1932

Abstract

Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant–bacteria interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-010824-023359
2024-09-09
2025-04-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-010824-023359.html?itemId=/content/journals/10.1146/annurev-phyto-010824-023359&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdel-Lateif K, Bogusz D, Hocher V. 2012.. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. . Plant Signal. Behav. 7:(6):63641
    [Crossref] [Google Scholar]
  2. 2.
    Acuña D, Bletz MC, Sasse J, Micallef SA, Kosina S, et al. 2023.. Disruption of the endogenous indole glucosinolate pathway impacts the Arabidopsis thaliana root exudation profile and rhizobacterial community. . bioRxiv 569303. https://doi.org/10.1101/2023.11.29.569303
  3. 3.
    Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, et al. 2018.. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. . Microbiol. Res. 212–213::2937
    [Crossref] [Google Scholar]
  4. 4.
    Anderson JC. 2023.. Ill communication: host metabolites as virulence-regulating signals for plant-pathogenic bacteria. . Annu. Rev. Phytopathol. 61::4971
    [Crossref] [Google Scholar]
  5. 5.
    Anderson JC, Wan Y, Kim Y-M, Pasa-Tolic L, Metz TO, Peck SC. 2014.. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. . PNAS 111:(18):684651
    [Crossref] [Google Scholar]
  6. 6.
    Antunez-Lamas M, Cabrera E, Lopez-Solanilla E, Solano R, González-Melendi P, et al. 2009.. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. . Mol. Microbiol. 74:(3):66271
    [Crossref] [Google Scholar]
  7. 7.
    Aragón W, Reina-Pinto JJ, Serrano M. 2017.. The intimate talk between plants and microorganisms at the leaf surface. . J. Exp. Bot. 68:(19):533950
    [Crossref] [Google Scholar]
  8. 8.
    Aung K, Jiang Y, He SY. 2018.. The role of water in plant-microbe interactions. . Plant J. 93:(4):77180
    [Crossref] [Google Scholar]
  9. 9.
    Barrière Q, Guefrachi I, Gully D, Lamouche F, Pierre O, et al. 2017.. Integrated roles of BclA and DD-carboxypeptidase 1 in Bradyrhizobium differentiation within NCR-producing and NCR-lacking root nodules. . Sci. Rep. 7:(1):9063
    [Crossref] [Google Scholar]
  10. 10.
    Bauer WD, Mathesius U. 2004.. Plant responses to bacterial quorum sensing signals. . Curr. Opin. Plant Biol. 7:(4):42933
    [Crossref] [Google Scholar]
  11. 11.
    Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R. 2013.. Bacillus subtilis biofilm induction by plant polysaccharides. . PNAS 110:(17):E162130
    [Crossref] [Google Scholar]
  12. 12.
    Beck M, Wyrsch I, Strutt J, Wimalasekera R, Webb A, et al. 2014.. Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots. . J. Exp. Bot. 65:(22):648798
    [Crossref] [Google Scholar]
  13. 13.
    Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T, et al. 2019.. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. . PNAS 116:(6):236473
    [Crossref] [Google Scholar]
  14. 14.
    Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. 2014.. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. . PLOS Genet. 10:(4):e1004283
    [Crossref] [Google Scholar]
  15. 15.
    Borges A, Abreu AC, Ferreira C, Saavedra MJ, Simões LC, Simões M. 2015.. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. . J. Food Sci. Technol. 52:(8):473748
    [Crossref] [Google Scholar]
  16. 16.
    Boubsi F, Hoff G, Arguelles Arias A, Steels S, Andrić S, et al. 2023.. Pectic homogalacturonan sensed by Bacillus acts as host associated cue to promote establishment and persistence in the rhizosphere. . iScience 26:(10):107925
    [Crossref] [Google Scholar]
  17. 17.
    Bressan M, Roncato M-A, Bellvert F, Comte G, Haichar FZ, et al. 2009.. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. . ISME J. 3:(11):124357
    [Crossref] [Google Scholar]
  18. 18.
    Cangelosi GA, Ankenbauer RG, Nester EW. 1990.. Sugars induce the agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. . PNAS 87:(17):670812
    [Crossref] [Google Scholar]
  19. 19.
    Cao Z, Zuo W, Wang L, Chen J, Qu Z, et al. 2023.. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. . Nat. Commun. 14:(1):1477
    [Crossref] [Google Scholar]
  20. 20.
    Carrillo-Carrasco VP, Hernandez-Garcia J, Mutte SK, Weijers D. 2023.. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. . EMBO J. 42:(6):e113018
    [Crossref] [Google Scholar]
  21. 21.
    Cerutti A, Jauneau A, Auriac M-C, Lauber E, Martinez Y, et al. 2017.. Immunity at cauliflower hyda-thodes controls systemic infection by Xanthomonas campestris pv campestris. . Plant Physiol. 174:(2):70016
    [Crossref] [Google Scholar]
  22. 22.
    Cerutti A, Jauneau A, Laufs P, Leonhardt N, Schattat MH, et al. 2019.. Mangroves in the leaves: anatomy, physiology, and immunity of epithemal hydathodes. . Annu. Rev. Phytopathol. 57::91116
    [Crossref] [Google Scholar]
  23. 23.
    Chandrangsu P, Rensing C, Helmann JD. 2017.. Metal homeostasis and resistance in bacteria. . Nat. Rev. Microbiol. 15:(6):33850
    [Crossref] [Google Scholar]
  24. 24.
    Chang CH, Winans SC. 1992.. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. . J. Bacteriol. 174:(21):703339
    [Crossref] [Google Scholar]
  25. 25.
    Chang JH, Desveaux D, Creason AL. 2014.. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. . Annu. Rev. Phytopathol. 52::31745
    [Crossref] [Google Scholar]
  26. 26.
    Charkowski A, Blanco C, Condemine G, Expert D, Franza T, et al. 2012.. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. . Annu. Rev. Phytopathol. 50::42549
    [Crossref] [Google Scholar]
  27. 27.
    Chen J, Yu Y, Li S, Ding W. 2016.. Resveratrol and coumarin: novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo. . Molecules 21:(11):1501
    [Crossref] [Google Scholar]
  28. 28.
    Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML, et al. 2010.. Sugar transporters for intercellular exchange and nutrition of pathogens. . Nature 468:(7323):52732
    [Crossref] [Google Scholar]
  29. 29.
