1932

Abstract

Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-114434
2024-09-09
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021622-114434.html?itemId=/content/journals/10.1146/annurev-phyto-021622-114434&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    APHIS. 2022.. Availability of a draft environmental impact statement and draft plant pest risk assessment for determination of nonregulated status for blight-tolerant Darling 58 American Chestnut (Castanea dentata) developed using genetic engineering. Fed. Regist. Doc. 87FR67861, Docket No. APHIS-2020-0030 , APHIS, Riverdale Park, MD:
    [Google Scholar]
  2. 2.
    Anagnostakis SL. 1987.. Chestnut blight: the classical problem of an introduced pathogen. . Mycologia 79:(1):2337
    [Crossref] [Google Scholar]
  3. 3.
    Araújo JPM, Li Y, Duong TA, Smith ME, Adams S, Hulcr J. 2022.. Four new species of Harringtonia: unravelling the laurel wilt fungal genus. . J. Fungi 8:(6):613
    [Crossref] [Google Scholar]
  4. 4.
    Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 2010.. Historical accumulation of nonindigenous forest pests in the continental United States. . BioScience 60:(11):88697
    [Crossref] [Google Scholar]
  5. 5.
    Axelsson EP, Hjältén J, LeRoy CJ, Julkunen-Tiitto R, Wennström A, Pilate G. 2010.. Can leaf litter from genetically modified trees affect aquatic ecosystems?. Ecosystems 13:(7):104959
    [Crossref] [Google Scholar]
  6. 6.
    Axelsson EP, Hjältén J, LeRoy CJ, Whitham TG, Julkunen-Tiitto R, Wennström A. 2011.. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. . J. Appl. Ecol. 48:(6):147279
    [Crossref] [Google Scholar]
  7. 7.
    Axelsson EP, Hjältén J, Whitham TG, Julkunen-Tiitto R, Pilate G, Wennström A. 2011.. Leaf ontogeny interacts with Bt modification to affect innate resistance in GM aspens. . Chemoecology 21:(3):16169
    [Crossref] [Google Scholar]
  8. 8.
    Bai Q, Duan B, Ma J, Fen Y, Sun S, et al. 2020.. Coexpression of PalbHLH1 and PalMYB90 genes from Populusalba enhances pathogen resistance in poplar by increasing the flavonoid content. . Front. Plant Sci. 10::1772
    [Crossref] [Google Scholar]
  9. 9.
    Berryman AA. 2013.. Dynamics of Forest Insect Populations: Patterns, Causes, Implications. New York:: Springer
    [Google Scholar]
  10. 10.
    Bingham RT. 1983.. Blister rust resistant western white pine for the Inland Empire: the story of the first 25 years of the research and development program. Ogden, UT:: Intermt. For. Range Exp. Stn.
    [Google Scholar]
  11. 11.
    Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. 2013.. The consequence of tree pests and diseases for ecosystem services. . Science 342:(6160):1235773
    [Crossref] [Google Scholar]
  12. 12.
    Branco S, Douma JC, Brockerhoff EG, Gomez-Gallego M, Marcais B, et al. 2023.. Eradication programs against non-native pests and pathogens of woody plants in Europe: Which factors influence their success or failure?. NeoBiota 84::281317
    [Crossref] [Google Scholar]
  13. 13.
    Brasier CM. 2000.. Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. . In The Elms: Breeding, Conservation, and Disease Management, ed. CP Dunn , pp. 6172. Boston, MA:: Springer US
    [Google Scholar]
  14. 14.
    Burnham CR. 1988.. The restoration of the American chestnut: Mendelian genetics may solve a problem that has resisted other approaches. . Am. Sci. 76:(5):47887
    [Google Scholar]
  15. 15.
    Buttrick PL. 1925.. Chestnut and the Chestnut Blight in North Carolina. Raleigh:
    [Google Scholar]
  16. 16.
    Cai Q, He B, Kogel K-H, Jin H. 2018.. Cross-kingdom RNA trafficking and environmental RNAi—nature's blueprint for modern crop protection strategies. . Curr. Opin. Microbiol. 46::5864
    [Crossref] [Google Scholar]
  17. 17.
    Cale JA, McNulty SA, Teale SA, Castello JD. 2013.. The impact of beech thickets on biodiversity. . Biol. Invasions 15:(3):699706
    [Crossref] [Google Scholar]
  18. 18.
