1932

Abstract

Sex and gender have emerged as critical considerations relevant to chronic obstructive pulmonary disease (COPD). Sex differences in lung development and physiologic response to hormones and environmental exposures influence COPD susceptibility, progression, severity, morbidity, and mortality. Gender has been poorly measured in the context of COPD, and gendered exposures further impact biology. The hormonal milieu is critical to study across the life course. Differences in immunity and inflammation likely impact sex- and gender-related features of COPD. Emerging evidence from multiple types of omics data is revealing new genes and pathways to consider as relevant to sex- and gender-divergent features of COPD. Much research to date has focused on autosomes, but the growing awareness of a role for allosomes is highlighting knowledge gaps. Reproductive aging impacts lung function and requires more investigation. Network medicine holds promise as an approach to sex and gender omics to uncover drivers of COPD in men and women.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042022-014322
2025-02-10
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/physiol/87/1/annurev-physiol-042022-014322.html?itemId=/content/journals/10.1146/annurev-physiol-042022-014322&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, et al. 2020.. Sex and gender: modifiers of health, disease, and medicine. . Lancet 396::56582
    [Crossref] [Google Scholar]
  2. 2.
    Hutchinson J. 1846.. On the capacity of the lungs, and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. . Med. Chir. Trans. 29::137252
    [Crossref] [Google Scholar]
  3. 3.
    Nielsen MW, Stefanick ML, Peragine D, Neilands TB, Ioannidis JPA, et al. 2021.. Gender-related variables for health research. . Biol. Sex Differ. 12::23
    [Crossref] [Google Scholar]
  4. 4.
    Raparelli V, Norris CM, Bender U, Herrero MT, Kautzky-Willer A, et al. 2021.. Identification and inclusion of gender factors in retrospective cohort studies: the GOING-FWD framework. . BMJ Glob. Health 6::e005413
    [Crossref] [Google Scholar]
  5. 5.
    Chapman KR, Tashkin DP, Pye DJ. 2001.. Gender bias in the diagnosis of COPD. . Chest 119::169195
    [Crossref] [Google Scholar]
  6. 6.
    Sorheim IC, Johannessen A, Gulsvik A, Bakke PS, Silverman EK, DeMeo DL. 2010.. Gender differences in COPD: Are women more susceptible to smoking effects than men?. Thorax 65::48085
    [Crossref] [Google Scholar]
  7. 7.
    GBD Chronic Respir. Dis. Collab. 2020.. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. . Lancet Respir. Med. 8::58596
    [Crossref] [Google Scholar]
  8. 8.
    Foreman MG, Zhang L, Murphy J, Hansel NN, Make B, et al. 2011.. Early-onset chronic obstructive pulmonary disease is associated with female sex, maternal factors, and African American race in the COPDGene Study. . Am. J. Respir. Crit. Care Med. 184::41420
    [Crossref] [Google Scholar]
  9. 9.
    Salvi SS, Barnes PJ. 2009.. Chronic obstructive pulmonary disease in non-smokers. . Lancet 374::73343
    [Crossref] [Google Scholar]
  10. 10.
    Syamlal G, Doney B, Mazurek JM. 2019.. Chronic obstructive pulmonary disease prevalence among adults who have never smoked, by industry and occupation—United States, 2013–2017. . MMWR Morb. Mortal. Wkly. Rep. 68::3037
    [Crossref] [Google Scholar]
  11. 11.
    Sana A, Somda SMA, Meda N, Bouland C. 2018.. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. . BMJ Open Respir. Res. 5::e000246
    [Crossref] [Google Scholar]
  12. 12.
    Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, et al. 2014.. Respiratory risks from household air pollution in low and middle income countries. . Lancet Respir. Med. 2::82360
    [Crossref] [Google Scholar]
  13. 13.
    DeMeo DL. 2021.. Sex and gender omic biomarkers in men and women with COPD: considerations for precision medicine. . Chest 160::10413
    [Crossref] [Google Scholar]
  14. 14.
    Aryal S, Diaz-Guzman E, Mannino DM. 2014.. Influence of sex on chronic obstructive pulmonary disease risk and treatment outcomes. . Int. J. Chronic Obstr. Pulm. Dis. 9::114554
    [Google Scholar]
  15. 15.
