google Scholar]
  97. 97.
    Michalopoulos GK, Barua L, Bowen WC. 2005. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41:535–44
    [Google Scholar]
  98. 98.
    Sekiya S, Suzuki A. 2014. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am. J. Pathol. 184:1468–78
    [Google Scholar]
  99. 99.
    Tanimizu N, Ichinohe N, Yamamoto M, Akiyama H, Nishikawa Y, Mitaka T. 2017. Progressive induction of hepatocyte progenitor cells in chronically injured liver. Sci. Rep. 7:39990
    [Google Scholar]
  100. 100.
    Nagahama Y, Sone M, Chen X, Okada Y, Yamamoto M et al. 2014. Contributions of hepatocytes and bile ductular cells in ductular reactions and remodeling of the biliary system after chronic liver injury. Am. J. Pathol. 184:3001–12
    [Google Scholar]
  101. 101.
    Tanimizu N, Nishikawa Y, Ichinohe N, Akiyama H, Mitaka T. 2014. Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J. Biol. Chem. 289:7589–98
    [Google Scholar]
  102. 102.
    Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Cast AE et al. 2018. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557:247–51
    [Google Scholar]
  103. 103.
    Schaub JR, Malato Y, Gormond C, Willenbring H. 2014. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8:933–39
    [Google Scholar]
  104. 104.
    Malato Y, Naqvi S, Schurmann N, Ng R, Wang B et al. 2011. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Investig. 121:4850–60
    [Google Scholar]
  105. 105.
    Yanger K, Knigin D, Zong YW, Maggs L, Gu GQ et al. 2014. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15:340–49
    [Google Scholar]
  106. 106.
    Rodrigo-Torres D, Affo S, Coll M, Morales-Ibanez O, Millan C et al. 2014. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60:1367–77
    [Google Scholar]
  107. 107.
    Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y et al. 2012. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143:1564–75.e7
    [Google Scholar]
  108. 108.
    Limaye PB, Alarcon G, Walls AL, Nalesnik MA, Michalopoulos GK et al. 2008. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab. Investig. 88:865–72
    [Google Scholar]
  109. 109.
    Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R et al. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27:719–24
    [Google Scholar]
  110. 110.
    Deng X, Zhang X, Li W, Feng RX, Li L et al. 2018. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23:114–22.e3
    [Google Scholar]
  111. 111.
    Russell JO, Lu WY, Okabe H, Abrams M, Oertel M et al. 2019. Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 69:742–59
    [Google Scholar]
  112. 112.
    Kirkland JL, Tchkonia T. 2017. Cellular senescence: a translational perspective. EBioMedicine 21:21–28
    [Google Scholar]
  113. 113.
    He S, Sharpless NE. 2017. Senescence in health and disease. Cell 169:1000–11
    [Google Scholar]
  114. 114.
    Bird TG, Müller M, Boulter L, Vincent DF, Ridgway RA et al. 2018. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. 10: https://doi.org/10.1126/scitranslmed.aan1230
    [Crossref] [Google Scholar]
  115. 115.
    Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S et al. 2013. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58:549–56
    [Google Scholar]
  116. 116.
    Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. 2019. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16:269–81
    [Google Scholar]
  117. 117.
    Guicciardi ME, Trussoni CE, LaRusso NF, Gores GJ. 2020. The spectrum of reactive cholangiocytes in primary sclerosing cholangitis. Hepatology 71:741–48
    [Google Scholar]
  118. 118.
    Moncsek A, Al-Suraih MS, Trussoni CE, O'Hara SP, Splinter PL et al. 2018. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2−/−) mice. Hepatology 67:247–59
    [Google Scholar]
  119. 119.
    Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. 2008. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 47:1994–2002
    [Google Scholar]
  120. 120.
    Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J et al. 2007. Human hepatic stem cells from fetal and postnatal donors. J. Exp. Med. 204:1973–87
    [Google Scholar]
  121. 121.
    Cardinale V, Carpino G, Gentile R, Napoletano C, Rahimi H et al. 2014. Transplantation of human fetal biliary tree stem/progenitor cells into two patients with advanced liver cirrhosis. BMC Gastroenterol. 14:204
    [Google Scholar]
  122. 122.
    Segal JM, Kent D, Wesche DJ, Ng SS, Serra M et al. 2019. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 10:3350
    [Google Scholar]
  123. 123.
    Aizarani N, Saviano A, Sagar Mailly L, Durand S et al. 2019. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204
    [Google Scholar]
  124. 124.
    Yang L, Wang WH, Qiu WL, Guo Z, Bi E, Xu CR. 2017. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 66:1387–401
    [Google Scholar]
  125. 125.
    Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S et al. 2019. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25:1822–32
    [Google Scholar]
  126. 126.
    Zhu L, Finkelstein D, Gao C, Shi L, Wang Y et al. 2016. Multi-organ mapping of cancer risk. Cell 166:1132–46.e7
    [Google Scholar]
  127. 127.
    Kulik L, El-Serag HB. 2019. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156:477–91.e1
    [Google Scholar]
  128. 128.
    Tapper EB, Parikh ND. 2018. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ 362:k2817
    [Google Scholar]
  129. 129.
    Sorensen HT, Friis S, Olsen JH, Thulstrup AM, Mellemkjaer L et al. 1998. Risk of liver and other types of cancer in patients with cirrhosis: a nationwide cohort study in Denmark. Hepatology 28:921–25
    [Google Scholar]
  130. 130.
    Komori J, Boone L, DeWard A, Hoppo T, Lagasse E. 2012. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat. Biotechnol. 30:976–83
    [Google Scholar]
  131. 131.
    Fontes P, Komori J, Lopez R, Marsh W, Lagasse E. 2020. Development of ectopic livers by hepatocyte transplantation into swine lymph nodes. Liver Transpl. 26:1629–43
    [Google Scholar]
  132. 132.
    Lok AS. 2013. Hepatitis: long-term therapy of chronic hepatitis B reverses cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10:199–200
    [Google Scholar]
  133. 133.
    Campana L, Iredale JP. 2017. Regression of liver fibrosis. Semin. Liver Dis. 37:1–10
    [Google Scholar]
  134. 134.
    Ellis EL, Mann DA. 2012. Clinical evidence for the regression of liver fibrosis. J. Hepatol. 56:1171–80
    [Google Scholar]
  135. 135.
    Rockey DC, Friedman SL. 2021. Fibrosis regression after eradication of hepatitis C virus: from bench to bedside. Gastroenterology 160:1502–20.e1
    [Google Scholar]
  136. 136.
    Knop V, Hoppe D, Welzel T, Vermehren J, Herrmann E et al. 2016. Regression of fibrosis and portal hypertension in HCV-associated cirrhosis and sustained virologic response after interferon-free antiviral therapy. J. Viral Hepat. 23:994–1002
    [Google Scholar]
  137. 137.
    D'Ambrosio R, Aghemo A, Rumi MG, Degasperi E, Sangiovanni A et al. 2018. Persistence of hepatocellular carcinoma risk in hepatitis C patients with a response to IFN and cirrhosis regression. Liver Int. 38:1459–67
    [Google Scholar]
  138. 138.
    Nahon P, Bourcier V, Layese R, Audureau E, Cagnot C et al. 2017. Eradication of hepatitis C virus infection in patients with cirrhosis reduces risk of liver and non-liver complications. Gastroenterology 152:142–56.e2
    [Google Scholar]
  139. 139.
    Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. 2015. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149:1226–39.e4
    [Google Scholar]
  140. 140.
    Patel SH, Camargo FD, Yimlamai D. 2017. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 152:533–45
    [Google Scholar]
  141. 141.
    Yim SY, Kang SH, Shin JH, Jeong YS, Sohn BH et al. 2020. Low ARID1A expression is associated with poor prognosis in hepatocellular carcinoma. Cells 9:2002
    [Google Scholar]
  142. 142.
    Sun X, Wang SC, Wei Y, Luo X, Jia Y et al. 2017. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 32:574–89.e6
    [Google Scholar]
  143. 143.
    Moya IM, Castaldo SA, Van den Mooter L, Soheily S, Sansores-Garcia L et al. 2019. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366:1029–34
    [Google Scholar]
  144. 144.
    Duncan AW. 2013. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin. Cell Dev. Biol. 24:347–56
    [Google Scholar]
  145. 145.
    Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N et al. 2019. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology 69:1242–58
    [Google Scholar]
  146. 146.
    Lin YH, Zhang S, Zhu M, Lu T, Chen K et al. 2020. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer hepatocellular carcinomas following chronic liver injury. Gastroenterology 158:1698–712.e14
    [Google Scholar]
  147. 147.
    Matsumoto T, Wakefield L, Tarlow BD, Grompe M. 2020. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26:34–47.e3
    [Google Scholar]
  148. 148.
    Diril MK, Ratnacaram CK, Padmakumar VC, Du T, Wasser M et al. 2012. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. PNAS 109:3826–31
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-032822-094134
Loading
/content/journals/10.1146/annurev-physiol-032822-094134
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error