1932

Abstract

Plants have coevolved together with the microbes that surround them and this assemblage of host and microbes functions as a discrete ecological unit called a holobiont. This review outlines plant-driven assembly of disease-suppressive microbiomes. Plants are colonized by microbes from seed, soil, and air but selectively shape the microbiome with root exudates, creating microenvironment hot spots where microbes thrive. Using plant immunity for gatekeeping and surveillance, host-plant genetic properties govern microbiome assembly and can confer adaptive advantages to the holobiont. These advantages manifest in disease-suppressive soils, where buildup of specific microbes inhibits the causal agent of disease, that typically develop after an initial disease outbreak. Based on disease-suppressive soils such as take-all decline, we developed a conceptual model of how plants in response to pathogen attack cry for help and recruit plant-protective microbes that confer increased resistance. Thereby, plants create a soilborne legacy that protects subsequent generations and forms disease-suppressive soils.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-100127
2024-09-09
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021622-100127.html?itemId=/content/journals/10.1146/annurev-phyto-021622-100127&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, et al. 2016.. Microbial hub taxa link host and abiotic factors to plant microbiome variation. . PLOS Biol. 14::e1002352
    [Crossref] [Google Scholar]
  2. 2.
    Ahuja I, Kissen R, Bones AM. 2012.. Phytoalexins in defense against pathogens. . Trends Plant Sci. 17::7390
    [Crossref] [Google Scholar]
  3. 3.
    Alabouvette C. 1986.. Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study. . Agronomie 6::27384
    [Crossref] [Google Scholar]
  4. 4.
    Alabouvette C. 1999.. Fusarium wilt suppressive soils: an example of disease-suppressive soils. . Aust. Plant Pathol. 28::5764
    [Crossref] [Google Scholar]
  5. 5.
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, et al. 2015.. Functional overlap of the Arabidopsis leaf and root microbiota. . Nature 528::36469
    [Crossref] [Google Scholar]
  6. 6.
    Baker KF, Cook RJ. 1974.. Biological Control of Plant Pathogens. San Francisco:: WH Freeman Co.
    [Google Scholar]
  7. 7.
    Bakker PAHM, Berendsen RL, Van Pelt JA, Vismans G, Yu K, et al. 2020.. The soil-borne identity and microbiome-assisted agriculture: looking back to the future. . Mol. Plant 13::1394401
    [Crossref] [Google Scholar]
  8. 8.
    Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. 2018.. The soil-borne legacy. . Cell 172::117880
    [Crossref] [Google Scholar]
  9. 9.
    Banerjee S, Walder F, Büchi L, Meyer M, Held AY, et al. 2019.. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. . ISME J. 13::172236
    [Crossref] [Google Scholar]
  10. 10.
    Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, et al. 2016.. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. . PNAS 113::231217
    [Crossref] [Google Scholar]
  11. 11.
    Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, et al. 2018.. Disease-induced assemblage of a plant-beneficial bacterial consortium. . ISME J. 12::1496507
    [Crossref] [Google Scholar]
  12. 12.
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-C, et al. 2020.. Microbiome definition re-visited: old concepts and new challenges. . Microbiome 8::103
    [Crossref] [Google Scholar]
  13. 13.
    Bever JD, Westover KM, Antonovics J. 1997.. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. . J. Ecol. 85::56173
    [Crossref] [Google Scholar]
  14. 14.
    Bittar TB, Pound P, Whitetree A, Moore LD, Van Stan JT. 2018.. Estimation of throughfall and stemflow bacterial flux in a subtropical oak-cedar forest. . Geophys. Res. Lett. 45::141018
    [Crossref] [Google Scholar]
  15. 15.
    Bowles TM, Mooshammer M, Socolar Y, Calderón F, Cavigelli MA, et al. 2020.. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. . One Earth 2::28493
    [Crossref] [Google Scholar]
  16. 16.
    Bowsher AW, Ali R, Harding SA, Tsai CJ, Donovan LA. 2016.. Evolutionary divergences in root exudate composition among ecologically-contrasting Helianthus species. . PLOS ONE 11::e0148280
    [Crossref] [Google Scholar]
  17. 17.
    Brachi B, Filiault D, Whitehurst H, Darme P, Le Gars P, et al. 2022.. Plant genetic effects on microbial hubs impact host fitness in repeated field trials. . PNAS 119::e2201285119
    [Crossref] [Google Scholar]
  18. 18.
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013.. Structure and functions of the bacterial microbiota of plants. . Annu. Rev. Plant Biol. 64::80738
    [Crossref] [Google Scholar]
  19. 19.
    Butterworth J, McCartney HA. 1991.. The dispersal of bacteria from leaf surfaces by water splash. . J. Appl. Bacteriol. 71::48496
    [Crossref] [Google Scholar]
  20. 20.
    Cadot S, Gfeller V, Hu L, Singh N, Sanchez-Vallet A, et al. 2021.. Soil composition and plant genotype determine benzoxazinoid-mediated plant-soil feedbacks in cereals. . Plant Cell Environ. 44::350214
    [Crossref] [Google Scholar]
  21. 21.
    Cadot S, Guan H, Bigalke M, Walser JC, Jander G, et al. 2021.. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. . Microbiome 9::103
    [Crossref] [Google Scholar]
  22. 22.
    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, et al. 2019.. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. . Science 366::60612
    [Crossref] [Google Scholar]
  23. 23.
    Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. 2015.. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. . Mol. Plant-Microbe Interact. 28::104958
    [Crossref] [Google Scholar]
  24. 24.
    Cevallos-Cevallos JM, Danyluk MD, Gu G, Vallad GE, van Bruggen AH. 2012.. Dispersal of Salmonella Typhimurium by rain splash onto tomato plants. . J. Food Prot. 75::47279
    [Crossref] [Google Scholar]
  25. 25.