    Chapman KR. 2004.. Chronic obstructive pulmonary disease: Are women more susceptible than men?. Clin. Chest Med. 25::33141
    [Crossref] [Google Scholar]
  16. 16.
    Jenkins C. 2021.. Differences between men and women with chronic obstructive pulmonary disease. . Clin. Chest Med. 42::44356
    [Crossref] [Google Scholar]
  17. 17.
    Raghavan D, Varkey A, Bartter T. 2017.. Chronic obstructive pulmonary disease: the impact of gender. . Curr. Opin. Pulm. Med. 23::11723
    [Crossref] [Google Scholar]
  18. 18.
    Sodhi A, Cox-Flaherty K, Greer MK, Lat TI, Gao Y, et al. 2023.. Sex and gender in lung diseases and sleep disorders: a state-of-the-art review: part 2. . Chest 163::36682
    [Crossref] [Google Scholar]
  19. 19.
    Sodhi A, Pisani M, Glassberg MK, Bourjeily G, D'Ambrosio C. 2022.. Sex and gender in lung disease and sleep disorders: a state-of-the-art review. . Chest 162::64758
    [Crossref] [Google Scholar]
  20. 20.
    Varkey AB. 2004.. Chronic obstructive pulmonary disease in women: exploring gender differences. . Curr. Opin. Pulm. Med. 10::98103
    [Crossref] [Google Scholar]
  21. 21.
    DeMeo DL, Ramagopalan S, Kavati A, Vegesna A, Han MK, et al. 2018.. Women manifest more severe COPD symptoms across the life course. . Int. J. Chronic Obstr. Pulm. Dis. 13::302129
    [Crossref] [Google Scholar]
  22. 22.
    Pinkerton KE, Harbaugh M, Han MK, Jourdan Le Saux C, Van Winkle LS, et al. 2015.. Women and lung disease. sex differences and global health disparities. . Am. J. Respir. Crit. Care Med. 192::1116
    [Crossref] [Google Scholar]
  23. 23.
    Turner GA, Amoura NJ, Strah HM. 2021.. Care of the transgender patient with a pulmonary complaint. . Ann. Am. Thorac. Soc. 18::93137
    [Crossref] [Google Scholar]
  24. 24.
    Dragon CN, Guerino P, Ewald E, Laffan AM. 2017.. Transgender Medicare beneficiaries and chronic conditions: exploring fee-for-service claims data. . LGBT Health 4::40411
    [Crossref] [Google Scholar]
  25. 25.
    Haynes JM, Stumbo RW. 2018.. The impact of using non-birth sex on the interpretation of spirometry data in subjects with air-flow obstruction. . Respir. Care 63::21518
    [Crossref] [Google Scholar]
  26. 26.
    Rea J, Babek JT, Anderson RM, Bacani R, Staggs J, Vassar M. 2024.. The current state of health inequities in COPD. . Respir. Care 69::23849
    [Crossref] [Google Scholar]
  27. 27.
    Martinez FJ, Curtis JL, Sciurba F, Mumford J, Giardino ND, et al. 2007.. Sex differences in severe pulmonary emphysema. . Am. J. Respir. Crit. Care Med. 176::24352
    [Crossref] [Google Scholar]
  28. 28.
    Hardin M, Foreman M, Dransfield MT, Hansel N, Han MK, et al. 2016.. Sex-specific features of emphysema among current and former smokers with COPD. . Eur. Respir. J. 47::10412
    [Crossref] [Google Scholar]
  29. 29.
    Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC. 2002.. Chronic obstructive pulmonary disease surveillance—United States,. 19712000. MMWR Morb. Mortal. Wkly. Rep. 51::116
    [Google Scholar]
  30. 30.
    Ni H, Xu J. 2016.. COPD-related mortality by sex and race among adults aged 25 and over: United States, 2000–2014. NCHS Data Brief 256 , Natl. Cent. Health Stat., CDC, Atlanta, GA:
    [Google Scholar]
  31. 31.