    Ćalić I, Koch J, Carey D, Addo-Quaye C, Carlson JE, Neale DB. 2017.. Genome-wide association study identifies a major gene for beech bark disease resistance in American beech (Fagus grandifolia Ehrh.). . BMC Genom. 18:(1):547
    [Crossref] [Google Scholar]
  19. 19.
    Campanella TJ. 2011.. Republic of Shade: New England and the American Elm. New Haven, CT:: Yale Univ. Press. Illus. , ed..
    [Google Scholar]
  20. 20.
    Cano V, Martínez MT, Couselo JL, Varas E, Vieitez FJ, Corredoira E. 2021.. Efficient transformation of somatic embryos and regeneration of cork oak plantlets with a gene (CsTL1) encoding a chestnut thaumatin-like protein. . Int. J. Mol. Sci. 22:(4):1757
    [Crossref] [Google Scholar]
  21. 21.
    Cobb RC, Eviner VT, Rizzo DM. 2013.. Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling. . New Phytol. 200:(2):42231
    [Crossref] [Google Scholar]
  22. 22.
    Cobb RC, Haas SE, Kruskamp N, Dillon WW, Swiecki TJ, et al. 2020.. The magnitude of regional-scale tree mortality caused by the invasive pathogen Phytophthora ramorum. . Earth's Future 8:(7):e2020EF001500
    [Crossref] [Google Scholar]
  23. 23.
    Conrad AO, Rodriguez-Saona LE, McPherson BA, Wood DL, Bonello P. 2014.. Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy. . Front. Plant Sci. 5::521
    [Crossref] [Google Scholar]
  24. 24.
    Corredoira E, San José MC, Vieitez AM, Allona I, Aragoncillo C, Ballester A. 2016.. Agrobacterium-mediated transformation of European chestnut somatic embryos with a Castanea sativa (Mill.) endochitinase gene. . New For. 47:(5):66984
    [Crossref] [Google Scholar]
  25. 25.
    COSEWIC. 2011.. COSEWIC annual report. Rep. , Comm. Status Endanger. Wildl. Can., Gatineau, Qué:. https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/cosewic/CESCC_2010_2011_eng.pdf
    [Google Scholar]
  26. 26.
    D'Amico KM, Horton TR, Maynard CA, Stehman SV, Oakes AD, Powell WA. 2015.. Comparisons of ectomycorrhizal colonization of transgenic American chestnut with those of the wild type, a conventionally bred hybrid, and related Fagaceae species. . Appl. Environ. Microbiol. 81:(1):1008
    [Crossref] [Google Scholar]
  27. 27.
    Davis DE. 2006.. Historical significance of American chestnut to Appalachian culture and ecology. . In Proceedings of the Conference on Restoration of American Chestnut to Forest Lands, ed. KC Steiner, JE Carlson , pp. 5360. Washington, DC:: Natl. Park Serv.
    [Google Scholar]
  28. 28.
    de Bruijn A, Gustafson EJ, Kashian DM, Dalgleish HJ, Sturtevant BR, Jacobs DF. 2014.. Decomposition rates of American chestnut (Castanea dentata) wood and implications for coarse woody debris pools. . Can. J. For. Res. 44:(12):157585
    [Crossref] [Google Scholar]
  29. 29.
    De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, et al. 2014.. Insights into conifer giga-genomes. . Plant Physiol. 166:(4):172432
    [Crossref] [Google Scholar]
  30. 30.
    Dietz A. 1978.. The use of ionizing radiation to develop a blight resistant American chestnut, Castanea dentata, through induced mutations. . In Proceedings of the American Chestnut Symposium, ed. WL MacDonald, FC Cech, J Luchok, C Smith , pp. 1719. Morgantown, WV:: West Virginia Univ.
    [Google Scholar]
  31. 31.
    Dulmer KM, LeDuc SD, Horton TR. 2014.. Ectomycorrhizal inoculum potential of northeastern US forest soils for American chestnut restoration: results from field and laboratory bioassays. . Mycorrhiza 24:(1):6574
    [Crossref] [Google Scholar]
  32. 32.
    Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, et al. 2005.. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. . Front. Ecol. Environ. 3:(9):47986
    [Crossref] [Google Scholar]
  33. 33.
    Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, et al. 2015.. International variation in phytosanitary legislation and regulations governing importation of plants for planting. . Environ. Sci. Policy 51::22837
    [Crossref] [Google Scholar]
  34. 34.
    Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, et al. 2014.. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. . Nat. Genet. 46:(10):108996
    [Crossref] [Google Scholar]
  35. 35.
    Faison EK, Houston DR. 2004.. Black bear foraging in response to beech bark disease in northern Vermont. . Northeast. Nat. 11:(4):38794
    [Crossref] [Google Scholar]
  36. 36.
    Fan D, Liu T, Li C, Jiao B, Li S, et al. 2015.. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. . Sci. Rep. 5:(1):12217
    [Crossref] [Google Scholar]
  37. 37.
    Fei S, Morin RS, Oswalt CM, Liebhold AM. 2019.. Biomass losses resulting from insect and disease invasions in US forests. . PNAS 116:(35):1737176
    [Crossref] [Google Scholar]
  38. 38.
    Finzi AC, Van Breemen N, Canham CD. 1998.. Canopy tree-soil interactions within temperate forests: species effects on soil carbon and nitrogen. . Ecol. Appl. 8:(2):44046
    [Google Scholar]
  39. 39.
    Fraedrich SW. 2008.. California laurel is susceptible to laurel wilt caused by Raffaelea lauricola. . Plant Dis. 92:(10):1469
    [Crossref] [Google Scholar]
  40. 40.
    Gibbs JN. 1978.. Intercontinental epidemiology of Dutch elm disease. . Annu. Rev. Phytopathol. 16::287307
    [Crossref] [Google Scholar]
  41. 41.
    Goheen D, Angwin P, Sniezko R, Marshall K. 2000.. Port-Orford-cedar root disease in southwestern Oregon and northwestern California. Rep. , US For. Serv. Washington, DC:. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5280944.pdf
    [Google Scholar]
  42. 42.
    Gonzales-Vigil E, Hefer CA, von Loessl ME, La Mantia J, Mansfield SD. 2017.. Exploiting natural variation to uncover an alkene biosynthetic enzyme in poplar. . Plant Cell 29:(8):200015
    [Crossref] [Google Scholar]
  43. 43.
    Gordon MI. 2024.. Host-induced gene silencing in black cottonwood for control of septoria canker: efficacy and non-target impacts. PhD Diss. , Oregon State Univ., Corvallis, OR:
    [Google Scholar]
  44. 44.
    Gould SJ, Vrba ES. 1982.. Exaptation—a missing term in the science of form. . Paleobiology 8:(1):415
    [Crossref] [Google Scholar]
  45. 45.
    Griffin JM, Lovett GM, Arthur MA, Weathers KC. 2003.. The distribution and severity of beech bark disease in the Catskill Mountains, N.Y. . Can. J. For. Res. 33:(9):175460
    [Crossref] [Google Scholar]
  46. 46.
    Griffiths NA, Tank JL, Royer TV, Rosi-Marshall EJ, Whiles MR, et al. 2009.. Rapid decomposition of maize detritus in agricultural headwater streams. . Ecol. Appl. 19:(1):13342
    [Crossref] [Google Scholar]
  47. 47.
    Grünwald NJ, LeBoldus JM, Hamelin RC. 2019.. Ecology and evolution of the sudden oak death pathogen Phytophthora ramorum. . Annu. Rev. Phytopathol. 57::30121
    [Crossref] [Google Scholar]
  48. 48.
    Hammerbacher A, Paetz C, Wright LP, Fischer TC, Bohlmann J, et al. 2014.. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. . Plant Physiol. 164:(4):210722
    [Crossref] [Google Scholar]
  49. 49.
    Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE. 2013.. Climate change may cause severe loss in the economic value of European forest land. . Nat. Clim. Change 3:(3):2037
    [Crossref] [Google Scholar]
  50. 50.
    Hansen EM, Goheen DJ, Jules ES, Ullian B. 2000.. Managing Port-Orford-cedar and the introduced pathogen Phytophthora lateralis. . Plant Dis. 84:(1):414
    [Crossref] [Google Scholar]
  51. 51.
    Harwood JD, Wallin WG, Obrycki JJ. 2005.. Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. . Mol. Ecol. 14:(9):281523
    [Crossref] [Google Scholar]
  52. 52.
    Hauer RJ, Hanou IS, Sivyer D. 2020.. Planning for active management of future invasive pests affecting urban forests: the ecological and economic effects of varying Dutch elm disease management practices for street trees in Milwaukee, WI USA. . Urban Ecosyst. 23:(5):100522
    [Crossref] [Google Scholar]
  53. 53.