    Cha J-Y, Han S, Hong H-J, Cho H, Kim D, et al. 2016.. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. . ISME J. 10::11929
    [Crossref] [Google Scholar]
  26. 26.
    Chaparro JM, Badri DV, Vivanco JM. 2014.. Rhizosphere microbiome assemblage is affected by plant development. . ISME J. 8::790803
    [Crossref] [Google Scholar]
  27. 27.
    Chen T, Nomura K, Wang X, Sohrabi R, Xu J, et al. 2020.. A plant genetic network for preventing dysbiosis in the phyllosphere. . Nature 580::65357
    [Crossref] [Google Scholar]
  28. 28.
    Chesneau G, Laroche B, Préveaux A, Marais C, Briand M, et al. 2022.. Single seed microbiota: assembly and transmission from parent plant to seedling. . mBio 13::e01648-22
    [Crossref] [Google Scholar]
  29. 29.
    Chng S, Cromey MG, Dodd SL, Stewart A, Butler RC, Jaspers MV. 2015.. Take-all decline in New Zealand wheat soils and the microorganisms associated with the potential mechanisms of disease suppression. . Plant Soil 397::23959
    [Crossref] [Google Scholar]
  30. 30.
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, et al. 2016.. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. . New Phytol. 209::798811
    [Crossref] [Google Scholar]
  31. 31.
    Cook RJ. 2003.. Take-all of wheat. . Physiol. Mol. Plant Pathol. 62::7386
    [Crossref] [Google Scholar]
  32. 32.
    Cook RJ. 2014.. Plant health management: pathogen suppressive soils. . In Encyclopedia of Agriculture and Food Systems, ed. NK Van Alfen , pp. 44155. Amsterdam:: Elsevier
    [Google Scholar]
  33. 33.
    Cook RJ, Baker KF. 1983.. The Nature and Practice of Biological Control of Plant Pathogens. St. Paul, MN:: APS Press
    [Google Scholar]
  34. 34.
    Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, et al. 2018.. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. . Microbiome 6:(1):31
    [Crossref] [Google Scholar]
  35. 35.
    Daval S, Lebreton L, Gazengel K, Boutin M, Anne-Yvonne GE, Sarniguet A. 2011.. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. . Mol. Plant Pathol. 12::83954
    [Crossref] [Google Scholar]
  36. 36.
    de Souza JT, Weller DM, Raaijmakers JM. 2003.. Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. . Phytopathology 93::5463
    [Crossref] [Google Scholar]
  37. 37.
    DeFalco TA, Zipfel C. 2021.. Molecular mechanisms of early plant pattern-triggered immune signaling. . Mol. Cell 81::344967
    [Crossref] [Google Scholar]
  38. 38.
    Deng S, Caddell DF, Xu G, Dahlen L, Washington L, et al. 2021.. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. . ISME J. 15::318194
    [Crossref] [Google Scholar]
  39. 39.
    Díaz-Cruz GA, Cassone BJ. 2022.. Changes in the phyllosphere and rhizosphere microbial communities of soybean in the presence of pathogens. . FEMS Microbiol. Ecol. 98:(3):fiac022
    [Crossref] [Google Scholar]
  40. 40.
    Doan HK, Ngassam VN, Gilmore SF, Tecon R, Parikh AN, Leveau JHJ. 2020.. Topography-driven shape, spread, and retention of leaf surface water impacts microbial dispersion and activity in the phyllosphere. . Phytobiomes 4::26880
    [Crossref] [Google Scholar]
  41. 41.
    Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P. 1998.. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. . Eur. J. Plant Pathol. 104::90310
    [Crossref] [Google Scholar]
  42. 42.
    Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P. 1999.. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. . Phytopathology 89::107379
    [Crossref] [Google Scholar]
  43. 43.
    Dutta B, Gitaitis R, Smith S, Langston D Jr. 2014.. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission. . PLOS ONE 9::e99215
    [Crossref] [Google Scholar]
  44. 44.
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, et al. 2015.. Structure, variation, and assembly of the root-associated microbiomes of rice. . PNAS 112::91120
    [Crossref] [Google Scholar]
  45. 45.
    Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A. 2017.. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. . Front. Microbiol. 8::2104
    [Crossref] [Google Scholar]
  46. 46.
    Emonet A, Zhou F, Vacheron J, Heiman CM, Dénervaud-Tendon V, et al. 2021.. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. . Curr. Biol. 31::101228
    [Crossref] [Google Scholar]
  47. 47.
    Eppinga MB, Van der Putten WH, Bever JD. 2022.. Plant-soil feedback as driver of spatial structure in ecosystems. . Phys. Life Rev. 40::614
    [Crossref] [Google Scholar]
  48. 48.
    Escudero-Martinez C, Coulter M, Alegria Terrazas R, Foito A, Kapadia R, et al. 2022.. Identifying plant genes shaping microbiota composition in the barley rhizosphere. . Nat. Commun. 13::3443
    [Crossref] [Google Scholar]
  49. 49.
    Esser DS, Leveau JHJ, Meyer KM, Wiegand K. 2015.. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. . FEMS Microbiol. Ecol. 91:(3):fiu034
    [Crossref] [Google Scholar]
  50. 50.
    Fierer N. 2017.. Embracing the unknown: disentangling the complexities of the soil microbiome. . Nat. Rev. Microbiol. 15::57990
    [Crossref] [Google Scholar]
  51. 51.
    Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. 2018.. Assembly and ecological function of the root microbiome across angiosperm plant species. . PNAS 115::115765
    [Crossref] [Google Scholar]
  52. 52.
    Francisco CS, Abukhalaf M, Igelmann C, Gustke J, Habig M, et al. 2023.. The apoplastic space of two wheat genotypes provide highly different environment for pathogen colonization: insights from proteome and microbiome profiling. . bioRxiv 543792. https://doi.org/10.1101/2023.06.05.543792
  53. 53.