    Chen Q, Jiang T, Liu Y-X, Liu H, Zhao T, et al. 2019.. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. . Sci. China Life Sci. 62:(7):94758
    [Crossref] [Google Scholar]
  30. 30.
    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, et al. 2020.. A plant genetic network for preventing dysbiosis in the phyllosphere. . Nature 580:(7805):65357
    [Crossref] [Google Scholar]
  31. 31.
    Chen Y, Bonkowski M, Shen Y, Griffiths BS, Jiang Y, et al. 2020.. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. . Microbiome 8:(1):4
    [Crossref] [Google Scholar]
  32. 32.
    Chen Y-L, Lee C-Y, Cheng K-T, Chang W-H, Huang R-N, et al. 2014.. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. . Plant Cell 26:(10):413548
    [Crossref] [Google Scholar]
  33. 33.
    Chen Y-L, Lin F-W, Cheng K-T, Chang C-H, Hung S-C, et al. 2023.. XCP1 cleaves pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis. . Nat. Commun. 14:(1):4697
    [Crossref] [Google Scholar]
  34. 34.
    Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, et al. 2006.. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. . PNAS 103:(19):746064
    [Crossref] [Google Scholar]
  35. 35.
    Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009.. Glucosinolate metabolites required for an Arabidopsis innate immune response. . Science 323:(5910):95101
    [Crossref] [Google Scholar]
  36. 36.
    Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, et al. 2010.. Arabidopsis type I metacaspases control cell death. . Science 330:(6009):139397
    [Crossref] [Google Scholar]
  37. 37.
    Compton KK, Hildreth SB, Helm RF, Scharf BE. 2018.. Sinorhizobium meliloti chemoreceptor McpV senses short-chain carboxylates via direct binding. . J. Bacteriol. 200:(23):e00519-18
    [Crossref] [Google Scholar]
  38. 38.
    Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. 2023.. NLR receptors in plant immunity: making sense of the alphabet soup. . EMBO Rep. 24:(10):e57495
    [Crossref] [Google Scholar]
  39. 39.
    Cooper B. 2022.. The detriment of salicylic acid to the Pseudomonas savastanoi pv. phaseolicola proteome. . Mol. Plant-Microbe Interact. 35:(9):81424
    [Crossref] [Google Scholar]
  40. 40.
    Corral-Lugo A, De La Torre J, Matilla MA, Fernández M, Morel B, et al. 2016.. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. . Environ. Microbiol. 18:(10):335572
    [Crossref] [Google Scholar]
  41. 41.
    Cotton TEA, Pétriacq P, Cameron DD, Meselmani MA, Schwarzenbacher R, et al. 2019.. Metabolic regulation of the maize rhizobiome by benzoxazinoids. . ISME J. 13:(7):164758
    [Crossref] [Google Scholar]
  42. 42.
    DeWolf E, Brock MT, Calder WJ, Kliebenstein DJ, Katz E, et al. 2023.. The rhizosphere microbiome and host plant glucosinolates exhibit feedback cycles in Brassica rapa. . Mol. Ecol. 32:(3):74151
    [Crossref] [Google Scholar]
  43. 43.
    Deynze AV, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, et al. 2018.. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. . PLOS Biol. 16:(8):e2006352
    [Crossref] [Google Scholar]
  44. 44.
    Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ, et al. 2020.. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. . Mol. Plant-Microbe Interact. 33:(8):105971
    [Crossref] [Google Scholar]
  45. 45.
    Djami-Tchatchou A-T, Li ZA, Stodghill P, Filiatrault MJ, Kunkel BN. 2022.. Identification of indole-3-acetic acid-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. . J. Bacteriol. 204:(1):e00380-21
    [Crossref] [Google Scholar]
  46. 46.
    Domínguez DC, Guragain M, Patrauchan M. 2015.. Calcium binding proteins and calcium signaling in prokaryotes. . Cell Calcium 57:(3):15165
    [Crossref] [Google Scholar]
  47. 47.
    Dora S, Terrett OM, Sánchez-Rodríguez C. 2022.. Plant-microbe interactions in the apoplast: communication at the plant cell wall. . Plant Cell 34:(5):153250
    [Crossref] [Google Scholar]
  48. 48.
    Dos Santos C, Franco OL. 2023.. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. . Plants 12:(11):2226
    [Crossref] [Google Scholar]
  49. 49.
    Duan Y, Han M, Grimm M, Ponath J, Reichelt M, et al. 2023.. Combination of bacterial N-acyl homoserine lactones primes Arabidopsis defenses via jasmonate metabolism. . Plant Physiol. 191:(3):202744
    [Crossref] [Google Scholar]
  50. 50.
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, et al. 2018.. Microbial interkingdom interactions in roots promote Arabidopsis survival. . Cell 175:(4):97383.e14
    [Crossref] [Google Scholar]
  51. 51.
    Entila F, Han X, Mine A, Schulze-Lefert P, Tsuda K. 2024.. Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS. . Nat. Commun. 15:(1):456
    [Crossref] [Google Scholar]
  52. 52.
    Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, et al. 2011.. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. . Science 331:(6021):118588
    [Crossref] [Google Scholar]
  53. 53.
    Farkas A, Maróti G, Dürgő H, Györgypál Z, Lima RM, et al. 2014.. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. . PNAS 111:(14):518388
    [Crossref] [Google Scholar]
  54. 54.
    Feng H, Fu R, Hou X, Lv Y, Zhang N, et al. 2021.. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions. . Int. J. Mol. Sci. 22:(13):6655
    [Crossref] [Google Scholar]
  55. 55.
    Feng H, Zhang N, Du W, Zhang H, Liu Y, et al. 2018.. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. . Mol. Plant-Microbe Interact. 31:(10):9951005
    [Crossref] [Google Scholar]
  56. 56.
    Fishman MR, Zhang J, Bronstein PA, Stodghill P, Filiatrault MJ. 2018.. Ca2+-induced two-component system CvsSR regulates the type III secretion system and the extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. tomato DC3000. . J. Bacteriol. 200:(5):e00538-17
    [Crossref] [Google Scholar]
  57. 57.
    Flego D, Pirhonen M, Saarilahti H, Palva TK, Palva ET. 1997.. Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. . Mol. Microbiol. 25:(5):83138
    [Crossref] [Google Scholar]
  58. 58.