    Hayden KJ, Garbelotto M, Dodd R, Wright JW. 2013.. Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease. . Evol. Appl. 6:(6):97082
    [Crossref] [Google Scholar]
  54. 54.
    Hayden KJ, Nettel A, Dodd RS, Garbelotto M. 2011.. Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. . For. Ecol. Manag. 261:(11):178191
    [Crossref] [Google Scholar]
  55. 55.
    Hepting GH. 1974.. Death of the American chestnut. . J. For. Hist. 18:(3):6167
    [Google Scholar]
  56. 56.
    Houston DR. 1994.. Major new tree disease epidemics: beech bark disease. . Annu. Rev. Phytopathol. 32::7587
    [Crossref] [Google Scholar]
  57. 57.
    Huang Y, Liu H, Jia Z, Fang Q, Luo K. 2012.. Combined expression of antimicrobial genes (Bbchit1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. . Tree Physiol. 32:(10):131320
    [Crossref] [Google Scholar]
  58. 58.
    Hughes MA, Juzwik J, Harrington TC, Keith LM. 2020.. Pathogenicity, symptom development, and colonization of Metrosideros polymorpha by Ceratocystis lukuohia. . Plant Dis. 104:(8):223341
    [Crossref] [Google Scholar]
  59. 59.
    Jacobs DF, Dumroese RK, Brennan AN, Campbell FT, Conrad AO, et al. 2023.. Reintroduction of at-risk forest tree species using biotechnology depends on regulatory policy, informed by science and with public support. . New For. 54:(4):587604
    [Crossref] [Google Scholar]
  60. 60.
    Jaynes RA, Graves AH. 1963.. Connecticut hybrid chestnuts and their culture. Bull. 657 , Conn. Agric. Exp. Stn., New Haven:. https://portal.ct.gov/-/media/caes/documents/publications/bulletins/b657pdf.pdf
    [Google Scholar]
  61. 61.
    Ji SD, Wang ZY, Fan HJ, Zhang RS, Yu ZY, et al. 2016.. Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternata. . J. Plant Res. 129:(5):92133
    [Crossref] [Google Scholar]
  62. 62.
    Jia Z, Gou J, Sun Y, Yuan L, Tang Q, et al. 2010.. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). . Tree Physiol. 30:(12):1599605
    [Crossref] [Google Scholar]
  63. 63.
    Jiang Y, Guo L, Ma X, Zhao X, Jiao B, et al. 2017.. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. . Tree Physiol. 37:(5):66575
    [Crossref] [Google Scholar]
  64. 64.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337:(6096):81621
    [Crossref] [Google Scholar]
  65. 65.
    Joint Genome Inst. 2024.. Notholithocarpus densiflorus Rogue1 HAP2 v1.1. Phytozome 13. https://phytozome-next.jgi.doe.gov/info/NdensiflorusRogue1HAP2_v1_1
    [Google Scholar]
  66. 66.
    Jonnes J. 2017.. Urban Forests: A Natural History of Trees and People in the American Cityscape. London:: Penguin
    [Google Scholar]
  67. 67.
    Karnosky DF. 1979.. Dutch elm disease: a review of the history, environmental implications, control, and research needs. . Environ. Conserv. 6:(4):31122
    [Crossref] [Google Scholar]
  68. 68.
    Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, et al. 2019.. sRNA profiling combined with gene function analysis reveals a lack of evidence for cross-kingdom RNAi in the wheat–Zymoseptoria tritici pathosystem. . Front. Plant Sci. 10::892
    [Crossref] [Google Scholar]
  69. 69.
    Kinloch BB. 2003.. White pine blister rust in North America: past and prognosis. . Phytopathology 93:(8):104447
    [Crossref] [Google Scholar]
  70. 70.
    Kinloch BB Jr., Sniezko RA, Dupper GE. 2004.. Virulence gene distribution and dynamics of the white pine blister rust pathogen in western North America. . Phytopathology 94:(7):75158
    [Crossref] [Google Scholar]
  71. 71.
    Kiritani K, Yamamura K. 2003.. Exotic insects and their pathways for invasion. . In Invasive Species: Vectors and Management Strategies, ed. J Carlton, GM Ruiz , pp. 4467. Washington, DC:: Island Press
    [Google Scholar]
  72. 72.