    Freeman J, Ward E. 2004.. Gaeumannomyces graminis, the take-all fungus and its relatives. . Mol. Plant Pathol. 5::23552
    [Crossref] [Google Scholar]
  54. 54.
    Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJA, Dicke M. 2021.. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage–insect interactions through plant–soil feedback. . New Phytol. 232::247590
    [Crossref] [Google Scholar]
  55. 55.
    Fröschel C, Komorek J, Attard A, Marsell A, Lopez-Arboleda WA, et al. 2021.. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. . Cell Host Microbe 29::299310
    [Crossref] [Google Scholar]
  56. 56.
    Gao M, Xiong C, Gao C, Tsui CKM, Wang M-M, et al. 2021.. Disease-induced changes in plant microbiome assembly and functional adaptation. . Microbiome 9::187
    [Crossref] [Google Scholar]
  57. 57.
    Gómez Expósito R, de Bruijn I, Postma J, Raaijmakers JM. 2017.. Current insights into the role of rhizosphere bacteria in disease suppressive soils. . Front. Microbiol. 8::2529
    [Crossref] [Google Scholar]
  58. 58.
    Goossens P, Spooren J, Baremans KCM, Andel A, Lapin D, et al. 2023.. Obligate biotroph downy mildew consistently induces near-identical protective microbiomes in Arabidopsis thaliana. . Nat. Microbiol. 8:(12):234964
    [Crossref] [Google Scholar]
  59. 59.
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. 2019.. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. . Nat. Commun. 10::4135
    [Crossref] [Google Scholar]
  60. 60.
    Gu S, Wei Z, Shao Z, Friman V-P, Cao K, et al. 2020.. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. . Nat. Microbiol. 5::100210
    [Crossref] [Google Scholar]
  61. 61.
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. 2017.. Interplay between innate immunity and the plant microbiota. . Annu. Rev. Phytopathol. 55::56589
    [Crossref] [Google Scholar]
  62. 62.
    Haney CH, Samuel BS, Bush J, Ausubel FM. 2015.. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. . Nat. Plants 1::15051
    [Crossref] [Google Scholar]
  63. 63.
    Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, et al. 2020.. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. . Cell Host Microbe 28::82537
    [Crossref] [Google Scholar]
  64. 64.
    Harting R, Nagel A, Nesemann K, Höfer AM, Bastakis E, et al. 2021.. Pseudomonas strains induce transcriptional and morphological changes and reduce root colonization of Verticillium spp. . Front. Microbiol. 12::652468
    [Crossref] [Google Scholar]
  65. 65.
    Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010.. Soil beneficial bacteria and their role in plant growth promotion: a review. . Ann. Microbiol. 60::57998
    [Crossref] [Google Scholar]
  66. 66.
    Hernandez-Restrepo M, Groenewald JZ, Elliott ML, Canning G, McMillan VE, Crous PW. 2016.. Take-all or nothing. . Stud. Mycol. 83::1948
    [Crossref] [Google Scholar]
  67. 67.
    Hiltner L. 1904.. Uberneuere erfahrungen und probleme auf dem gebieteder bodenbakteriologie unter besonderden berucksichtigung und Brache. . Arb. Dtsch. Landwirtsch. Gesellschaft 98::5978
    [Google Scholar]
  68. 68.
    Hornby D. 1983.. Suppressive soils. . Annu. Rev. Phytopathol. 21::6585
    [Crossref] [Google Scholar]
  69. 69.
    Hornby D. 1998.. Take-All Disease of Cereals: A Regional Perspective. Wallingford, UK:: CABI
    [Google Scholar]
  70. 70.
    Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, et al. 2014.. Genome-wide association study of Arabidopsis thaliana leaf microbial community. . Nat. Commun. 5::5320
    [Crossref] [Google Scholar]
  71. 71.
    Hu L, Robert CAM, Cadot S, Zhang X, Ye M, et al. 2018.. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. . Nat. Commun. 9::2738
    [Crossref] [Google Scholar]
  72. 72.
    Int. Seed Fed. 2015–2016.. Regulated pest list. ISF Database:: Nyon, Switz. https://worldseed.org/resources/isf-regulated-pest-list-database/
    [Google Scholar]
  73. 73.
    Jaaffar AKM, Parejko JA, Paulitz TC, Weller DM, Thomashow LS. 2017.. Sensitivity of Rhizoctonia isolates to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. . Phytopathology 107::692703
    [Crossref] [Google Scholar]
  74. 74.
    Jaaffar AKM, Paulitz TC, Schroeder KL, Thomashow LS, Weller DM. 2016.. Molecular characterization, morphological characteristics, virulence, and geographic distribution of Rhizoctonia spp. in Washington state. . Phytopathology 106::45973
    [Crossref] [Google Scholar]
  75. 75.
    Jayaraman S, Naorem AK, Lal R, Dalal RC, Sinha NK, et al. 2021.. Disease-suppressive soils—beyond food production: a critical review. . J. Soil Sci. Plant Nutr. 21::143765
    [Crossref] [Google Scholar]
  76. 76.
    Jones JDG, Dangl JL. 2006.. The plant immune system. . Nature 444::32329
    [Crossref] [Google Scholar]
  77. 77.
    Kang X, Wang L, Guo Y, ul Arifeen MZ, Cai X, et al. 2019.. A comparative transcriptomic and proteomic analysis of hexaploid wheat's responses to colonization by Bacillus velezensis and Gaeumannomyces graminis, both separately and combined. . Mol. Plant-Microbe Interact. 32::133647
    [Crossref] [Google Scholar]
  78. 78.
    Kashyap A, Planas-Marquès M, Capellades M, Valls M, Coll NS. 2021.. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. . J. Exp. Bot. 72::18498
    [Crossref] [Google Scholar]
  79. 79.
    Kim D-R, Cho G, Jeon C-W, Weller DM, Thomashow LS, et al. 2019.. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. . Nat. Commun. 10::4802
    [Crossref] [Google Scholar]
  80. 80.