    Becklake MR, Kauffmann F. 1999.. Gender differences in airway behaviour over the human life span. . Thorax 54::111938
    [Crossref] [Google Scholar]
  32. 32.
    Doershuk CF, Fisher BJ, Matthews LW. 1974.. Specific airway resistance from the perinatal period into adulthood: alterations in childhood pulmonary disease. . Am. Rev. Respir. Dis. 109::45257
    [Google Scholar]
  33. 33.
    Kho AT, Bhattacharya S, Tantisira KG, Carey VJ, Gaedigk R, et al. 2010.. Transcriptomic analysis of human lung development. . Am. J. Respir. Crit. Care Med. 181::5463
    [Crossref] [Google Scholar]
  34. 34.
    Lin NW, Liu C, Yang IV, Maier LA, DeMeo DL, et al. 2022.. Sex-specific differences in microRNA expression during human fetal lung development. . Front Genet. 13::762834
    [Crossref] [Google Scholar]
  35. 35.
    Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. 2010.. Sex hormone metabolism in lung development and maturation. . Trends Endocrinol. Metab. 21::72938
    [Crossref] [Google Scholar]
  36. 36.
    Ambhore NS, Kalidhindi RSR, Sathish V. 2021.. Sex-steroid signaling in lung diseases and inflammation. . Adv. Exp. Med. Biol. 1303::24373
    [Crossref] [Google Scholar]
  37. 37.
    Sathish V, Martin YN, Prakash YS. 2015.. Sex steroid signaling: implications for lung diseases. . Pharmacol. Ther. 150::94108
    [Crossref] [Google Scholar]
  38. 38.
    Casaburi R. 1998.. Rationale for anabolic therapy to facilitate rehabilitation in chronic obstructive pulmonary disease. . Baillieres Clin. Endocrinol. Metab. 12::40718
    [Crossref] [Google Scholar]
  39. 39.
    Triebner K, Matulonga B, Johannessen A, Suske S, Benediktsdottir B, et al. 2017.. Menopause is associated with accelerated lung function decline. . Am. J. Respir. Crit. Care Med. 195::105865
    [Crossref] [Google Scholar]
  40. 40.
    Triebner K, Bui D, Walters EH, Abramson MJ, Bowatte G, et al. 2021.. Childhood lung function as a determinant of menopause-dependent lung function decline. . Maturitas 153::4147
    [Crossref] [Google Scholar]
  41. 41.
    Barr RG, Wentowski CC, Grodstein F, Somers SC, Stampfer MJ, et al. 2004.. Prospective study of postmenopausal hormone use and newly diagnosed asthma and chronic obstructive pulmonary disease. . Arch. Intern. Med. 164::37986
    [Crossref] [Google Scholar]
  42. 42.
    Triebner K, Accordini S, Calciano L, Johannessen A, Benediktsdottir B, et al. 2019.. Exogenous female sex steroids may reduce lung ageing after menopause: a 20-year follow-up study of a general population sample (ECRHS). . Maturitas 120::2934
    [Crossref] [Google Scholar]
  43. 43.
    Tang R, Fraser A, Magnus MC. 2019.. Female reproductive history in relation to chronic obstructive pulmonary disease and lung function in UK biobank: a prospective population-based cohort study. . BMJ Open 9::e030318
    [Crossref] [Google Scholar]
  44. 44.
    Moll M, Regan EA, Hokanson JE, Lutz SM, Silverman EK, et al. 2020.. The association of multiparity with lung function and chronic obstructive pulmonary disease-related phenotypes. . Chronic Obstr. Pulm. Dis. 7::8698
    [Google Scholar]
  45. 45.
    Amaral AFS, Strachan DP, Burney PGJ, Jarvis DL. 2017.. Female smokers are at greater risk of airflow obstruction than male smokers. . Am. J. Respir. Crit. Care Med. 195::122635
    [Crossref] [Google Scholar]
  46. 46.
    Han MK. 2020.. Chronic obstructive pulmonary disease in women: a biologically focused review with a systematic search strategy. . Int. J. Chronic Obstr. Pulm. Dis. 15::71121
    [Crossref] [Google Scholar]
  47. 47.