    Knight KS, Brown JP, Long RP. 2013.. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis). . Biol. Invasions 15:(2):37183
    [Crossref] [Google Scholar]
  73. 73.
    Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, et al. 2016.. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. . PLOS Pathog. 12:(10):e1005901
    [Crossref] [Google Scholar]
  74. 74.
    Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H. 2013.. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. . PNAS 110:(48):1932429
    [Crossref] [Google Scholar]
  75. 75.
    Koch A, Wassenegger M. 2021.. Host-induced gene silencing: mechanisms and applications. . New Phytol. 231:(1):5459
    [Crossref] [Google Scholar]
  76. 76.
    LeBoldus JM, Navarro SM, Kline N, Ritokova G, Grünwald NJ. 2022.. Repeated emergence of sudden oak death in Oregon: chronology, impact, and management. . Plant Dis. 106:(12):301321
    [Crossref] [Google Scholar]
  77. 77.
    Liang H, Maynard CA, Allen RD, Powell WA. 2001.. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. . Plant Mol. Biol. 45:(6):61929
    [Crossref] [Google Scholar]
  78. 78.
    Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 2012.. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. . Front. Ecol. Environ. 10:(3):13543
    [Crossref] [Google Scholar]
  79. 79.
    Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. 2017.. Biological invasions in forest ecosystems. . Biol. Invasions 19:(11):343758
    [Crossref] [Google Scholar]
  80. 80.
    Liu H, Zhang H, Yang F, Chai S, Wang L, et al. 2022.. Ethylene activates poplar defense against Dothiorella gregaria Sacc by regulating reactive oxygen species accumulation. . Physiol. Plant. 174:(3):e13726
    [Crossref] [Google Scholar]
  81. 81.
    Loo JA. 2009.. Ecological impacts of non-indigenous invasive fungi as forest pathogens. . Biol. Invasions 11:(1):8196
    [Crossref] [Google Scholar]
  82. 82.
    Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD. 2006.. Forest ecosystem responses to exotic pests and pathogens in eastern North America. . BioScience 56:(5):395405
    [Crossref] [Google Scholar]
  83. 83.
    Lovett GM, Weathers KC, Arthur MA, Schultz JC. 2004.. Nitrogen cycling in a northern hardwood forest: Do species matter?. Biogeochemistry 67:(3):289308
    [Crossref] [Google Scholar]
  84. 84.
    Luiz BC, Giardina CP, Keith LM, Jacobs DF, Sniezko RA, et al. 2023.. A framework for establishing a rapid ‘Ōhi‘a death resistance program. . New For. 54:(4):63760
    [Crossref] [Google Scholar]
  85. 85.
    Lutts RH. 2004.. Like manna from God: the American chestnut trade in southwestern Virginia. . Environ. Hist. 9:(3):497525
    [Crossref] [Google Scholar]
  86. 86.
    MacLeod A, Pautasso M, Jeger MJ, Haines-Young R. 2010.. Evolution of the international regulation of plant pests and challenges for future plant health. . Food Sec. 2:(1):4970
    [Crossref] [Google Scholar]
  87. 87.
    Maloney PE, Vogler DR, Jensen CE, Delfino Mix A. 2012.. Ecology of whitebark pine populations in relation to white pine blister rust infection in subalpine forests of the Lake Tahoe Basin, USA: implications for restoration. . For. Ecol. Manag. 280::16675
    [Crossref] [Google Scholar]
  88. 88.
    Marks CO. 2016.. The ecological role of American elm (Ulmus americana L.) in floodplain forests of northeastern North America. Gen. Tech. Rep. NRS-P-174 , USDA For. Serv., Washington, DC:
    [Google Scholar]
  89. 89.
    McKinney ST, Fiedler CE, Tomback DF. 2009.. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem. . Ecol. Appl. 19:(3):597607
    [Crossref] [Google Scholar]
  90. 90.
    Mentag R, Luckevich M, Morency M-J, Séguin A. 2003.. Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. . Tree Physiol. 23:(6):40511
    [Crossref] [Google Scholar]
  91. 91.
    Metz MR, Frangioso KM, Meentemeyer RK, Rizzo DM. 2011.. Interacting disturbances: wildfire severity affected by stage of forest disease invasion. . Ecol. Appl. 21:(2):31320
    [Crossref] [Google Scholar]
  92. 92.