    Kim D-R, Jeon C-W, Cho G, Thomashow LS, Weller DM, et al. 2021.. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. . Microbiome 9::244
    [Crossref] [Google Scholar]
  81. 81.
    Kim D-R, Jeon C-W, Shin J-H, Weller DM, Thomashow L, Kwak Y-S. 2019.. Function and distribution of a lantipeptide in strawberry Fusarium wilt disease–suppressive soils. . Mol. Plant-Microbe Interact. 32::30612
    [Crossref] [Google Scholar]
  82. 82.
    Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, et al. 2019.. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. . PNAS 116::1573544
    [Crossref] [Google Scholar]
  83. 83.
    Koprivova A, Schwier M, Volz V, Kopriva S. 2023.. Shoot-root interaction in control of camalexin exudation in Arabidopsis. . J. Exp. Bot. 74::266779
    [Crossref] [Google Scholar]
  84. 84.
    Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019.. Maize synthesized benzoxazinoids affect the host associated microbiome. . Microbiome 7::59
    [Crossref] [Google Scholar]
  85. 85.
    Kwak M-J, Kong HG, Choi K, Kwon S-K, Song JY, et al. 2018.. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. . Nat. Biotechnol. 36::11009
    [Crossref] [Google Scholar]
  86. 86.
    Kwak Y-S, Bakker PAHM, Glandorf DCM, Rice JT, Paulitz TC, Weller DM. 2009.. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state. . Phytopathology 99::47279
    [Crossref] [Google Scholar]
  87. 87.
    Kwak Y-S, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM. 2012.. Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. . Soil Biol. Biochem. 54::4856
    [Crossref] [Google Scholar]
  88. 88.
    Kwak Y-S, Han S, Thomashow LS, Rice JT, Paulitz TC, et al. 2011.. Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. . Appl. Environ. Microbiol. 77::177076
    [Crossref] [Google Scholar]
  89. 89.
    Kwak Y-S, Weller DM. 2013.. Take-all of wheat and natural disease suppression: a review. . Plant Pathol. J. 29::125
    [Crossref] [Google Scholar]
  90. 90.
    Laforest-Lapointe I, Messier C, Kembel SW. 2016.. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. . Microbiome 4::27
    [Crossref] [Google Scholar]
  91. 91.
    Landa BB, Mavrodi DM, Thomashow LS, Weller DM. 2003.. Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. . Phytopathology 93::98294
    [Crossref] [Google Scholar]
  92. 92.
    Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM. 2006.. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. . FEMS Microbiol. Ecol. 55::35168
    [Crossref] [Google Scholar]
  93. 93.
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, et al. 2015.. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. . Science 349::86064
    [Crossref] [Google Scholar]
  94. 94.
    Lebreton L, Guillerm-Erckelboudt A-Y, Gazengel K, Linglin J, Ourry M, et al. 2019.. Temporal dynamics of bacterial and fungal communities during the infection of Brassica rapa roots by the protist Plasmodiophora brassicae. . PLOS ONE 14::e0204195
    [Crossref] [Google Scholar]
  95. 95.
    Lemanceau P, Alabouvette C. 1991.. Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. . Crop Prot. 10::27986
    [Crossref] [Google Scholar]
  96. 96.
    LeTourneau MK, Marshall MJ, Cliff JB, Bonsall RF, Dohnalkova AC, et al. 2018.. Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces. . Environ. Microbiol. 20::217894
    [Crossref] [Google Scholar]
  97. 97.
    LeTourneau MK, Marshall MJ, Grant M, Freeze PM, Strawn DG, et al. 2019.. Phenazine-1-carboxylic acid-producing bacteria enhance the reactivity of iron minerals in dryland and irrigated wheat rhizospheres. . Environ. Sci. Technol. 53::1427384
    [Crossref] [Google Scholar]
  98. 98.
    Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, et al. 2021.. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. . New Phytol. 229::287385
    [Crossref] [Google Scholar]
  99. 99.
    Liu Y, Chen L, Wu G, Feng H, Zhang G, et al. 2017.. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. . Mol. Plant-Microbe Interact. 30::5362
    [Crossref] [Google Scholar]
  100. 100.
    Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, et al. 2012.. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. . PLOS Genet. 8::e1002784
    [Crossref] [Google Scholar]
  101. 101.
    López JL, Fourie A, Poppeliers SWM, Pappas N, Sánchez-Gil JJ, et al. 2023.. Growth rate is a dominant factor predicting the rhizosphere effect. . ISME J. 17:(9):1396405
    [Crossref] [Google Scholar]
  102. 102.
    Lorang JM, Anderson NA, Lauer FI, Wildung DK. 1989.. Disease decline in a Minnesota potato scab plot. . Am. J. Potato Res. 66::531
    [Google Scholar]
  103. 103.
    Louvet J, Rouxel F, Alabouvette C. 1976.. Recherches sur la resistance des sols aux maladies. I. Mise en evidence de la nature microbiobiologique de la resistance d'un sol au developpement de la fusariose vasculaire du melon. . Ann. Phytopathol. 8:(4):42536
    [Google Scholar]
  104. 104.
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, et al. 2012.. Defining the core Arabidopsis thaliana root microbiome. . Nature 488::8690
    [Crossref] [Google Scholar]
  105. 105.
    Luo L, Zhang J, Ye C, Li S, Duan S, et al. 2022.. Foliar pathogen infection manipulates soil health through root exudate-modified rhizosphere microbiome. . Microbiol. Spectrum 10::e02418-22
    [Google Scholar]
  106. 106.
    Ma K-W, Niu Y, Jia Y, Ordon J, Copeland C, et al. 2021.. Coordination of microbe–host homeostasis by crosstalk with plant innate immunity. . Nat. Plants 7::81425
    [Crossref] [Google Scholar]
  107. 107.
    Macho AP, Zipfel C. 2015.. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. . Curr. Opin. Microbiol. 23::1422
    [Crossref] [Google Scholar]
  108. 108.