    Flemming H-C, Wuertz S. 2019.. Bacteria and Archaea on Earth and their abundance in biofilms. . Nat. Rev. Microbiol. 17:(4):24760
    [Crossref] [Google Scholar]
  59. 59.
    Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, et al. 2014.. Involvement of the ACBG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. . New Phytol. 201:(1):15567
    [Crossref] [Google Scholar]
  60. 60.
    Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A. 2009.. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. . Phytochemistry 70:(15–16):164551
    [Crossref] [Google Scholar]
  61. 61.
    Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA. 2011.. Salicylic acid mediates the reduced growth of lignin down-regulated plants. . PNAS 108:(51):2081419
    [Crossref] [Google Scholar]
  62. 62.
    Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG, et al. 2020.. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. . PNAS 117:(6):328190
    [Crossref] [Google Scholar]
  63. 63.
    German L, Yeshvekar R, Benitez-Alfonso Y. 2023.. Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. . Plant Cell Environ. 46:(2):391404
    [Crossref] [Google Scholar]
  64. 64.
    Glekas GD, Mulhern BJ, Kroc A, Duelfer KA, Lei V, et al. 2012.. The Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanisms. . J. Biol. Chem. 287:(47):3941218
    [Crossref] [Google Scholar]
  65. 65.
    Goy PA, Signer H, Reist R, Aichholz R, Blum W, et al. 1993.. Accumulation of scopoletin is associated with the high disease resistance of the hybrid Nicotiana glutinosa × Nicotiana debneyi. . Planta 191::2006
    [Crossref] [Google Scholar]
  66. 66.
    Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, García de Salamone IE, et al. 2016.. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. . Sci. Rep. 6::23310
    [Crossref] [Google Scholar]
  67. 67.
    Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, et al. 2011.. Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. . PLOS Biol. 9:(10):e1001169
    [Crossref] [Google Scholar]
  68. 68.
    Han Z, Xiong D, Schneiter R, Tian C. 2023.. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. . Mol. Plant Pathol. 24:(6):65168
    [Crossref] [Google Scholar]
  69. 69.
    Hanlon DW, Ordal GW. 1994.. Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. . J. Biol. Chem. 269:(19):1403846
    [Crossref] [Google Scholar]
  70. 70.
    Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, et al. 2020.. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. . Cell Host Microbe 28:(6):82537.e6
    [Crossref] [Google Scholar]
  71. 71.
    He D, Singh SK, Peng L, Kaushal R, Vílchez JI, et al. 2022.. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. . ISME J. 16:(11):262232
    [Crossref] [Google Scholar]
  72. 72.
    He F, Nair GR, Soto CS, Chang Y, Hsu L, et al. 2009.. Molecular basis of ChvE function in sugar binding, sugar utilization, and virulence in Agrobacterium tumefaciens. . J. Bacteriol. 191:(18):580213
    [Crossref] [Google Scholar]
  73. 73.
    Herlihy JH, Long TA, McDowell JM. 2020.. Iron homeostasis and plant immune responses: recent insights and translational implications. . J. Biol. Chem. 295:(39):1344457
    [Crossref] [Google Scholar]
  74. 74.
    Hida A, Oku S, Kawasaki T, Nakashimada Y, Tajima T, Kato J. 2015.. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). . Appl. Environ. Microbiol. 81:(21):742030
    [Crossref] [Google Scholar]
  75. 75.
    Hida A, Tajima T, Kato J. 2019.. Two citrate chemoreceptors involved in chemotaxis to citrate and/or citrate-metal complexes in Ralstonia pseudosolanacearum. . J. Biosci. Bioeng. 127:(2):16975
    [Crossref] [Google Scholar]
  76. 76.
    Horváth B, Domonkos Á, Kereszt A, Szűcs A, Ábrahám E, et al. 2015.. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. . PNAS 112:(49):1523237
    [Crossref] [Google Scholar]
  77. 77.
    Horváth B, Güngör B, Tóth M, Domonkos Á, Ayaydin F, et al. 2023.. The Medicago truncatula nodule-specific cysteine-rich peptides, NCR343 and NCR-new35 are required for the maintenance of rhizobia in nitrogen-fixing nodules. . New Phytol. 239:(5):197488
    [Crossref] [Google Scholar]
  78. 78.
    Hou S, Thiergart T, Vannier N, Mesny F, Ziegler J, et al. 2021.. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. . Nat. Plants 7:(8):107892
    [Crossref] [Google Scholar]
  79. 79.
    Hou S, Tsuda K. 2022.. Salicylic acid and jasmonic acid crosstalk in plant immunity. . Essays Biochem. 66:(5):64756
    [Crossref] [Google Scholar]
  80. 80.
    Hsiao P-Y, Cheng C-P, Koh KW, Chan M-T. 2017.. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. . Sci. Rep. 7:(1):9175
    [Crossref] [Google Scholar]
  81. 81.
    Hu L, Robert CAM, Cadot S, Zhang X, Ye M, et al. 2018.. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. . Nat. Commun. 9:(1):2738
    [Crossref] [Google Scholar]
  82. 82.
    Hu X, Zhao J, DeGrado WF, Binns AN. 2013.. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. . PNAS 110:(2):67883
    [Crossref] [Google Scholar]
  83. 83.
    Hu Y, Ding Y, Cai B, Qin X, Wu J, et al. 2022.. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. . Cell Host Microbe 30:(4):51829.e6
    [Crossref] [Google Scholar]
  84. 84.
    Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, et al. 2019.. A specialized metabolic network selectively modulates Arabidopsis root microbiota. . Science 364:(6440):eaau6389
    [Crossref] [Google Scholar]
  85. 85.
    Huang C-Y, Araujo K, Sánchez JN, Kund G, Trumble J, et al. 2021.. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. . PNAS 118:(6):e2019628118
    [Crossref] [Google Scholar]
  86. 86.
    Jacob P, Hige J, Dangl JL. 2023.. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants?. Nat. Plants 9:(8):118490
    [Crossref] [Google Scholar]
  87. 87.
    Jacoby RP, Koprivova A, Kopriva S. 2021.. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. . J. Exp. Bot. 72:(1):5769
    [Crossref] [Google Scholar]
  88. 88.
    Johnson J. 1937.. Relation of water-soaked tissues to infection by Bacterium angulatum and Bact. tabacum and other organisms. . J. Agric. Res. 55::599618
    [Google Scholar]
  89. 89.
    Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. 2021.. Interkingdom signaling interference: the effect of plant-derived small molecules on quorum sensing in plant-pathogenic bacteria. . Annu. Rev. Phytopathol. 59::15390
    [Crossref] [Google Scholar]
  90. 90.
    Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, et al. 2008.. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. . Plant J. 55:(6):98999
    [Crossref] [Google Scholar]
  91. 91.
    Kashyap A, Jiménez-Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, et al. 2022.. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. . New Phytol. 234:(4):141129
    [Crossref] [Google Scholar]
  92. 92.
    Kempthorne CJ, Nielsen AJ, Wilson DC, McNulty J, Cameron RK, Liscombe DK. 2021.. Metabolite profiling reveals a role for intercellular dihydrocamalexic acid in the response of mature Arabidopsis thaliana to Pseudomonas syringae. . Phytochemistry 187::112747
    [Crossref] [Google Scholar]
  93. 93.
    Kepseu WD, Sepulchre J-A, Reverchon S, Nasser W. 2010.. Toward a quantitative modeling of the synthesis of the pectate lyases, essential virulence factors in Dickeya dadantii. . J. Biol. Chem. 285:(37):2856576
    [Crossref] [Google Scholar]
  94. 94.
    Kim B, Westerhuis JA, Smilde AK, Floková K, Suleiman AKA, et al. 2022.. Effect of strigolactones on recruitment of the rice root-associated microbiome. . FEMS Microbiol. Ecol. 98:(2):fiac010
    [Crossref] [Google Scholar]
  95. 95.
    Kim H-E, Shitashiro M, Kuroda A, Takiguchi N, Kato J. 2007.. Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. . Microbes Environ. 22:(2):18689
    [Crossref] [Google Scholar]
  96. 96.
    Kim J-Y, Loo EP-I, Pang TY, Lercher M, Frommer WB, Wudick MM. 2021.. Cellular export of sugars and amino acids: role in feeding other cells and organisms. . Plant Physiol. 187:(4):1893914
    [Crossref] [Google Scholar]
  97. 97.
    Kim M, Chen Y, Xi J, Waters C, Chen R, Wang D. 2015.. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. . PNAS 112:(49):1523843
    [Crossref] [Google Scholar]
  98. 98.
    Kondorosi E, Mergaert P, Kereszt A. 2013.. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. . Annu. Rev. Microbiol. 67::61128
    [Crossref] [Google Scholar]
  99. 99.
    Kong HG, Song GC, Sim H-J, Ryu C-M. 2021.. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. . ISME J. 15:(2):397408
    [Crossref] [Google Scholar]
  100. 100.
    Kong X, Zhang C, Zheng H, Sun M, Zhang F, et al. 2020.. Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis. . Cell Rep. 32:(8):108060
    [Crossref] [Google Scholar]
  101. 101.
    Koprivova A, Kopriva S. 2022.. Plant secondary metabolites altering root microbiome composition and function. . Curr. Opin. Plant Biol. 67::102227
    [Crossref] [Google Scholar]
  102. 102.
    Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, et al. 2019.. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. . PNAS 116:(31):1573544
    [Crossref] [Google Scholar]
  103. 103.
    Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019.. Maize synthesized benzoxazinoids affect the host associated microbiome. . Microbiome 7:(1):59
    [Crossref] [Google Scholar]
  104. 104.
    Kulkarni OS, Mazumder M, Kini S, Hill ED, Aow JSB, et al. 2024.. Volatile methyl jasmonate from roots triggers host-beneficial soil microbiome biofilms. . Nat. Chem. Biol. 20:(4):47383
    [Crossref] [Google Scholar]
  105. 105.
    Kumar V, Sharma A, Kaur R, Thukral AK, Bhardwaj R, Ahmad P. 2017.. Differential distribution of amino acids in plants. . Amino Acids 49:(5):82169
    [Crossref] [Google Scholar]
  106. 106.
    Lajeunesse G, Roussin-Léveillée C, Boutin S, Fortin É, Laforest-Lapointe I, Moffett P. 2023.. Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. . Nat. Commun. 14:(1):713
    [Crossref] [Google Scholar]
  107. 107.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, et al. 2015.. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. . Science 349:(6250):86064
    [Crossref] [Google Scholar]
  108. 108.
    Lee M, Jeon HS, Kim SH, Chung JH, Roppolo D, et al. 2019.. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. . EMBO J. 38:(23):e101948
    [Crossref] [Google Scholar]
  109. 109.
    Leśniewska J, Öhman D, Krzesłowska M, Kushwah S, Barciszewska-Pacak M, et al. 2017.. Defense responses in aspen with altered pectin methylesterase activity reveal the hormonal inducers of tyloses. . Plant Physiol. 173:(2):140919
    [Crossref] [Google Scholar]
  110. 110.
    Li Z, Variz H, Chen Y, Liu S-L, Aung K. 2021.. Plasmodesmata-dependent intercellular movement of bacterial effectors. . Front. Plant Sci. 12::640277
    [Crossref] [Google Scholar]
  111. 111.
    Lin P-A, Chen Y, Ponce G, Acevedo FE, Lynch JP, et al. 2022.. Stomata-mediated interactions between plants, herbivores, and the environment. . Trends Plant Sci. 27:(3):287300
    [Crossref] [Google Scholar]
  112. 112.
    Liou CS, Sirk SJ, Diaz CAC, Klein AP, Fischer CR, et al. 2020.. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. . Cell 180:(4):71728.e19
    [Crossref] [Google Scholar]
  113. 113.
    Liu Y, Shu X, Chen L, Zhang H, Feng H, et al. 2023.. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization. . Nat. Microbiol. 8:(8):143449
    [Crossref] [Google Scholar]
  114. 114.
    Liu Z, Hou S, Rodrigues O, Wang P, Luo D, et al. 2022.. Phytocytokine signalling reopens stomata in plant immunity and water loss. . Nature 605:(7909):33239
    [Crossref] [Google Scholar]
  115. 115.
    Lopes LD, Wang P, Futrell SL, Schachtman DP. 2022.. Sugars and jasmonic acid concentration in root exudates affect maize rhizosphere bacterial communities. . Appl. Environ. Microbiol. 88:(18):e0097122
    [Crossref] [Google Scholar]
  116. 116.