    Metz MR, Frangioso KM, Wickland AC, Meentemeyer RK, Rizzo DM. 2012.. An emergent disease causes directional changes in forest species composition in coastal California. . Ecosphere 3:(10):123
    [Crossref] [Google Scholar]
  93. 93.
    Milgroom MG, Cortesi P. 2004.. Biological control of chestnut blight. . Annu. Rev. Phytopathol. 42::31138
    [Crossref] [Google Scholar]
  94. 94.
    Miller AC, Woeste KE, Anagnostakis SL, Jacobs DF. 2014.. Exploration of a rare population of Chinese chestnut in North America: stand dynamics, health and genetic relationships. . AoB Plants 6::plu065
    [Crossref] [Google Scholar]
  95. 95.
    Mosen AM, Guo Y, Hassing B, Mesarich CH, Bradshaw RE. 2023.. An RNA interference (RNAi) target with potential to control Dothistroma needle blight. . N. Z. Plant Prot. 76::3553
    [Google Scholar]
  96. 96.
    Muchero W, Sondreli KL, Chen J-G, Urbanowicz BR, Zhang J, et al. 2018.. Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree. . PNAS 115:(45):1157378
    [Crossref] [Google Scholar]
  97. 97.
    Mukrimin M, Kovalchuk A, Neves LG, Jaber EH, Haapanen M, et al. 2018.. Genome-wide exon-capture approach identifies genetic variants of Norway spruce genes associated with susceptibility to Heterobasidion parviporum infection. . Front. Plant Sci. 9::793
    [Crossref] [Google Scholar]
  98. 98.
    Muzika RM. 2017.. Opportunities for silviculture in management and restoration of forests affected by invasive species. . Biol. Invasions 19:(11):341935
    [Crossref] [Google Scholar]
  99. 99.
    Nakayashiki H, Kadotani N, Mayama S. 2006.. Evolution and diversification of RNA silencing proteins in fungi. . J. Mol. Evol. 63:(1):12735
    [Crossref] [Google Scholar]
  100. 100.
    Natl. Acad. Sci. Eng. Med. 2019.. Forest health and biotechnology: possibilities and considerations. . Rep., Natl. Acad. Sci. Eng. Med. , Washington, DC:
    [Google Scholar]
  101. 101.
    Newhouse AE, Oakes AD, Pilkey HC, Roden HE, Horton TR, Powell WA. 2018.. Transgenic American chestnuts do not inhibit germination of native seeds or colonization of mycorrhizal fungi. . Front. Plant Sci. 9::1046
    [Crossref] [Google Scholar]
  102. 102.
    Newhouse AE, Polin-McGuigan LD, Baier KA, Valletta KER, Rottmann WH, et al. 2014.. Transgenic American chestnuts show enhanced blight resistance and transmit the trait to T1 progeny. . Plant Sci. 228::8897
    [Crossref] [Google Scholar]
  103. 103.
    Newhouse AE, Powell WA. 2021.. Intentional introgression of a blight tolerance transgene to rescue the remnant population of American chestnut. . Conserv. Sci. Pract. 3:(4):e348
    [Crossref] [Google Scholar]
  104. 104.
    Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA. 2007.. Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. . Plant Cell Rep. 26:(7):97787
    [Crossref] [Google Scholar]
  105. 105.
    Niu J, Chen R, Wang J-J. 2024.. RNA interference in insects: the link between antiviral defense and pest control. . Insect Sci. 31:(1):212
    [Crossref] [Google Scholar]
  106. 106.
    Noël A, Levasseur C, Le VQ, Séguin A. 2005.. Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. . Physiol. Mol. Plant Pathol. 67:(2):9299
    [Crossref] [Google Scholar]
  107. 107.
    Nyland RD. 2008.. Origin of small understory beech in New York northern hardwood stands. . North. J. Appl. For. 25:(3):16163
    [Crossref] [Google Scholar]
  108. 108.
    Olatinwo RO, Fraedrich SW, Mayfield AE. 2021.. Laurel wilt: current and potential impacts and possibilities for prevention and management. . Forests 12:(2):181
    [Crossref] [Google Scholar]
  109. 109.
    Ouyang L, He W, Huang Z, Zhao L, Peng S, et al. 2012.. Introduction of the Rs-Afp2 gene into Eucalyptus urophylla for resistance to Phytophthora capsici. . J. Trop. For. Sci. 24:(2):198208
    [Google Scholar]
  110. 110.