    Madden LV. 1997.. Effects of rain on splash dispersal of fungal pathogens. . Can. J. Plant Pathol. 19::22530
    [Crossref] [Google Scholar]
  109. 109.
    Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL. 2014.. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. . mBio 5:(1):e00682-13
    [Crossref] [Google Scholar]
  110. 110.
    Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A. 2017.. Live imaging of root–bacteria interactions in a microfluidics setup. . PNAS 114::454954
    [Crossref] [Google Scholar]
  111. 111.
    Massoni J, Bortfeld-Miller M, Widmer A, Vorholt JA. 2021.. Capacity of soil bacteria to reach the phyllosphere and convergence of floral communities despite soil microbiota variation. . PNAS 118::e2100150118
    [Crossref] [Google Scholar]
  112. 112.
    Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, et al. 2021.. Bacterial seed endophyte shapes disease resistance in rice. . Nat. Plants 7::6072
    [Crossref] [Google Scholar]
  113. 113.
    Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, et al. 2011.. Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1–96. . J. Bacteriol. 193::17789
    [Crossref] [Google Scholar]
  114. 114.
    Mavrodi DV, Mavrodi OV, Elbourne LD, Tetu S, Bonsall RF, et al. 2018.. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. . Front. Plant Sci. 9::345
    [Crossref] [Google Scholar]
  115. 115.
    Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak Y-S, et al. 2012.. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. . Appl. Environ. Microbiol. 78::80412
    [Crossref] [Google Scholar]
  116. 116.
    Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM. 2012.. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. . Appl. Environ. Microbiol. 78::321420
    [Crossref] [Google Scholar]
  117. 117.
    Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM. 2009.. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. . ISME J. 3::97791
    [Crossref] [Google Scholar]
  118. 118.
    Mazzola M. 2002.. Mechanisms of natural soil suppressiveness to soilborne diseases. . Antonie van Leeuwenhoek 81::557-64
    [Crossref] [Google Scholar]
  119. 119.
    McMillan VE, Hammond-Kosack KE, Gutteridge RJ. 2011.. Evidence that wheat cultivars differ in their ability to build up inoculum of the take-all fungus, Gaeumannomyces graminis var. tritici, under a first wheat crop. . Plant Pathol. 60::2006
    [Crossref] [Google Scholar]
  120. 120.
    McRose DL, Li J, Newman DK. 2023.. The chemical ecology of coumarins and phenazines affects iron acquisition by pseudomonads. . PNAS 120::e2217951120
    [Crossref] [Google Scholar]
  121. 121.
    Mendes R, Kruijt M, de Bruijn I, Dekkers E, Van Der Voort M, et al. 2011.. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. . Science 332::1097100
    [Crossref] [Google Scholar]
  122. 122.
    Meng Q, Yin J, Rosenzweig N, Douches D, Hao JJ. 2012.. Culture-based assessment of microbial communities in soil suppressive to potato common scab. . Plant Dis. 96::71217
    [Crossref] [Google Scholar]
  123. 123.
    Menzies JD. 1959.. Occurrence and transfer of abiological factor in soil that suppresses potato scab. . Phytopathology 49::64852
    [Google Scholar]
  124. 124.
    Meyer KM, Porch R, Muscettola IE, Vasconcelos ALS, Sherman JK, et al. 2022.. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. . ISME J. 16::137687
    [Crossref] [Google Scholar]
  125. 125.
    Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, et al. 2010.. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. . Plant Cell 22::97390
    [Crossref] [Google Scholar]
  126. 126.
    Monier JM, Lindow SE. 2004.. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. . Appl. Environ. Microbiol. 70::34655
    [Crossref] [Google Scholar]
  127. 127.
    Müller DB, Vogel C, Bai Y, Vorholt JA. 2016.. The plant microbiota: systems-level insights and perspectives. . Annu. Rev. Genet. 50::21134
    [Crossref] [Google Scholar]
  128. 128.
    Neal AL, Ahmad S, Gordon-Weeks R, Ton J. 2012.. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. . PLOS ONE 7::e35498
    [Crossref] [Google Scholar]
  129. 129.
    Nelson EB. 2018.. The seed microbiome: origins, interactions, and impacts. . Plant Soil 422::734
    [Crossref] [Google Scholar]
  130. 130.
    Neumann G, Bott S, Ohler M, Mock H-P, Lippmann R, et al. 2014.. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. . Front. Microbiol. 5::2
    [Google Scholar]
  131. 131.
    New PB, Kerr A. 1972.. Biological control of crown gall: field measurements and glasshouse experiments. . J. Appl. Bacteriol. 35::27987
    [Crossref] [Google Scholar]
  132. 132.
    Newman M-A, Sundelin T, Nielsen J, Erbs G. 2013.. MAMP (microbe-associated molecular pattern) triggered immunity in plants. . Front. Plant Sci. 4::139
    [Crossref] [Google Scholar]
  133. 133.
    Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, et al. 2022.. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. . J. Exp. Bot. 73::374357
    [Crossref] [Google Scholar]
  134. 134.
    O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, et al. 2023.. Plant myo-inositol transport influences bacterial colonization phenotypes. . Curr. Biol. 33::311124
    [Crossref] [Google Scholar]
  135. 135.
    Okubara PA, Call DR, Kwak Y-S, Skinner DZ. 2010.. Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. . Biol. Control 55::11825
    [Crossref] [Google Scholar]
  136. 136.
    Ou Y, Penton CR, Geisen S, Shen Z, Sun Y, et al. 2019.. Deciphering underlying drivers of disease suppressiveness against pathogenic Fusarium oxysporum. . Front. Microbiol. 10::2535
    [Crossref] [Google Scholar]
  137. 137.
    Paauw M, van Hulten M, Chatterjee S, Berg JA, Taks NW, et al. 2023.. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. . Curr. Biol. 33::697710
    [Crossref] [Google Scholar]
  138. 138.
