1932

Abstract

Research initiatives undertaken in response to disease outbreaks accelerate our understanding of microbial evolution, mechanisms of virulence and resistance, and plant–pathogen coevolutionary interactions. The emergence and global spread of pv. (Psa) on kiwifruit () showed that there are parallel paths to host adaptation and antimicrobial resistance evolution, accelerated by the movement of mobile elements. Significant progress has been made in identifying type 3 effectors required for virulence and recognition in and , broadening our understanding of how host-mediated selection shapes virulence. The rapid development of genomics after the Psa3 pandemic began has also generated new insight into molecular mechanisms of immunity and resistance gene evolution in this recently domesticated, nonmodel host. These findings include the presence of close homologs of known resistance genes and as well as the novel expansion of CC-NLRs (nucleotide-binding leucine-rich repeats) in spp. The advances and approaches developed during the pandemic response can be applied to new pathosystems and new outbreak events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-095110
2024-09-09
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021622-095110.html?itemId=/content/journals/10.1146/annurev-phyto-021622-095110&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akagi T, Varkonyi-Gasic E, Shirasawa K, Catanach A, Henry IM, et al. 2023.. Recurrent neo-sex chromosome evolution in kiwifruit. . Nat. Plants 9:(3):393402
    [Crossref] [Google Scholar]
  2. 2.
    Badel JL, Shimizu R, Oh H-S, Collmer A. 2006.. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. . Mol. Plant-Microbe Interact. 19:(2):99111
    [Crossref] [Google Scholar]
  3. 3.
    Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A. 2013.. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. . Plant Dis. 97:(4):47278
    [Crossref] [Google Scholar]
  4. 4.
    Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, et al. 2011.. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. . PLOS Pathog. 7:(7):e1002132
    [Crossref] [Google Scholar]
  5. 5.
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. 2012.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J. Comput. Biol. 19:(5):45577
    [Crossref] [Google Scholar]
  6. 6.
    Beatrice C, Linthorst JMH, Cinzia F, Luca R. 2017.. Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae pv. actinidiae. . Eur. J. Plant Pathol. 148:(1):16379
    [Crossref] [Google Scholar]
  7. 7.
    Botelho J, Schulenburg H. 2020.. The role of integrative and conjugative elements in antibiotic resistance evolution. . Trends Microbiol. 29:(1):818
    [Crossref] [Google Scholar]
  8. 8.
    Buchfink B, Xie C, Huson DH. 2015.. Fast and sensitive protein alignment using DIAMOND. . Nat. Methods 12:(1):5960
    [Crossref] [Google Scholar]
  9. 9.
    Bundalovic-Torma C, Lonjon F, Desveaux D, Guttman DS. 2022.. Diversity, evolution, and function of Pseudomonas syringae effectoromes. . Annu. Rev. Phytopathol. 60::21136
    [Crossref] [Google Scholar]
  10. 10.
    Butler MI, Stockwell PA, Black MA, Day RC, Lamont IL, Poulter RTM. 2013.. Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. . PLOS ONE 8:(2):e57464
    [Crossref] [Google Scholar]
  11. 11.
    Büttner D. 2016.. Behind the lines—actions of bacterial type III effector proteins in plant cells. . FEMS Microbiol. Rev. 40:(6):894937
    [Crossref] [Google Scholar]
  12. 12.
    Cheng C-H. 2014.. Inheritance of resistance to Pseudomonas syringae pv. actinidiae and genetic correlations with fruit characters in a diploid Actinidia chinensis (kiwifruit) population. . Euphytica 198:(2):30515
    [Crossref] [Google Scholar]
  13. 13.
    Colombi E, Bertels F, Doulcier G, McConnell E, Pichugina T, et al. 2024.. Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements. . PNAS 121:(11):e2309263121
    [Crossref] [Google Scholar]
  14. 14.
    Colombi E, Straub C, Künzel S, Templeton MD, McCann HC, Rainey PB. 2017.. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. . Environ. Microbiol. 19:(2):81932
    [Crossref] [Google Scholar]
  15. 15.
    Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 2011.. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. . PNAS 108:(7):297580
    [Crossref] [Google Scholar]
  16. 16.