    Khramtsova EA, Davis LK, Stranger BE. 2019.. The role of sex in the genomics of human complex traits. . Nat. Rev. Genet. 20::17390
    [Crossref] [Google Scholar]
  48. 48.
    Silverman EK. 2020.. Genetics of COPD. . Annu. Rev. Physiol. 82::41331
    [Crossref] [Google Scholar]
  49. 49.
    Hobbs BD, de Jong K, Lamontagne M, Bosse Y, Shrine N, et al. 2017.. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. . Nat. Genet. 49::42632
    [Crossref] [Google Scholar]
  50. 50.
    Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, et al. 2019.. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. . Nat. Genet. 51::494505
    [Crossref] [Google Scholar]
  51. 51.
    Patsopoulos NA, Tatsioni A, Ioannidis JP. 2007.. Claims of sex differences: an empirical assessment in genetic associations. . JAMA 298::88093
    [Crossref] [Google Scholar]
  52. 52.
    Gilks WP, Abbott JK, Morrow EH. 2014.. Sex differences in disease genetics: evidence, evolution, and detection. . Trends Genet. 30::45363
    [Crossref] [Google Scholar]
  53. 53.
    Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, et al. 2010.. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. . Hum. Mol. Genet. 19::225167
    [Crossref] [Google Scholar]
  54. 54.
    Joo J, Himes B. 2021.. Gene-based analysis reveals sex-specific genetic risk factors of COPD. . AMIA Annu. Symp. Proc. 2021::60110
    [Google Scholar]
  55. 55.
    Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, et al. 2017.. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. . Nat. Genet. 49::41625
    [Crossref] [Google Scholar]
  56. 56.
    Hayden LP, Hobbs BD, Busch R, Cho MH, Liu M, et al. 2023.. X chromosome associations with chronic obstructive pulmonary disease and related phenotypes: an X chromosome-wide association study. . Respir. Res. 24::38
    [Crossref] [Google Scholar]
  57. 57.
    Zhao X, Qiao D, Yang C, Kasela S, Kim W, et al. 2020.. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. . Nat. Commun. 11::5182
    [Crossref] [Google Scholar]
  58. 58.
    Ober C, Loisel DA, Gilad Y. 2008.. Sex-specific genetic architecture of human disease. . Nat. Rev. Genet. 9::91122
    [Crossref] [Google Scholar]
  59. 59.
    Weiss LA, Pan L, Abney M, Ober C. 2006.. The sex-specific genetic architecture of quantitative traits in humans. . Nat. Genet. 38::21822
    [Crossref] [Google Scholar]
  60. 60.
    Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, et al. 2018.. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. . Nat. Genet. 50::121924
    [Crossref] [Google Scholar]
  61. 61.
    Meisner A, Kundu P, Zhang YD, Lan LV, Kim S, et al. 2020.. Combined utility of 25 disease and risk factor polygenic risk scores for stratifying risk of all-cause mortality. . Am. J. Hum. Genet. 107::41831
    [Crossref] [Google Scholar]
  62. 62.
    DeMeo DL, Sandhaus RA, Barker AF, Brantly ML, Eden E, et al. 2007.. Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. . Thorax 62::80613
    [Crossref] [Google Scholar]
  63. 63.
    Fahndrich S, Bernhard N, Lepper PM, Vogelmeier C, Seibert M, et al. 2017.. Exacerbations and duration of smoking abstinence are associated with the annual loss of FEV1 in individuals with PiZZ alpha-1-antitrypsin deficiency. . Respir. Med. 129::815
    [Crossref] [Google Scholar]
  64. 64.
    Fahndrich S, Herr C, Greulich T, Seibert M, Lepper PM, et al. 2015.. Sex differences in alpha-1-antitrypsin deficiency lung disease-analysis from the German registry. . COPD 12:(Suppl. 1):5862
    [Crossref] [Google Scholar]
  65. 65.
    Miravitlles M, Turner AM, Torres-Duran M, Tanash H, Rodriguez-Garcia C, et al. 2022.. Clinical and functional characteristics of individuals with alpha-1 antitrypsin deficiency: EARCO international registry. . Respir. Res. 23::352
    [Crossref] [Google Scholar]
  66. 66.