    Palma-Guerrero J, Chancellor T, Spong J, Canning G, Hammond J, et al. 2021.. Take-all disease: new insights into an important wheat root pathogen. . Trends Plant Sci. 26::83648
    [Crossref] [Google Scholar]
  139. 139.
    Parejko JA, Mavrodi DV, Mavrodi OV, Weller DM, Thomashow LS. 2013.. Taxonomy and distribution of phenazine-producing Pseudomonas spp. in the dryland agroecosystem of the inland Pacific Northwest, United States. . Appl. Environ. Microbiol. 79::388791
    [Crossref] [Google Scholar]
  140. 140.
    Pascale A, Proietti S, Pantelides IS, Stringlis IA. 2020.. Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. . Front. Plant Sci. 10::1741
    [Crossref] [Google Scholar]
  141. 141.
    Pel MJC, van Dijken AJH, Bardoel BW, Seidl MF, van der Ent S, et al. 2014.. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. . Mol. Plant-Microbe Interact. 27::60310
    [Crossref] [Google Scholar]
  142. 142.
    Penton CR, Gupta V, Tiedje JM, Neate SM, Ophel-Keller K, et al. 2014.. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. . PLOS ONE 9::e93893
    [Crossref] [Google Scholar]
  143. 143.
    Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, et al. 2017.. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. . ISME J. 11::224457
    [Crossref] [Google Scholar]
  144. 144.
    Pfeilmeier S, Petti GC, Bortfeld-Miller M, Daniel B, Field CM, et al. 2021.. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. . Nat. Microbiol. 6::85264
    [Crossref] [Google Scholar]
  145. 145.
    Pieterse CMJ, Stringlis IA. 2023.. Chemical symphony of coumarins and phenazines in rhizosphere iron solubilization. . PNAS 120::e2304171120
    [Crossref] [Google Scholar]
  146. 146.
    Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 2012.. Hormonal modulation of plant immunity. . Annu. Rev. Cell Dev. Biol. 28::489521
    [Crossref] [Google Scholar]
  147. 147.
    Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014.. Induced systemic resistance by beneficial microbes. . Annu. Rev. Phytopathol. 52::34775
    [Crossref] [Google Scholar]
  148. 148.
    Pini F, East AK, Appia-Ayme C, Tomek J, Karunakaran R, et al. 2017.. Bacterial biosensors for in vivo spatiotemporal mapping of root secretion. . Plant Physiol. 174::1289306
    [Crossref] [Google Scholar]
  149. 149.
    Pronk LJU, Bakker PAHM, Keel C, Maurhofer M, Flury P. 2022.. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. . Environ. Microbiol. 24::327389
    [Crossref] [Google Scholar]
  150. 150.
    Raaijmakers JM, Mazzola M. 2016.. Soil immune responses. . Science 352::139293
    [Crossref] [Google Scholar]
  151. 151.
    Raaijmakers JM, Weller DM. 1998.. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. . Mol. Plant-Microbe Interact. 11::14452
    [Crossref] [Google Scholar]
  152. 152.
    Raaijmakers JM, Weller DM. 2001.. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1–96. . Appl. Environ. Microbiol. 67::254554
    [Crossref] [Google Scholar]
  153. 153.
    Reinhold-Hurek B, Bunger W, Burbano CS, Sabale M, Hurek T. 2015.. Roots shaping their microbiome: global hotspots for microbial activity. . Annu. Rev. Phytopathol. 53::40324
    [Crossref] [Google Scholar]
  154. 154.
    Rich-Griffin C, Eichmann R, Reitz MU, Hermann S, Woolley-Allen K, et al. 2020.. Regulation of cell type-specific immunity networks in Arabidopsis roots. . Plant Cell 32::274262
    [Crossref] [Google Scholar]
  155. 155.
    Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M, Sarniguet A. 2021.. Transmission of seed and soil microbiota to seedling. . mSystems 6::e0044621
    [Crossref] [Google Scholar]
  156. 156.
    Roget DK. 1995.. Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South Australia. . Aust. J. Exp. Agric. 35::100913
    [Crossref] [Google Scholar]
  157. 157.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP. 2008.. Root-secreted malic acid recruits beneficial soil bacteria. . Plant Physiol. 148::154756
    [Crossref] [Google Scholar]
  158. 158.
    Sagova-Mareckova M, Daniel O, Omelka M, Kristufek V, Divis J, Kopecky J. 2015.. Determination of factors associated with natural soil suppressivity to potato common scab. . PLOS ONE 10::e0116291
    [Crossref] [Google Scholar]
  159. 159.
    Sagova-Mareckova M, Omelka M, Kopecky J. 2023.. The golden goal of soil management: disease-suppressive soils. . Phytopathology 113::74152
    [Crossref] [Google Scholar]
  160. 160.
    Saikkonen K, Young CA, Helander M, Schardl CL. 2016.. Endophytic Epichloë species and their grass hosts: from evolution to applications. . Plant Mol. Biol. 90::66575
    [Crossref] [Google Scholar]
  161. 161.
    Sanchez-Gil JJ, Poppeliers SWM, Vacheron J, Zhang H, Odijk B, et al. 2023.. The conserved iol gene cluster in Pseudomonas is involved in rhizosphere competence. . Curr. Biol. 33::3097110
    [Crossref] [Google Scholar]
  162. 162.
    Sanchez-Vallet A, Ramos B, Bednarek P, Lopez G, Pislewska-Bednarek M, et al. 2010.. Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. . Plant J. 63::11527
    [Google Scholar]
  163. 163.
    Sanguin H, Sarniguet A, Gazengel K, Moënne-Loccoz Y, Grundmann G. 2009.. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. . New Phytol. 184::694707
    [Crossref] [Google Scholar]
  164. 164.
    Sasse J, Martinoia E, Northen T. 2018.. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23::2541
    [Crossref] [Google Scholar]
  165. 165.