    Cunty A, Poliakoff F, Rivoal C, Cesbron S, Fischer-Le Saux M, et al. 2015.. Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov. . Plant Pathol. 64:(3):58296
    [Crossref] [Google Scholar]
  17. 17.
    Datson P, Nardozza S, Manako K, Herrick J, Martinez-Sanchez M, et al. 2015.. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae. . Acta Hortic. 1095::18184
    [Crossref] [Google Scholar]
  18. 18.
    De Silva NH, Gea L, Lowe R. 2014.. Genetic analysis of resistance to Pseudomonas syringae pv. actinidiae (Psa) in a kiwifruit progeny test: an application of generalised linear mixed models (GLMMs). . SpringerPlus 3:(1):547
    [Crossref] [Google Scholar]
  19. 19.
    Dharmaraj K, Cui W, Rikkerink EHA, Templeton MD. 2019.. Construction of a kiwifruit yeast two-hybrid cDNA library to identify host targets of the Pseudomonas syringae pv. actinidiae effector AvrPto5. . BMC Res. Notes 12:(1):63
    [Crossref] [Google Scholar]
  20. 20.
    Donati I, Buriani G, Cellini A, Mauri S, Costa G, Spinelli F. 2014.. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). . J. Berry Res. 4:(2):5367
    [Crossref] [Google Scholar]
  21. 21.
    Donati I, Cellini A, Sangiorgio D, Vanneste JL, Scortichini M, et al. 2020.. Pseudomonas syringae pv. actinidiae: ecology, infection dynamics and disease epidemiology. . Microb. Ecol. 80:(1):81102
    [Crossref] [Google Scholar]
  22. 22.
    Ferguson AR, Huang H. 2007.. Genetic resources of kiwifruit: domestication and breeding. . In Horticultural Reviews, ed. J Janick , pp. 1121. Hoboken, NJ:: Wiley & Sons
    [Google Scholar]
  23. 23.
    Ferrante P, Scortichini M. 2015.. Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics. . Plant Pathol. 64:(1):5162
    [Crossref] [Google Scholar]
  24. 24.
    Firrao G, Torelli E, Polano C, Ferrante P, Ferrini F, et al. 2018.. Genomic structural variations affecting virulence during clonal expansion of Pseudomonas syringae pv. actinidiae biovar 3 in Europe. . Front. Microbiol. 9::656
    [Crossref] [Google Scholar]
  25. 25.
    Fujikawa T, Sawada H. 2016.. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. . Sci. Rep. 6:(1):21399
    [Crossref] [Google Scholar]
  26. 26.
    Fujikawa T, Sawada H. 2019.. Genome analysis of Pseudomonas syringae pv. actinidiae biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine. . Sci. Rep. 9:(1):3836
    [Crossref] [Google Scholar]
  27. 27.
    Guo M, Tian F, Wamboldt Y, Alfano JR. 2009.. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. . Mol. Plant-Microbe Interact. 22:(9):106980
    [Crossref] [Google Scholar]
  28. 28.
    Hemara LM, Jayaraman J, Sutherland PW, Montefiori M, Arshed S, et al. 2022.. Effector loss drives adaptation of Pseudomonas syringae pv. actinidiae biovar 3 to Actinidia arguta. . PLOS Pathog. 18:(5):e1010542
    [Crossref] [Google Scholar]
  29. 29.
    Hirose K, Ishiga Y, Fujikawa T. 2020.. Phytotoxin synthesis genes and type III effector genes of Pseudomonas syringae pv. actinidiae biovar 6 are regulated by culture conditions. . PeerJ 8::e9697
    [Crossref] [Google Scholar]
  30. 30.
    Ho J, Taiaroa G, Butler MI, Poulter RTM. 2019.. The genome sequence of M228, a Chinese isolate of Pseudomonas syringae pv. actinidiae, illustrates insertion sequence element mobility. . Microbiol. Resour. Announc. 8:(1):e01427-18
    [Crossref] [Google Scholar]
  31. 31.