    Kim WJ, Wood AM, Barker AF, Brantly ML, Campbell EJ, et al. 2012.. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. . Respir. Res. 13::16
    [Crossref] [Google Scholar]
  67. 67.
    McCarthy NS, Melton PE, Cadby G, Yazar S, Franchina M, et al. 2014.. Meta-analysis of human methylation data for evidence of sex-specific autosomal patterns. . BMC Genom. 15::981
    [Crossref] [Google Scholar]
  68. 68.
    Koo HK, Morrow J, Kachroo P, Tantisira K, Weiss ST, et al. 2021.. Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. . Epigenetics 16::692703
    [Crossref] [Google Scholar]
  69. 69.
    Wan ES, Qiu W, Carey VJ, Morrow J, Bacherman H, et al. 2015.. Smoking-associated site-specific differential methylation in buccal mucosa in the COPDGene study. . Am. J. Respir. Cell Mol. Biol. 53::24654
    [Crossref] [Google Scholar]
  70. 70.
    Ben-Zaken Cohen S, Pare PD, Man SF, Sin DD. 2007.. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: examining sex differences in cigarette smoke metabolism. . Am. J. Respir. Crit. Care Med. 176::11320
    [Crossref] [Google Scholar]
  71. 71.
    Mugford CA, Kedderis GL. 1998.. Sex-dependent metabolism of xenobiotics. . Drug Metab. Rev. 30::44198
    [Crossref] [Google Scholar]
  72. 72.
    Zhuang Y, Hobbs BD, Hersh CP, Kechris K. 2021.. Identifying miRNA-mRNA networks associated with COPD phenotypes. . Front. Genet. 12::748356
    [Crossref] [Google Scholar]
  73. 73.
    Wu JJ, Zhang PA, Chen MZ, Zhang Y, Du WS, et al. 2024.. Analysis of key genes and miRNA-mRNA networks associated with glucocorticoids treatment in chronic obstructive pulmonary disease. . Int. J. Chronic Obstr. Pulmon. Dis. 19::589605
    [Crossref] [Google Scholar]
  74. 74.
    Canas JA, Rodrigo-Munoz JM, Sastre B, Gil-Martinez M, Redondo N, Del Pozo V. 2020.. MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease. . Front. Immunol. 11::608666
    [Crossref] [Google Scholar]
  75. 75.
    Zhong B, Cui C, Cui Q. 2023.. Identification and analysis of sex-biased microRNAs in human diseases. . Genes 14::1688
    [Crossref] [Google Scholar]
  76. 76.
    Gershoni M, Pietrokovski S. 2017.. The landscape of sex-differential transcriptome and its consequent selection in human adults. . BMC Biol. 15::7
    [Crossref] [Google Scholar]
  77. 77.
    Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, et al. 2015.. Human genomics. The human transcriptome across tissues and individuals. . Science 348::66065
    [Crossref] [Google Scholar]
  78. 78.
    Oliva M, Munoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, et al. 2020.. The impact of sex on gene expression across human tissues. . Science 369::eaba3066
    [Crossref] [Google Scholar]
  79. 79.
    Kho AT, Chhabra D, Sharma S, Qiu W, Carey VJ, et al. 2016.. Age, sexual dimorphism, and disease associations in the developing human fetal lung transcriptome. . Am. J. Respir. Cell Mol. Biol. 54::81421
    [Crossref] [Google Scholar]
  80. 80.
    Dugo M, Cotroneo CE, Lavoie-Charland E, Incarbone M, Santambrogio L, et al. 2016.. Human lung tissue transcriptome: influence of sex and age. . PLOS ONE 11::e0167460
    [Crossref] [Google Scholar]
  81. 81.
    Idda ML, Campesi I, Fiorito G, Vecchietti A, Urru SAM, et al. 2021.. Sex-biased expression of pharmacogenes across human tissues. . Biomolecules 11::1206
    [Crossref] [Google Scholar]
  82. 82.
    Kassam I, Wu Y, Yang J, Visscher PM, McRae AF. 2019.. Tissue-specific sex differences in human gene expression. . Hum. Mol. Genet. 28::297686
    [Crossref] [Google Scholar]
  83. 83.