    Scher FM, Baker R. 1980.. Mechanism of biological control in a Fusarium-suppressive soil. . Phytopathology 70::41217
    [Crossref] [Google Scholar]
  166. 166.
    Schillinger WF, Papendick RI. 2008.. Then and now: 125 years of dryland wheat farming in the inland Pacific Northwest. . Agron. J. 100::16682
    [Google Scholar]
  167. 167.
    Schillinger WF, Paulitz T. 2014.. Natural suppression of Rhizoctonia bare patch in a long-term no-till cropping systems experiment. . Plant Dis. 98::38994
    [Crossref] [Google Scholar]
  168. 168.
    Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-Lefert P. 2014.. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. . PNAS 111::58592
    [Crossref] [Google Scholar]
  169. 169.
    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017.. Disease suppressive soils: new insights from the soil microbiome. . Phytopathology 107::128497
    [Crossref] [Google Scholar]
  170. 170.
    Schmid MW, van Moorsel SJ, Hahl T, De Luca E, De Deyn GB, et al. 2021.. Effects of plant community history, soil legacy and plant diversity on soil microbial communities. . J. Ecol. 109::300723
    [Crossref] [Google Scholar]
  171. 171.
    Schreiter S, Ding GC, Heuer H, Neumann G, Sandmann M, et al. 2014.. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. . Front. Microbiol. 5::144
    [Crossref] [Google Scholar]
  172. 172.
    Shen Z, Ruan Y, Xue C, Zhong S, Li R, Shen Q. 2015.. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. . Plant Soil 393::2133
    [Crossref] [Google Scholar]
  173. 173.
    Shen Z, Xue C, Penton CR, Thomashow LS, Zhang N, et al. 2019.. Suppression of banana Panama disease induced by soil microbiome reconstruction through an integrated agricultural strategy. . Soil Biol. Biochem. 128::16474
    [Crossref] [Google Scholar]
  174. 174.
    Siegel-Hertz K, Edel-Hermann V, Chapelle E, Terrat S, Raaijmakers JM, Steinberg C. 2018.. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. . Front. Microbiol. 9::568
    [Crossref] [Google Scholar]
  175. 175.
    Song Y, Spooren J, Jongekrijg CD, Manders EHH, de Jonge R, et al. 2023.. Seed tuber imprinting shapes the next-generation potato microbiome. . bioRxiv 549298. https://doi.org/10.1101/2023.07.27.549298
    [Google Scholar]
  176. 176.
    Song Y, Wilson AJ, Zhang X-C, Thoms D, Sohrabi R, et al. 2021.. FERONIA restricts Pseudomonas in the rhizosphere microbiome via regulation of reactive oxygen species. . Nat. Plants 7::64454
    [Crossref] [Google Scholar]
  177. 177.
    Stassen MJJ, Hsu SH, Pieterse CMJ, Stringlis IA. 2021.. Coumarin communication along the microbiome-root-shoot axis. . Trends Plant Sci. 26::16983
    [Crossref] [Google Scholar]
  178. 178.
    Stringlis IA, de Jonge R, Pieterse CMJ. 2019.. The age of coumarins in plant–microbe interactions. . Plant Cell Physiol. 60::140519
    [Crossref] [Google Scholar]
  179. 179.
    Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ. 2018.. Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. . Plant J. 93::16680
    [Crossref] [Google Scholar]
  180. 180.
    Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, et al. 2018.. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. . PNAS 115::521322
    [Crossref] [Google Scholar]
  181. 181.
    Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL. 2019.. Beyond pathogens: microbiota interactions with the plant immune system. . Curr. Opin. Microbiol. 49::717
    [Crossref] [Google Scholar]
  182. 182.
    Teixeira PJPL, Colaianni NR, Law TF, Conway JM, Gilbert S, et al. 2021.. Specific modulation of the root immune system by a community of commensal bacteria. . PNAS 118::e2100678118
    [Crossref] [Google Scholar]
  183. 183.
    Thoenen L, Giroud C, Kreuzer M, Waelchli J, Gfeller V, et al. 2023.. Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. . PNAS 120::e2310134120
    [Crossref] [Google Scholar]
  184. 184.
    Thomashow LS, LeTourneau MK, Kwak YS, Weller DM. 2019.. The soil-borne legacy in the age of the holobiont. . Microb. Biotechnol. 12::5154
    [Crossref] [Google Scholar]
  185. 185.
    Thomashow LS, Weller DM. 1988.. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. . J. Bacteriol. 170::3499508
    [Crossref] [Google Scholar]
  186. 186.
    Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. 2020.. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. . mBio 11:(1):e02785-19
    [Crossref] [Google Scholar]
  187. 187.
    Tomihama T, Nishi Y, Mori K, Shirao T, Iida T, et al. 2016.. Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. . Phytopathology 106::71928
    [Crossref] [Google Scholar]
  188. 188.
    Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020.. Plant–microbiome interactions: from community assembly to plant health. . Nat. Rev. Microbiol. 18::60721
    [Crossref] [Google Scholar]
  189. 189.
    Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. 2016.. The phyllosphere: microbial jungle at the plant–climate interface. . Annu. Rev. Ecol. Evol. Syst. 47::124
    [Crossref] [Google Scholar]
  190. 190.
    van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R. 2016.. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. . Ecol. Lett. 19::37582
    [Crossref] [Google Scholar]
  191. 191.
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. 2015.. The importance of the microbiome of the plant holobiont. . New Phytol. 206::1196206
    [Crossref] [Google Scholar]
  192. 192.
    Veen GF, Fry EL, ten Hooven FC, Kardol P, Morriën E, De Long JR. 2019.. The role of plant litter in driving plant-soil feedbacks. . Front. Environ. Sci. 7::168
    [Crossref] [Google Scholar]
  193. 193.
    Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, et al. 2023.. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. . Mol. Plant 16::116077
    [Crossref] [Google Scholar]
  194. 194.