    Lu Y, Tsuda K. 2021.. Intimate association of PRR- and NLR-mediated signaling in plant immunity. . Mol. Plant-Microbe Interact. 34:(1):314
    [Crossref] [Google Scholar]
  117. 117.
    Maekawa T, Kashkar H, Coll NS. 2023.. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. . Cell Death Differ. 30:(2):25868
    [Crossref] [Google Scholar]
  118. 118.
    Makowska B, Bakera B, Rakoczy-Trojanowska M. 2015.. The genetic background of benzoxazinoid biosynthesis in cereals. . Acta Physiol. Plant 37:(9):176
    [Crossref] [Google Scholar]
  119. 119.
    Malek W. 1989.. Chemotaxis in Rhizobium meliloti strain L5.30. . Arch. Microbiol. 152:(6):61112
    [Crossref] [Google Scholar]
  120. 120.
    Malhotra B, Kumar P, Bisht NC. 2023.. Defense versus growth trade-offs: insights from glucosinolates and their catabolites. . Plant Cell Environ. 46:(10):296484
    [Crossref] [Google Scholar]
  121. 121.
    McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM, Kunkel BN. 2018.. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. . PLOS Pathog. 14:(1):e1006811
    [Crossref] [Google Scholar]
  122. 122.
    McCraw SL, Park DH, Jones R, Bentley MA, Rico A, et al. 2016.. GABA (γ-aminobutyric acid) uptake via the GABA permease GabP represses virulence gene expression in Pseudomonas syringae pv. tomato DC3000. . Mol. Plant-Microbe Interact. 29:(12):93849
    [Crossref] [Google Scholar]
  123. 123.
    McCullen CA, Binns AN. 2006.. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. . Annu. Rev. Cell Dev. Biol. 22::10127
    [Crossref] [Google Scholar]
  124. 124.
    McRose DL, Li J, Newman DK. 2023.. The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. . PNAS 120:(14):e2217951120
    [Crossref] [Google Scholar]
  125. 125.
    Meier VM, Muschler P, Scharf BE. 2007.. Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti. . J. Bacteriol. 189:(5):181626
    [Crossref] [Google Scholar]
  126. 126.
    Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006.. Plant stomata function in innate immunity against bacterial invasion. . Cell 126:(5):96980
    [Crossref] [Google Scholar]
  127. 127.
    Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022.. Reactive oxygen species signalling in plant stress responses. . Nat. Rev. Mol. Cell Biol. 23:(10):66379
    [Crossref] [Google Scholar]
  128. 128.
    Montesinos E. 2023.. Functional peptides for plant disease control. . Annu. Rev. Phytopathol. 61::30124
    [Crossref] [Google Scholar]
  129. 129.
    Mutka AM, Fawley S, Tsao T, Kunkel BN. 2013.. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. . Plant J. Cell Mol. Biol. 74:(5):74654
    [Crossref] [Google Scholar]
  130. 130.
    Nakano M, Omae N, Tsuda K. 2022.. Inter-organismal phytohormone networks in plant-microbe interactions. . Curr. Opin. Plant Biol. 68::102258
    [Crossref] [Google Scholar]
  131. 131.
    Nasser W, Reverchon S, Robert-Baudouy J. 1992.. Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi. . Mol. Microbiol. 6:(2):25765
    [Crossref] [Google Scholar]
  132. 132.
    Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, et al. 2022.. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. . J. Exp. Bot. 73:(11):374357
    [Crossref] [Google Scholar]
  133. 133.
    Niemeyer HM. 2009.. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. . J. Agric. Food Chem. 57:(5):167796
    [Crossref] [Google Scholar]
  134. 134.
    Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC. 2003.. Loss of a callose synthase results in salicylic acid-dependent disease resistance. . Science 301:(5635):96972
    [Crossref] [Google Scholar]
  135. 135.
    Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, et al. 2018.. Transcriptome landscape of a bacterial pathogen under plant immunity. . PNAS 115:(13):E305564
    [Crossref] [Google Scholar]
  136. 136.
    Nobori T, Wang Y, Wu J, Stolze SC, Tsuda Y, et al. 2020.. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. . Nat. Plants 6:(7):88396
    [Crossref] [Google Scholar]
  137. 137.
    Nomura K, Andreazza F, Cheng J, Dong K, Zhou P, He SY. 2023.. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. . Nature 621:(7979):58691
    [Crossref] [Google Scholar]
  138. 138.
    O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, et al. 2023.. Plant myo-inositol transport influences bacterial colonization phenotypes. . Curr. Biol. 33:(15):311124
    [Crossref] [Google Scholar]
  139. 139.
    Oku S, Komatsu A, Nakashimada Y, Tajima T, Kato J. 2014.. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization. . Microbes Environ. 29:(4):41319
    [Crossref] [Google Scholar]
  140. 140.
    Oku S, Komatsu A, Tajima T, Nakashimada Y, Kato J. 2012.. Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0–1 and their involvement in chemotaxis to tomato root exudate and root colonization. . Microbes Environ. 27:(4):46269
    [Crossref] [Google Scholar]
  141. 141.
    Oldroyd GED, Murray JD, Poole PS, Downie JA. 2011.. The rules of engagement in the legume-rhizobial symbiosis. . Annu. Rev. Genet. 45::11944
    [Crossref] [Google Scholar]
  142. 142.
    Paauw M, van Hulten M, Chatterjee S, Berg JA, Taks NW, et al. 2023.. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. . Curr. Biol. 33:(4):697710.e6
    [Crossref] [Google Scholar]
  143. 143.
    Pang Z, Mao X, Zhou S, Yu S, Liu G, et al. 2023.. Microbiota-mediated nitrogen fixation and microhabitat homeostasis in aerial root-mucilage. . Microbiome 11:(1):85
    [Crossref] [Google Scholar]
  144. 144.
    Park DH, Mirabella R, Bronstein PA, Preston GM, Haring MA, et al. 2010.. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. . Plant J. 64:(2):31830
    [Crossref] [Google Scholar]
  145. 145.
    Penterman J, Abo RP, De Nisco NJ, Arnold MFF, Longhi R, et al. 2014.. Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. . PNAS 111:(9):356166
    [Crossref] [Google Scholar]
  146. 146.
    Pfeilmeier S, Petti GC, Bortfeld-Miller M, Daniel B, Field CM, et al. 2021.. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. . Nat. Microbiol. 6:(7):85264
    [Crossref] [Google Scholar]
  147. 147.