    Dimas AS, Nica AC, Montgomery SB, Stranger BE, Raj T, et al. 2012.. Sex-biased genetic effects on gene regulation in humans. . Genome Res. 22::236875
    [Crossref] [Google Scholar]
  84. 84.
    Porcu E, Claringbould A, Weihs A, Lepik K, Consortium B, et al. 2022.. Limited evidence for blood eQTLs in human sexual dimorphism. . Genome Med. 14::89
    [Crossref] [Google Scholar]
  85. 85.
    Singh D, Criner GJ, Dransfield MT, Halpin DMG, Han MK, et al. 2021.. InforMing the PAthway of COPD Treatment (IMPACT) trial: fibrinogen levels predict risk of moderate or severe exacerbations. . Respir. Res. 22::130
    [Crossref] [Google Scholar]
  86. 86.
    Suthahar N, Lau ES, Blaha MJ, Paniagua SM, Larson MG, et al. 2020.. Sex-specific associations of cardiovascular risk factors and biomarkers with incident heart failure. . J. Am. Coll. Cardiol. 76::145565
    [Crossref] [Google Scholar]
  87. 87.
    Dutta A, Roychoudhury S, Chowdhury S, Ray MR. 2013.. Changes in sputum cytology, airway inflammation and oxidative stress due to chronic inhalation of biomass smoke during cooking in premenopausal rural Indian women. . Int. J. Hyg. Environ. Health 216::3018
    [Crossref] [Google Scholar]
  88. 88.
    Mondal NK, Saha H, Mukherjee B, Tyagi N, Ray MR. 2018.. Inflammation, oxidative stress, and higher expression levels of Nrf2 and NQO1 proteins in the airways of women chronically exposed to biomass fuel smoke. . Mol. Cell. Biochem. 447::6376
    [Crossref] [Google Scholar]
  89. 89.
    Breyer MK, Rutten EP, Vernooy JH, Spruit MA, Dentener MA, et al. 2011.. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): a pivotal role of leptin. . Respir. Med. 105::104653
    [Crossref] [Google Scholar]
  90. 90.
    Kokelj S, Ostling J, Georgi B, Fromell K, Ekdahl KN, et al. 2021.. Smoking induces sex-specific changes in the small airway proteome. . Respir. Res. 22::234
    [Crossref] [Google Scholar]
  91. 91.
    Zhang YH, Hoopmann MR, Castaldi PJ, Simonsen KA, Midha MK, et al. 2021.. Lung proteomic biomarkers associated with chronic obstructive pulmonary disease. . Am. J. Physiol. Lung Cell. Mol. Physiol. 321::L111930
    [Crossref] [Google Scholar]
  92. 92.
    Costanzo M, Caterino M, Sotgiu G, Ruoppolo M, Franconi F, Campesi I. 2022.. Sex differences in the human metabolome. . Biol. Sex Differ. 13::30
    [Crossref] [Google Scholar]
  93. 93.
    Darst BF, Koscik RL, Hogan KJ, Johnson SC, Engelman CD. 2019.. Longitudinal plasma metabolomics of aging and sex. . Aging 11::126282
    [Crossref] [Google Scholar]
  94. 94.
    Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, et al. 2017.. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. . Eur. Respir. J. 49::1602322
    [Crossref] [Google Scholar]
  95. 95.
    Gillenwater LA, Kechris KJ, Pratte KA, Reisdorph N, Petrache I, et al. 2021.. Metabolomic profiling reveals sex specific associations with chronic obstructive pulmonary disease and emphysema. . Metabolites 11::161
    [Crossref] [Google Scholar]
  96. 96.
    Boyle EA, Li YI, Pritchard JK. 2017.. An expanded view of complex traits: from polygenic to omnigenic. . Cell 169::117786
    [Crossref] [Google Scholar]
  97. 97.
    Yoon HY, Lee H, Yee J, Gwak HS. 2022.. Global research trends of gender-related artificial intelligence in medicine between 2001–2020: a bibliometric study. . Front. Med. 9::868040
    [Crossref] [Google Scholar]
  98. 98.