    Vilchez JI, Yang Y, He D, Zi H, Peng L, et al. 2020.. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. . Nat. Plants 6::98395
    [Crossref] [Google Scholar]
  195. 195.
    Vismans G, van Bentum S, Spooren J, Song Y, Goossens P, et al. 2022.. Coumarin biosynthesis genes are required after foliar pathogen infection for the creation of a microbial soil-borne legacy that primes plants for SA-dependent defenses. . Sci. Rep. 12::22473
    [Crossref] [Google Scholar]
  196. 196.
    Voges MJ, Bai Y, Schulze-Lefert P, Sattely ES. 2019.. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. . PNAS 116::1255865
    [Crossref] [Google Scholar]
  197. 197.
    Vorholt JA. 2012.. Microbial life in the phyllosphere. . Nat. Rev. Microbiol. 10::82840
    [Crossref] [Google Scholar]
  198. 198.
    Walsh CM, Becker-Uncapher I, Carlson M, Fierer N. 2021.. Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes. . ISME J. 15::274862
    [Crossref] [Google Scholar]
  199. 199.
    Wang Q, Yang R, Peng W, Yang Y, Ma X, et al. 2021.. Tea plants with gray blight have altered root exudates that recruit a beneficial rhizosphere microbiome to prime immunity against aboveground pathogen infection. . Front. Microbiol. 12::774438
    [Crossref] [Google Scholar]
  200. 200.
    Wei S, Jacquiod S, Philippot L, Blouin M, Sørensen SJ. 2021.. Spatial analysis of the root system coupled to microbial community inoculation shed light on rhizosphere bacterial community assembly. . Biol. Fertil. Soils 57::97389
    [Crossref] [Google Scholar]
  201. 201.
    Weller DM. 2015.. Take-all decline and beneficial pseudomonads. . In Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, ed. B Lugtenberg , pp. 36370. Basel, Switz:.: Springer
    [Google Scholar]
  202. 202.
    Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, et al. 2007.. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. . Plant Biol. 9:(1):420
    [Crossref] [Google Scholar]
  203. 203.
    Weller DM, LeTourneau M, Yang M. 2022.. Classification, discovery, and microbial basis of disease-suppressive soils. . In Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture, ed. FJ de Bruijn, H Smidt, LS Cocolin, M Sauer, D Dowling, LS Thomashow , pp. 45765. Hoboken, NJ:: Wiley
    [Google Scholar]
  204. 204.
    Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, Bakker PAHM. 2012.. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. . Phytopathology 102::40312
    [Crossref] [Google Scholar]
  205. 205.
    Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS. 2002.. Microbial populations responsible for specific soil suppressiveness to plant pathogens. . Annu. Rev. Phytopathol. 40::30948
    [Crossref] [Google Scholar]
  206. 206.
    Wintermans PCA, Bakker PAHM, Pieterse CMJ. 2016.. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. . Plant Mol. Biol. 90::62334
    [Crossref] [Google Scholar]
  207. 207.
    Wyrsch I, Dominguez-Ferreras A, Geldner N, Boller T. 2015.. Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants. . New Phytol. 206::77484
    [Crossref] [Google Scholar]
  208. 208.
    Yang K, Fu R, Feng H, Jiang G, Finkel O, et al. 2023.. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. . Mol. Plant 16::137995
    [Crossref] [Google Scholar]
  209. 209.
    Yang M, Mavrodi DV, Thomashow LS, Weller DM. 2018.. Differential response of wheat cultivars to Pseudomonas brassicacearum and take-all decline soil. . Phytopathology 108::136372
    [Crossref] [Google Scholar]
  210. 210.
    Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, Paulitz TC. 2021.. Rhizosphere community selection reveals bacteria associated with reduced root disease. . Microbiome 9::86
    [Crossref] [Google Scholar]
  211. 211.
    Yin C, Hulbert SH, Schroeder KL, Mavrodi O, Mavrodi D, et al. 2013.. Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). . Appl. Environ. Microbiol. 79::742838
    [Crossref] [Google Scholar]
  212. 212.
    Yu K, Liu Y, Tichelaar R, Savant N, Lagendijk E, et al. 2019.. Rhizosphere-associated Pseudomonas suppress local root immune responses by gluconic acid-mediated lowering of environmental pH. . Curr. Biol. 29::391320
    [Crossref] [Google Scholar]
  213. 213.
    Yu K, Pieterse CMJ, Bakker PAHM, Berendsen RL. 2019.. Beneficial microbes going underground of root immunity. . Plant Cell Environ. 42::286070
    [Crossref] [Google Scholar]
  214. 214.
    Yuan J, Zhao J, Wen T, Zhao M, Li R, et al. 2018.. Root exudates drive the soil-borne legacy of aboveground pathogen infection. . Microbiome 6::156
    [Crossref] [Google Scholar]
  215. 215.
    Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, et al. 2015.. The soil microbiome influences grapevine-associated microbiota. . mBio 6::e02527-14
    [Crossref] [Google Scholar]
  216. 216.
    Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, et al. 2018.. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. . Nat. Microbiol. 3::47080
    [Crossref] [Google Scholar]
  217. 217.
    Zhang Z, Zhang Q, Cui H, Li Y, Xu N, et al. 2022.. Composition identification and functional verification of bacterial community in disease-suppressive soils by machine learning. . Environ. Microbiol. 24::340519
    [Crossref] [Google Scholar]
  218. 218.
    Zhao M, Zhao J, Yuan J, Hale L, Wen T, et al. 2021.. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. . Plant Cell Environ. 44::61328
    [Crossref] [Google Scholar]
  219. 219.
    Zhou SY, Li H, Giles M, Neilson R, Yang XR, Su JQ. 2020.. Microbial flow within an air-phyllosphere-soil continuum. . Front. Microbiol. 11::615481
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-100127
Loading
/content/journals/10.1146/annurev-phyto-021622-100127
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error