    Huang H. 2016.. Cultivation and management. . In Kiwifruit: The Genus Actinidia, pp. 26595. Amsterdam:: Elsevier
    [Google Scholar]
  32. 32.
    Huang S, Ding J, Deng D, Tang W, Sun H, et al. 2013.. Draft genome of the kiwifruit Actinidia chinensis. . Nat. Commun. 4:(1):2640
    [Crossref] [Google Scholar]
  33. 33.
    Hulin MT, Armitage AD, Vicente JG, Holub EB, Baxter L, et al. 2018.. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). . New Phytol. 219:(2):67296
    [Crossref] [Google Scholar]
  34. 34.
    Hulin MT, Hill L, Jones JDG, Ma W. 2023.. Pangenomic analysis reveals plant NAD+ manipulation as an important virulence activity of bacterial pathogen effectors. . PNAS 120:(7):e2217114120
    [Crossref] [Google Scholar]
  35. 35.
    Ishiga T, Sakata N, Nguyen VT, Ishiga Y. 2020.. Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit. . J. Gen. Plant Pathol. 86:(4):25765
    [Crossref] [Google Scholar]
  36. 36.
    Ishiga T, Sakata N, Usuki G, Nguyen VT, Gomi K, Ishiga Y. 2022.. Large-scale transposon mutagenesis reveals type III secretion effector HopR1 is a major virulence factor in Pseudomonas syringae pv. actinidiae. . Plants 12:(1):141
    [Crossref] [Google Scholar]
  37. 37.
    Jackson RW, Mansfield JW, Arnold DL, Sesma A, Paynter CD, et al. 2000.. Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. . Mol. Microbiol. 38:(2):18697
    [Crossref] [Google Scholar]
  38. 38.
    Jayaraman J, Chatterjee A, Hunter S, Chen R, Stroud EA, et al. 2021.. Rapid methodologies for assessing Pseudomonas syringae pv. actinidiae colonization and effector-mediated hypersensitive response in kiwifruit. . Mol. Plant-Microbe Interact. 34:(8):88090
    [Crossref] [Google Scholar]
  39. 39.
    Jayaraman J, Yoon M, Applegate ER, Stroud EA, Templeton MD. 2020.. AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. . Mol. Plant Pathol. 21:(11):146780
    [Crossref] [Google Scholar]
  40. 40.
    Jayaraman J, Yoon M, Hemara LM, Bohne D, Tahir J, et al. 2023.. Contrasting effector profiles between bacterial colonisers of kiwifruit reveal redundant roles converging on PTI-suppression and RIN4. . New Phytol. 238:(4):160519
    [Crossref] [Google Scholar]
  41. 41.
    Johnson CM, Grossman AD. 2015.. Integrative and conjugative elements (ICEs): what they do and how they work. . Annu. Rev. Genet. 49::577601
    [Crossref] [Google Scholar]
  42. 42.
    Kataoka I, Mizugami T, Kim JG, Beppu K, Fukuda T, et al. 2010.. Ploidy variation of hardy kiwifruit (Actinidia arguta) resources and geographic distribution in Japan. . Sci. Hortic. 124:(3):40914
    [Crossref] [Google Scholar]
  43. 43.
    Kim MG, Geng X, Lee SY, Mackey D. 2009.. The Pseudomonas syringae type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotide-binding leucine-rich repeat protein RPS2. . Plant J. 57:(4):64553
    [Crossref] [Google Scholar]
  44. 44.
    Kisaki G, Shimagami T, Matsudaira K, Tsugi Y, Moriguchi K, et al. 2019.. A kiwifruit cultivar crossbred with Actinidia chinensis and Actinidia rufa has practical tolerance to Pseudomonassyringae pv. actinidiae biovar 3. . J. Plant Pathol. 101:(4):121114
    [Crossref] [Google Scholar]
  45. 45.
    Kisaki G, Tanaka S, Ishihara A, Igarashi C, Morimoto T, et al. 2018.. Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3. . J. Gen. Plant Pathol. 84:(6):399406
    [Crossref] [Google Scholar]
  46. 46.