    Pfeilmeier S, Werz A, Ote M, Bortfeld-Miller M, Kirner P, et al. 2024.. Leaf microbiome dysbiosis triggered by T2SS-dependent enzyme secretion from opportunistic Xanthomonas pathogens. . Nat. Microbiol. 9:(1):13649
    [Crossref] [Google Scholar]
  148. 148.
    Pichersky E, Raguso RA. 2018.. Why do plants produce so many terpenoid compounds?. New Phytol. 220:(3):692702
    [Crossref] [Google Scholar]
  149. 149.
    Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ, et al. 2020.. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. . J. Exp. Bot. 71:(6):215771
    [Crossref] [Google Scholar]
  150. 150.
    Price PA, Tanner HR, Dillon BA, Shabab M, Walker GC, Griffitts JS. 2015.. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. . PNAS 112:(49):1524449
    [Crossref] [Google Scholar]
  151. 151.
    Prithiviraj B, Bais HP, Weir T, Suresh B, Najarro EH, et al. 2005.. Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. . Infect. Immun. 73:(9):531928
    [Crossref] [Google Scholar]
  152. 152.
    Qiao Y, Xia R, Zhai J, Hou Y, Feng L, et al. 2021.. Small RNAs in plant immunity and virulence of filamentous pathogens. . Annu. Rev. Phytopathol. 59::26588
    [Crossref] [Google Scholar]
  153. 153.
    Rajniak J, Giehl RFH, Chang E, Murgia I, Von Wirén N, Sattely ES. 2018.. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. . Nat. Chem. Biol. 14:(5):44250
    [Crossref] [Google Scholar]
  154. 154.
    Rico-Jiménez M, Roca A, Krell T, Matilla MA. 2022.. A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. . Environ. Microbiol. 24:(8):358097
    [Crossref] [Google Scholar]
  155. 155.
    Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, et al. 2015.. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. . Mol. Plant Pathol. 16:(7):68598
    [Crossref] [Google Scholar]
  156. 156.
    Rodrigues O, Shan L. 2022.. Stomata in a state of emergency: H2O2 is the target locked. . Trends Plant Sci. 27:(3):27486
    [Crossref] [Google Scholar]
  157. 157.
    Rogan CJ, Pang Y-Y, Mathews SD, Turner SE, Weisberg AJ, et al. 2023.. Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen. . bioRxiv 562815. https://doi.org/10.1101/2023.10.18.562815
  158. 158.
    Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, et al. 2022.. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. . Cell Host Microbe 30:(4):489501.e4
    [Crossref] [Google Scholar]
  159. 159.
    Roux B, Rodde N, Jardinaud M-F, Timmers T, Sauviac L, et al. 2014.. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. . Plant J. Cell Mol. Biol. 77:(6):81737
    [Crossref] [Google Scholar]
  160. 160.
    Rumberger A, Marschner P. 2003.. 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. . Soil Biol. Biochem. 35:(3):44552
    [Crossref] [Google Scholar]
  161. 161.
    Rzemieniewski J, Stegmann M. 2022.. Regulation of pattern-triggered immunity and growth by phytocytokines. . Curr. Opin. Plant Biol. 68::102230
    [Crossref] [Google Scholar]
  162. 162.
    Sánchez-Gil JJ, Poppeliers SWM, Vacheron J, Zhang H, Odijk B, et al. 2023.. The conserved iol gene cluster in Pseudomonas is involved in rhizosphere competence. . Curr. Biol. 33:(15):3097110.e6
    [Crossref] [Google Scholar]
  163. 163.
    Santamaría-Hernando S, López-Maroto Á, Galvez-Roldán C, Munar-Palmer M, Monteagudo-Cascales E, et al. 2022.. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. . Mol. Plant Pathol. 23:(10):143345
    [Crossref] [Google Scholar]
  164. 164.
    Sasse J, Martinoia E, Northen T. 2018.. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23:(1):2541
    [Crossref] [Google Scholar]
  165. 165.
    Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel K-H. 2011.. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. . Plant Physiol. 157:(3):140718
    [Crossref] [Google Scholar]
  166. 166.
    Shabab M, Arnold MFF, Penterman J, Wommack AJ, Bocker HT, et al. 2016.. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. . PNAS 113:(36):1015762
    [Crossref] [Google Scholar]
  167. 167.
    Shrestha M, Compton KK, Mancl JM, Webb BA, Brown AM, et al. 2018.. Structure of the sensory domain of McpX from Sinorhizobium meliloti, the first known bacterial chemotactic sensor for quaternary ammonium compounds. . Biochem. J. 475:(24):394962
    [Crossref] [Google Scholar]
  168. 168.
    Singla-Rastogi M, Charvin M, Thiébeauld O, Perez-Quintero AL, Ravet A, et al. 2019.. Plant small RNA species direct gene silencing in pathogenic bacteria as well as disease protection. . bioRxiv 863902. https://doi.org/10.1101/863902
  169. 169.
    Song Y, Wilson AJ, Zhang X-C, Thoms D, Sohrabi R, et al. 2021.. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. . Nat. Plants 7:(5):64454
    [Crossref] [Google Scholar]
  170. 170.
    Spallek T, Gan P, Kadota Y, Shirasu K. 2018.. Same tune, different song—cytokinins as virulence factors in plant-pathogen interactions?. Curr. Opin. Plant Biol. 44::8287
    [Crossref] [Google Scholar]
  171. 171.
    Stassen MJJ, Hsu S-H, Pieterse CMJ, Stringlis IA. 2021.. Coumarin communication along the microbiome-root-shoot axis. . Trends Plant Sci. 26:(2):16983
    [Crossref] [Google Scholar]
  172. 172.
    Stevens RB. 1960.. Cultural practices in disease control. . In Plant Pathology, An Advanced Treatise, Vol. 3, ed. JG Horsfall, AE Diamond , pp. 357429. New York:: Acad. Press
    [Google Scholar]
  173. 173.
    Stringlis IA, de Jonge R, Pieterse CMJ. 2019.. The age of coumarins in plant-microbe interactions. . Plant Cell Physiol. 60:(7):140519
    [Crossref] [Google Scholar]
  174. 174.
    Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, et al. 2018.. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. . PNAS 115:(22):E521322
    [Crossref] [Google Scholar]
  175. 175.