    Arnold AP, Lusis AJ. 2012.. Understanding the sexome: measuring and reporting sex differences in gene systems. . Endocrinology 153::255155
    [Crossref] [Google Scholar]
  99. 99.
    Arnold AP, van Nas A, Lusis AJ. 2009.. Systems biology asks new questions about sex differences. . Trends Endocrinol. Metab. 20::47176
    [Crossref] [Google Scholar]
  100. 100.
    Raznahan A, Parikshak NN, Chandran V, Blumenthal JD, Clasen LS, et al. 2018.. Sex-chromosome dosage effects on gene expression in humans. . PNAS 115::7398403
    [Crossref] [Google Scholar]
  101. 101.
    van Nas A, Guhathakurta D, Wang SS, Yehya N, Horvath S, et al. 2009.. Elucidating the role of gonadal hormones in sexually dimorphic gene coexpression networks. . Endocrinology 150::123549
    [Crossref] [Google Scholar]
  102. 102.
    Busch R, Qiu W, Lasky-Su J, Morrow J, Criner G, DeMeo D. 2016.. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. . Respir. Res. 17::143
    [Crossref] [Google Scholar]
  103. 103.
    Kachroo P, Morrow JD, Kho AT, Vyhlidal CA, Silverman EK, et al. 2020.. Co-methylation analysis in lung tissue identifies pathways for fetal origins of COPD. . Eur. Respir. J. 56::1902347
    [Crossref] [Google Scholar]
  104. 104.
    Glass K, Huttenhower C, Quackenbush J, Yuan GC. 2013.. Passing messages between biological networks to refine predicted interactions. . PLOS ONE 8::e64832
    [Crossref] [Google Scholar]
  105. 105.
    Glass K, Quackenbush J, Silverman EK, Celli B, Rennard SI, et al. 2014.. Sexually-dimorphic targeting of functionally-related genes in COPD. . BMC Syst. Biol. 8::118
    [Crossref] [Google Scholar]
  106. 106.
    Zhang WZ, Rice MC, Hoffman KL, Oromendia C, Barjaktarevic IZ, et al. 2020.. Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort. . JCI Insight 5::e133984
    [Crossref] [Google Scholar]
  107. 107.
    Lopes-Ramos CM, Chen CY, Kuijjer ML, Paulson JN, Sonawane AR, et al. 2020.. Sex differences in gene expression and regulatory networks across 29 human tissues. . Cell Rep. 31::107795
    [Crossref] [Google Scholar]
  108. 108.
    Milne KM, Mitchell RA, Ferguson ON, Hind AS, Guenette JA. 2024.. Sex-differences in COPD: from biological mechanisms to therapeutic considerations. . Front. Med. 11::1289259
    [Crossref] [Google Scholar]
  109. 109.
    Rogliani P, Cavalli F, Ritondo BL, Cazzola M, Calzetta L. 2022.. Sex differences in adult asthma and COPD therapy: a systematic review. . Respir. Res. 23::222
    [Crossref] [Google Scholar]
  110. 110.
    Li X, Obeidat M, Zhou G, Leung JM, Tashkin D, et al. 2017.. Responsiveness to ipratropium bromide in male and female patients with mild to moderate chronic obstructive pulmonary disease. . EBioMedicine 19::13945
    [Crossref] [Google Scholar]
  111. 111.
    Tsiligianni I, Mezzi K, Fucile S, Kostikas K, Shen S, et al. 2017.. Response to indacaterol/glycopyrronium (IND/GLY) by sex in patients with COPD: a pooled analysis from the IGNITE program. . COPD 14::37581
    [Crossref] [Google Scholar]
  112. 112.
    Agusti A, Calverley PM, Celli B, Coxson HO, Edwards LD, et al. 2010.. Characterisation of COPD heterogeneity in the ECLIPSE cohort. . Respir. Res. 11::122
    [Crossref] [Google Scholar]
  113. 113.
    Schuhlen H. 2014.. Pre-specified vs. post-hoc subgroup analyses: Are we wiser before or after a trial has been performed?. Eur. Heart J. 35::205557
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physiol-042022-014322
Loading
/content/journals/10.1146/annurev-physiol-042022-014322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error