    Ko S-J, Lee Y-H, Cha K-H, Park KB, Park I-J, Kim YC. 2002.. An improved method for testing pathogenicity of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit. . Res. Plant Dis. 8:(4):25053
    [Crossref] [Google Scholar]
  47. 47.
    Koh YJ, Lee DH. 1992.. Canker of kiwifruit by Pseudomonas syringae pv. morsprunorum. . Korean J. Plant Pathol. 8:(2):11922
    [Google Scholar]
  48. 48.
    Kourelis J, Sakai T, Adachi H, Kamoun S. 2021.. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. . PLOS Biol. 19:(10):e3001124
    [Crossref] [Google Scholar]
  49. 49.
    Kvitko BH, Park DH, Velásquez AC, Wei C-F, Russell AB, et al. 2009.. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. . PLOS Pathog. 5:(4):e1000388
    [Crossref] [Google Scholar]
  50. 50.
    Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS. 2020.. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. . Science 367:(6479):76368
    [Crossref] [Google Scholar]
  51. 51.
    Li D, Liu Y, Zhong C, Huang H. 2010.. Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. . Bot. J. Linn. Soc. 164:(1):7283
    [Crossref] [Google Scholar]
  52. 52.
    Li D, Zhong C, Liu Y, Huang H. 2010.. Correlation between ploidy level and fruit characters of the main kiwifruit cultivars in China: implication for selection and improvement. . N. Z. J. Crop Hortic. Sci. 38:(2):13745
    [Crossref] [Google Scholar]
  53. 53.
    Li Z-Z, Man Y-P, Lan X-Y, Wang Y-C. 2013.. Ploidy and phenotype variation of a natural Actnidia arguta population in the east of Daba Mountain located in a region of Shaanxi. . Sci. Hortic. 161::25965
    [Crossref] [Google Scholar]
  54. 54.
    Liu W, Zhao C, Liu L, Huang D, Ma C, et al. 2022.. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection. . Int. J. Biol. Macromol. 222::10113
    [Crossref] [Google Scholar]
  55. 55.
    Liu Y, Li D, Yan L, Huang H. 2015.. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis. . PLOS ONE 10:(2):e0117596
    [Crossref] [Google Scholar]
  56. 56.
    Liu Y, Li D, Zhang Q, Song C, Zhong C, et al. 2017.. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. . New Phytol. 215:(2):87790
    [Crossref] [Google Scholar]
  57. 57.
    Mackey D, Holt BF, Wiig A, Dangl JL. 2002.. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. . Cell 108:(6):74354
    [Crossref] [Google Scholar]
  58. 58.
    Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, et al. 2012.. Top 10 plant pathogenic bacteria in molecular plant pathology. . Mol. Plant Pathol. 13:(6):61429
    [Crossref] [Google Scholar]
  59. 59.
    Marcelletti S, Ferrante P, Petriccione M, Firrao G, Scortichini M. 2011.. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species. . PLOS ONE 6:(11):e27297
    [Crossref] [Google Scholar]
  60. 60.
    McAtee PA, Brian L, Curran B, van der Linden O, Nieuwenhuizen NJ, et al. 2018.. Re-programming of Pseudomonas syringae pv. actinidiae gene expression during early stages of infection of kiwifruit. . BMC Genom. 19:(1):822
    [Crossref] [Google Scholar]
  61. 61.
    McCann H, Li L, Liu Y, Li D, Pan H, et al. 2017.. Origin and evolution of the kiwifruit canker pandemic. . Genome Biol. Evol. 9:(4):93244
    [Crossref] [Google Scholar]
  62. 62.
    McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, et al. 2013.. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. . PLOS Pathog. 9:(7):e1003503
    [Crossref] [Google Scholar]
  63. 63.
    Michelotti V, Lamontanara A, Buriani G, Orrù L, Cellini A, et al. 2018.. Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. . BMC Genom. 19:(1):585
    [Crossref] [Google Scholar]
  64. 64.
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020.. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. . Mol. Biol. Evol. 37:(5):153034
    [Crossref] [Google Scholar]
  65. 65.