    Su P, Kang H, Peng Q, Wicaksono WA, Berg G, et al. 2024.. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. . Nat. Commun. 15:(1):23
    [Crossref] [Google Scholar]
  176. 176.
    Thoenen L, Giroud C, Kreuzer M, Waelchli J, Gfeller V, et al. 2023.. Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. . PNAS 120:(44):e2310134120
    [Crossref] [Google Scholar]
  177. 177.
    Tierens KFM-J, Thomma BPHJ, Brouwer M, Schmidt J, Kistner K, et al. 2001.. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. . Plant Physiol. 125:(4):168899
    [Crossref] [Google Scholar]
  178. 178.
    Torres MA, Dangl JL, Jones JDG. 2002.. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. . PNAS 99:(1):51722
    [Crossref] [Google Scholar]
  179. 179.
    Trabelcy B, Shteindel N, Lalzar M, Izhaki I, Gerchman Y. 2023.. Bacterial detoxification of plant defence secondary metabolites mediates the interaction between a shrub and frugivorous birds. . Nat. Commun. 14:(1):1821
    [Crossref] [Google Scholar]
  180. 180.
    Tsai AY-L, Oota M, Sawa S. 2020.. Chemotactic host-finding strategies of plant endoparasites and endophytes. . Front. Plant Sci. 11::1167
    [Crossref] [Google Scholar]
  181. 181.
    Tumewu SA, Matsui H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. 2020.. Requirement of γ-aminobutyric acid chemotaxis for virulence of Pseudomonas syringae pv. tabaci 6605. . Microbes Environ. 35:(4):ME20114
    [Crossref] [Google Scholar]
  182. 182.
    Turk SC, van Lange RP, Regensburg-Tuïnk TJ, Hooykaas PJ. 1994.. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. . Plant Mol. Biol. 25:(5):899907
    [Crossref] [Google Scholar]
  183. 183.
    Unger K, Raza AK, Mayer T, Reichelt M, Stuttmann J, et al. 2023.. Beyond defense: Glucosinolate structural diversity shapes recruitment of a metabolic network of leaf-associated bacteria. . bioRxiv 567830. https://doi.org/10.1101/2023.12.04.567830
  184. 184.
    van den Bosch TJM, Niemi O, Welte CU. 2020.. Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defence. . Mol. Plant Pathol. 21:(3):34959
    [Crossref] [Google Scholar]
  185. 185.
    Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, et al. 2008.. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. . Plant Physiol. 146:(3):1293304
    [Crossref] [Google Scholar]
  186. 186.
    van der Meij A, Elsayed SS, Du C, Willemse J, Wood TM, et al. 2023.. The plant stress hormone jasmonic acid evokes defensive responses in Streptomycetes. . Appl. Environ. Microbiol. 89:(11):e0123923
    [Crossref] [Google Scholar]
  187. 187.
    van Loon LC. 1985.. Pathogenesis-related proteins. . Plant Mol. Biol. 4::11116
    [Crossref] [Google Scholar]
  188. 188.
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015.. The importance of the microbiome of the plant holobiont. . New Phytol. 206:(4):1196206
    [Crossref] [Google Scholar]
  189. 189.
    Venado RE, Wilker J, Pankievicz V, Infante V, MacIntyre A, et al. 2023.. Mucilage produced by sorghum (Sorghum bicolor) aerial roots supports a nitrogen-fixing community. . bioRxiv 552127. https://doi.org/10.1101/2023.08.05.552127
  190. 190.
    Verbon EH, Trapet PL, Stringlis IA, Kruijs S. 2017.. Iron and immunity. . Annu. Rev. Phytopathol. 55::35575
    [Crossref] [Google Scholar]
  191. 191.
    Vílchez JI, Yang Y, He D, Zi H, Peng L, et al. 2020.. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. . Nat. Plants 6:(8):98395
    [Crossref] [Google Scholar]
  192. 192.
    Vismans G, van Bentum S, Spooren J, Song Y, Goossens P, et al. 2022.. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. . Sci. Rep. 12:(1):22473
    [Crossref] [Google Scholar]
  193. 193.
    Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES. 2019.. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. . PNAS 116:(25):1255865
    [Crossref] [Google Scholar]
  194. 194.
    Wang B, Li K, Wu G, Xu Z, Hou R, et al. 2022.. Sulforaphane, a secondary metabolite in crucifers, inhibits the oxidative stress adaptation and virulence of Xanthomonas by directly targeting OxyR. . Mol. Plant Pathol. 23:(10):150823
    [Crossref] [Google Scholar]
  195. 195.
    Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. 2007.. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. . Curr. Biol. 17:(20):178490
    [Crossref] [Google Scholar]
  196. 196.
    Wang F-F, Cheng S-T, Wu Y, Ren B-Z, Qian W. 2017.. A bacterial receptor PcrK senses the plant hormone cytokinin to promote adaptation to oxidative stress. . Cell Rep. 21:(10):294051
    [Crossref] [Google Scholar]
  197. 197.
    Wang L, Pan Y, Yuan Z-H, Zhang H, Peng B-Y, et al. 2016.. Two-component signaling system VgrRS directly senses extracytoplasmic and intracellular iron to control bacterial adaptation under iron depleted stress. . PLOS Pathog. 12:(12):e1006133
    [Crossref] [Google Scholar]
  198. 198.
    Wang W, Yang J, Zhang J, Liu Y-X, Tian C, et al. 2020.. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. . Cell Host Microbe 27:(4):60113.e7
    [Crossref] [Google Scholar]
  199. 199.
    Wang Y, Garrido-Oter R, Wu J, Winkelmüller TM, Agler M, et al. 2019.. Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. . Nat. Commun. 10:(1):2853
    [Crossref] [Google Scholar]
  200. 200.
    Wang Z, Li X, Wang X, Liu N, Xu B, et al. 2019.. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity. . Plant Cell 31:(1):15371
    [Crossref] [Google Scholar]
  201. 201.
    Webb BA, Compton KK, Castañeda Saldaña R, Arapov TD, Ray WK, et al. 2017.. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX. . Mol. Microbiol. 103:(2):33346
    [Crossref] [Google Scholar]
  202. 202.
    Welte CU, Rosengarten JF, de Graaf RM, Jetten MSM. 2016.. SaxA-mediated isothiocyanate metabolism in phytopathogenic pectobacteria. . Appl. Environ. Microbiol. 82:(8):237279
    [Crossref] [Google Scholar]
  203. 203.