    Nunes da Silva M, Carvalho SMP, Rodrigues AM, Gómez-Cadenas Aurelio, António C, Vasconcelos MW. 2021.. Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae. . Plant Cell Environ. 45:(2):52841
    [Crossref] [Google Scholar]
  66. 66.
    Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, et al. 2018.. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. . BMC Genom. 19:(1):257
    [Crossref] [Google Scholar]
  67. 67.
    Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL. 2005.. Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. . Curr. Biol. 15:(24):223035
    [Crossref] [Google Scholar]
  68. 68.
    Qin X, Zhang M, Li Q, Chen D, Sun L, et al. 2022.. Transcriptional analysis on resistant and susceptible kiwifruit genotypes activating different plant-immunity processes against Pseudomonas syringae pv. actinidiae. . Int. J. Mol. Sci. 23:(14):7643
    [Crossref] [Google Scholar]
  69. 69.
    Ruiz-Bedoya T, Wang PW, Desveaux D, Guttman DS. 2023.. Cooperative virulence via the collective action of secreted pathogen effectors. . Nat. Microbiol. 8:(4):64050
    [Crossref] [Google Scholar]
  70. 70.
    Sawada H, Fujikawa T. 2019.. Genetic diversity of Pseudomonas syringae pv. actinidiae, pathogen of kiwifruit bacterial canker. . Plant Pathol. 68:(7):123548
    [Crossref] [Google Scholar]
  71. 71.
    Scortichini M. 1994.. Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. . Plant Pathol. 43:(6):103538
    [Crossref] [Google Scholar]
  72. 72.
    Scortichini M, Marchesi U, Prospero PD. 2002.. Genetic relatedness among Pseudomonas avellanae, P. syringae pv. theae and P.s. pv. actinidiae, and their identification. . Eur. J. Plant Pathol. 108::26978
    [Crossref] [Google Scholar]
  73. 73.
    Seemann T. 2014.. Prokka: rapid prokaryotic genome annotation. . Bioinformatics 30:(14):206869
    [Crossref] [Google Scholar]
  74. 74.
    Serizawa S, Ichikawa T. 1993.. Epidemiology of bacterial canker of kiwifruit. 2. The most suitable times and environments for infection on new canes. . Ann. Phytopathol. Soc. Jpn. 59::46068
    [Crossref] [Google Scholar]
  75. 75.
    Serizawa S, Ichikawa T, Suzuki H. 1994.. Epidemiology of bacterial canker of kiwifruit. 5. Effect of infection in fall to early winter on the disease development in branches and trunk after winter. . Ann. Phytopathol. Soc. Jpn. 60::23744
    [Crossref] [Google Scholar]
  76. 76.
    Serizawa S, Ichikawa T, Takikawa Y, Tsuyumu S, Goto M. 1989.. Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides. . Ann. Phytopathol. Soc. Jpn. 55:(4):42736
    [Crossref] [Google Scholar]
  77. 77.
    Song Y, Sun L, Lin M, Chen J, Qi X, et al. 2019.. Comparative transcriptome analysis of resistant and susceptible kiwifruits in response to Pseudomonas syringae pv. actinidiae during early infection. . PLOS ONE 14:(2):e0211913
    [Crossref] [Google Scholar]
  78. 78.
    Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schoonbeek H, et al. 2020.. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. . Plant Physiol. 183:(2):46882
    [Crossref] [Google Scholar]
  79. 79.
    Sun L-M, Fang J-B, Zhang M, Qi X-J, Lin M-M, Chen J-Y. 2020.. Molecular cloning and functional analysis of the NPR1 homolog in kiwifruit (Actinidia eriantha). . Front. Plant Sci. 11::551201
    [Crossref] [Google Scholar]
  80. 80.
    Tahir J, Brendolise C, Hoyte S, Lucas M, Thomson S, et al. 2020.. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population. . Pathogens 9:(11):967
    [Crossref] [Google Scholar]
  81. 81.
    Tahir J, Crowhurst R, Deroles S, Hilario E, Deng C, et al. 2022.. First chromosome-scale assembly and deep floral-bud transcriptome of a male kiwifruit. . Front. Genet. 13::852161
    [Crossref] [Google Scholar]
  82. 82.
    Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, et al. 2019.. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis). . Hortic. Res. 6:(1):101
    [Crossref] [Google Scholar]
  83. 83.
    Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M. 1989.. Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. . Jpn. J. Phytopathol. 55:(4):43744
    [Crossref] [Google Scholar]
  84. 84.
    Tang W, Sun X, Yue J, Tang X, Jiao C, et al. 2019.. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. . GigaScience 8:(4):giz027
    [Crossref] [Google Scholar]
  85. 85.
    Turnbull C, Lillemo M, Hvoslef-Eide TAK. 2021.. Global regulation of genetically modified crops amid the gene edited crop boom: a review. . Front. Plant Sci. 12::630396
    [Crossref] [Google Scholar]
  86. 86.
    UniProt Consort., Bateman A, Martin M-J, Orchard S, Magrane M, et al. 2023.. UniProt: the Universal Protein Knowledgebase in 2023. . Nucleic Acids Res. 51:(D1):D52331
    [Crossref] [Google Scholar]
  87. 87.
    Ushiyama K, Kita N, Suyama K, Aono N, Ogawa J, Fujii H. 1992.. Bacterial canker disease of wild Actinidia plants as the infection source of outbreak of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. . Ann. Phytopathol. Soc. Jpn. 58::42630
    [Crossref] [Google Scholar]
  88. 88.
    Ushiyama K, Suyama K, Kita N, Aono N, Fujii H. 1992.. Isolation of kiwifruit canker pathogen, Pseudomonas syringae pv. actinidiae from leaf spot of tara vine (Actinidia arguta Planch. .). Ann. Phytopathol. Soc. Jpn. 58::47679
    [Crossref] [Google Scholar]
  89. 89.
    Vandelle E, Colombo T, Regaiolo A, Maurizio V, Libardi T, et al. 2021.. Transcriptional profiling of three Pseudomonas syringae pv. actinidiae biovars reveals different responses to apoplast-like conditions related to strain virulence on the host. . Mol. Plant-Microbe Interact. 34:(4):37696
    [Crossref] [Google Scholar]
  90. 90.
    Vanneste JL. 2013.. Recent progress on detecting understanding and controlling Pseudomonas syringae pv. actinidiae: a short review. . N. Z. Plant Prot. 66::17077
    [Google Scholar]
  91. 91.
    Vanneste JL. 2017.. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). . Annu. Rev. Phytopathol. 55::37799
    [Crossref] [Google Scholar]
  92. 92.
    Vanneste JL, Cornish DA, Yu J, Stokes CA. 2014.. First report of Pseudomonas syringae pv. actinidiae the causal agent of bacterial canker of kiwifruit on Actinidia arguta vines in New Zealand. . Plant Dis. 98:(3):418
    [Crossref] [Google Scholar]
  93. 93.
    Wang F, Li J, Ye K, Gong H, Liu P, et al. 2021.. Preliminary report on the improved resistance towards Pseudomonas syringae pv. actinidiae of cultivated kiwifruit (Actinidia chinensis) when grafted onto wild Actinidia guilinensis rootstock in vitro. . J. Plant Pathol. 103:(1):5154
    [Crossref] [Google Scholar]
  94. 94.
    Wang F, Mo Q, Ye K, Gong H, Qi B, et al. 2020.. Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae. . Plant Pathol. 69:(6):97989
    [Crossref] [Google Scholar]
  95. 95.
    Wang T, Jia Z-H, Zhang J-Y, Liu M, Guo Z-R, Wang G. 2020.. Identification and analysis of NBS-LRR genes in Actinidia chinensis genome. . Plants 9:(10):1350
    [Crossref] [Google Scholar]
  96. 96.
    Wang T, Wang G, Jia Z-H, Pan D-L, Zhang J-Y, Guo Z-R. 2018.. Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection. . Int. J. Mol. Sci. 19:(2):373
    [Crossref] [Google Scholar]
  97. 97.
    Wang X, Li Y, Liu Y, Zhang D, Ni M, et al. 2021.. Transcriptomic and proteomic profiling reveal the key role of AcMYB16 in the response of Pseudomonas syringae pv. actinidiae in kiwifruit. . Front. Plant Sci. 12::756330
    [Crossref] [Google Scholar]
  98. 98.
    Wang Z, Liu Y, Li L, Li D, Zhang Q, et al. 2017.. Whole transcriptome sequencing of Pseudomonas syringae pv. actinidiae-infected kiwifruit plants reveals species-specific interaction between long non-coding RNA and coding genes. . Sci. Rep. 7:(1):4910
    [Crossref] [Google Scholar]
  99. 99.
    Wei C, Kvitko BH, Shimizu R, Crabill E, Alfano JR, et al. 2007.. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. . Plant J. 51:(1):3246
    [Crossref] [Google Scholar]
  100. 100.
    Wu H, Ma T, Kang M, Ai F, Zhang J, et al. 2019.. A high-quality Actinidia chinensis (kiwifruit) genome. . Hortic. Res. 6:(1):117
    [Crossref] [Google Scholar]
  101. 101.
    Wurms KV, Gould E, Ah Chee A, Taylor J, Curran B, Reglinski T. 2017.. Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit. . N. Z. Plant Prot. 70::27284
    [Google Scholar]
  102. 102.
    Yao X, Wang S, Wang Z, Li D, Jiang Q, et al. 2022.. The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha. . Mol. Hortic. 2:(1):13
    [Crossref] [Google Scholar]
  103. 103.
    Yeh S-M, Yoon M, Scott S, Chatterjee A, Hemara L, et al. 2023.. NbPTR1 confers resistance against Pseudomonas syringae pv. actinidiae in kiwifruit. . bioRxiv 556601. https://doi.org/10.1101/2023.09.07.556601
  104. 104.
    Yoon M, Rikkerink EHA. 2020.. Rpa1 mediates an immune response to avrRpm1Psa and confers resistance against Pseudomonas syringae pv. actinidiae. . Plant J. 102:(4):688702
    [Crossref] [Google Scholar]
  105. 105.
    Yuan M, Ngou BPM, Ding P, Xin X-F. 2021.. PTI-ETI crosstalk: an integrative view of plant immunity. . Curr. Opin. Plant Biol. 62::102030
    [Crossref] [Google Scholar]
  106. 106.
    Yue J, Chen Q, Wang Y, Zhang L, Ye C, et al. 2022.. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis. . Hortic. Res. 10:(2):uhac264
    [Crossref] [Google Scholar]
  107. 107.
    Yue J, Liu J, Tang W, Wu YQ, Tang X, et al. 2020.. Kiwifruit Genome Database (KGD): a comprehensive resource for kiwifruit genomics. . Hortic. Res. 7:(1):117
    [Crossref] [Google Scholar]
  108. 108.
    Zhang H, Mittal N, Leamy LJ, Barazani O, Song B. 2017.. Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. . Evol. Appl. 10:(1):524
    [Crossref] [Google Scholar]
  109. 109.
    Zhang J, Zhou M, Liu W, Nie J, Huang L. 2022.. Pseudomonas syringae pv. actinidiae effector HopAU1 interacts with calcium-sensing receptor to activate plant immunity. . Int. J. Mol. Sci. 23:(1):508
    [Crossref] [Google Scholar]
  110. 110.
    Zhao Z, Chen J, Gao X, Zhang D, Zhang J, et al. 2019.. Comparative genomics reveal pathogenicity-related loci in Pseudomonas syringae pv. actinidiae biovar 3. . Mol. Plant Pathol. 20:(7):92342
    [Crossref] [Google Scholar]
  111. 111.
    Zheng X, Zhou Z, Gong Z, Hu M, Ahn YJ, et al. 2022.. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. . J. Genet. Genom. 49:(8):82332
    [Crossref] [Google Scholar]
  112. 112.
    Zhu Q, Zhao F, Yuan J, Long Y, Fan R, et al. 2022.. Functional analysis and target identification of the type III effector HopAZ1 from Pseudomonas syringae pv. actinidiae. . Acta Phytophathol. Sin. 52:(1):4760
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-095110
Loading
/content/journals/10.1146/annurev-phyto-021622-095110
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error