    Wen T, Xie P, Penton CR, Hale L, Thomashow LS, et al. 2022.. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin. . Microbiome 10:(1):177
    [Crossref] [Google Scholar]
  204. 204.
    Weston LA, Mathesius U. 2013.. Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. . J. Chem. Ecol. 39:(2):28397
    [Crossref] [Google Scholar]
  205. 205.
    Xian L, Yu G, Wei Y, Rufian JS, Li Y, et al. 2020.. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. . Cell Host Microbe 28:(4):54857.e7
    [Crossref] [Google Scholar]
  206. 206.
    Xie Y, Ding Y, Shao X, Yao C, Li J, et al. 2021.. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. . EMBO Rep. 22:(12):e52805
    [Crossref] [Google Scholar]
  207. 207.
    Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J, et al. 2016.. Bacteria establish an aqueous living space in plants crucial for virulence. . Nature 539:(7630):52429
    [Crossref] [Google Scholar]
  208. 208.
    Xing Y, Xu N, Bhandari DD, Lapin D, Sun X, et al. 2021.. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization. . Plant Cell 33:(6):201531
    [Crossref] [Google Scholar]
  209. 209.
    Yamada K, Mine A. 2024.. Sugar coordinates plant defense signaling. . Sci. Adv. 10:(4):eadk4131
    [Crossref] [Google Scholar]
  210. 210.
    Yamada K, Saijo Y, Nakagami H, Takano Y. 2016.. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. . Science 354:(6318):142730
    [Crossref] [Google Scholar]
  211. 211.
    Yan Q, Rogan CJ, Pang Y-Y, Davis EW, Anderson JC. 2020.. Ancient co-option of an amino acid ABC transporter locus in Pseudomonas syringae for host signal-dependent virulence gene regulation. . PLOS Pathog. 16:(7):e1008680
    [Crossref] [Google Scholar]
  212. 212.
    Yang K, Fu R, Feng H, Jiang G, Finkel O, et al. 2023.. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. . Mol. Plant 16:(9):137995
    [Crossref] [Google Scholar]
  213. 213.
    Yang L, Ding W, Xu Y, Wu D, Li S, et al. 2016.. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. . Molecules 21:(4):468
    [Crossref] [Google Scholar]
  214. 214.
    Yang Q, Li Z, Guan K, Liu Z, Huang A, et al. 2023.. Comparative single-nucleus RNA-seq analysis captures shared and distinct responses to beneficial and pathogenic microbes in roots. . bioRxiv 551619. https://doi.org/10.1101/2023.08.03.551619
  215. 215.
    Yao J, Allen C. 2006.. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. . J. Bacteriol. 188:(10):3697708
    [Crossref] [Google Scholar]
  216. 216.
    You C, Qin D, Wang Y, Lan W, Li Y, et al. 2021.. Plant triterpenoids regulate endophyte community to promote medicinal plant Schisandra sphenanthera growth and metabolites accumulation. . J. Fungi 7:(10):788
    [Crossref] [Google Scholar]
  217. 217.
    Yu K, Stringlis IA, van Bentum S, de Jonge R, Snoek BL, et al. 2021.. Transcriptome signatures in Pseudomonas simiae WCS417 shed light on role of root-secreted coumarins in Arabidopsis-mutualist communication. . Microorganisms 9:(3):575
    [Crossref] [Google Scholar]
  218. 218.
    Yu P, He X, Baer M, Beirinckx S, Tian T, et al. 2021.. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. . Nat. Plants 7:(4):48199
    [Crossref] [Google Scholar]
  219. 219.
    Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, et al. 2013.. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. . PNAS 110:(5):E42534
    [Crossref] [Google Scholar]
  220. 220.
    Yuan J, Zhao J, Wen T, Zhao M, Li R, et al. 2018.. Root exudates drive the soil-borne legacy of aboveground pathogen infection. . Microbiome 6:(1):156
    [Crossref] [Google Scholar]
  221. 221.
    Yuan Z-C, Edlind MP, Liu P, Saenkham P, Banta LM, et al. 2007.. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. . PNAS 104:(28):1179095
    [Crossref] [Google Scholar]
  222. 222.
    Zamioudis C, Hanson J, Pieterse CMJ. 2014.. β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. . New Phytol. 204:(2):36879
    [Crossref] [Google Scholar]
  223. 223.
    Zhan J, Meyers BC. 2023.. Plant small RNAs: their biogenesis, regulatory roles, and functions. . Annu. Rev. Plant Biol. 74::2151
    [Crossref] [Google Scholar]
  224. 224.
    Zhang L, Hua C, Janocha D, Fliegmann J, Nürnberger T. 2023.. Plant cell surface immune receptors: novel insights into function and evolution. . Curr. Opin. Plant Biol. 74::102384
    [Crossref] [Google Scholar]
  225. 225.
    Zhang R, Shen Y, He J, Zhang C, Ma Y, et al. 2023.. Nodule-specific cysteine-rich peptide 343 is required for symbiotic nitrogen fixation in Medicago truncatula. . Plant Physiol. 193:(3):1897912
    [Crossref] [Google Scholar]
  226. 226.
    Zhang S, Kan J, Liu X, Wu Y, Zhang M, et al. 2023.. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. . Mol. Plant Pathol. 24:(4):35973
    [Crossref] [Google Scholar]
  227. 227.
    Zhong Y, Xun W, Wang X, Tian S, Zhang Y, et al. 2022.. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. . Nat. Plants 8:(8):88796
    [Crossref] [Google Scholar]
  228. 228.
    Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W. 2011.. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. . Cell Host Microbe 9:(3):17786
    [Crossref] [Google Scholar]
  229. 229.
    Zhou N, Tootle TL, Glazebrook J. 1999.. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. . Plant Cell 11:(12):241928
    [Crossref] [Google Scholar]
  230. 230.
    Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, et al. 2023.. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. . Mol. Plant 16:(5):84964
    [Crossref] [Google Scholar]
  231. 231.
    Ziv C, Zhao Z, Gao YG, Xia Y. 2018.. Multifunctional roles of plant cuticle during plant-pathogen interactions. . Front. Plant Sci. 9::1088
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-010824-023359
Loading
/content/journals/10.1146/annurev-phyto-010824-023359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error