    Ouyang LJ, Li LM. 2016.. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis. . Transgenic Res. 25:(4):44152
    [Crossref] [Google Scholar]
  111. 111.
    Papaik MJ, Canham CD, Latty EF, Woods KD. 2005.. Effects of an introduced pathogen on resistance to natural disturbance: beech bark disease and windthrow. . Can. J. For. Res. 35:(8):183243
    [Crossref] [Google Scholar]
  112. 112.
    Ploetz RC, Kendra PE, Choudhury RA, Rollins JA, Campbell A, et al. 2017.. Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. . Forests 8:(2):48
    [Crossref] [Google Scholar]
  113. 113.
    Popkin G, Melton A. 2023.. For the first time, genetically modified trees have been planted in a U.S. forest. . New York Times, Febr. 16:. https://www.nytimes.com/2023/02/16/science/genetically-modified-trees-living-carbon.html
    [Google Scholar]
  114. 114.
    Potter K, Conkling B. 2022.. Forest health monitoring: national status, trends, and analysis 2021. Gen. Tech. Rep. SRS-266 , USDA For. Serv., South. Res. Stn., Asheville, NC:
    [Google Scholar]
  115. 115.
    Powell WA, Newhouse AE, Coffey V. 2019.. Developing blight-tolerant American chestnut trees. . Cold Spring Harb. Perspect. Biol. 11:(7):a034587
    [Crossref] [Google Scholar]
  116. 116.
    Rizzo DM, Garbelotto M, Hansen EM. 2005.. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. . Annu. Rev. Phytopathol. 43::30935
    [Crossref] [Google Scholar]
  117. 117.
    Russell EW. 1987.. Pre-blight distribution of Castanea dentata (Marsh.). Borkh. Bull. Torrey Bot. Club 114:(2):18390
    [Crossref] [Google Scholar]
  118. 118.
    Sandercock AM, Westbrook JW, Zhang Q, Johnson HA, Saielli TM, et al. 2022.. Frozen in time: rangewide genomic diversity, structure, and demographic history of relict American chestnut populations. . Mol. Ecol. 31:(18):464055
    [Crossref] [Google Scholar]
  119. 119.
    Schoettle AW, Burns KS, McKinney ST, Krakowski J, Waring KM, et al. 2022.. Integrating forest health conditions and species adaptive capacities to infer future trajectories of the high elevation five-needle white pines. . For. Ecol. Manag. 521::120389
    [Crossref] [Google Scholar]
  120. 120.
    Seppänen S-K, Pasonen H-L, Vauramo S, Vahala J, Toikka M, et al. 2007.. Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. . Appl. Soil Ecol. 36:(2):1006
    [Crossref] [Google Scholar]
  121. 121.
    Serrazina S, Martínez MT, Cano V, Malhó R, Costa RL, Corredoira E. 2022.. Genetic transformation of Quercus ilex somatic embryos with a Gnk2-like protein that reveals a putative anti-oomycete action. . Plants 11:(3):304
    [Crossref] [Google Scholar]
  122. 122.
    Shabalina SA, Koonin EV. 2008.. Origins and evolution of eukaryotic RNA interference. . Trends Ecol. Evol. 23:(10):57887
    [Crossref] [Google Scholar]
  123. 123.
    Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013.. Targeted genome modification of crop plants using a CRISPR-Cas system. . Nat. Biotechnol. 31:(8):68688
    [Crossref] [Google Scholar]
  124. 124.
    Shearman TM, Wang GG, Mayfield AE. 2021.. The silvics of Persea borbonia (L.)Spreng.,Red Bay, and Persea palustris (Raf.)Sarg.,Swamp Bay, Lauraceae (laurel family). . Gen. Tech. Rep. SRS-GTR-265 , USDA For. Serv., South. Res. Stn., Asheville, NC:. https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs265.pdf
  125. 125.
    Simler AB, Metz MR, Frangioso KM, Meentemeyer RK, Rizzo DM. 2018.. Novel disturbance interactions between fire and an emerging disease impact survival and growth of resprouting trees. . Ecology 99:(10):221729
    [Crossref] [Google Scholar]
  126. 126.
    Simler-Williamson AB, Rizzo DM, Cobb RC. 2019.. Interacting effects of global change on forest pest and pathogen dynamics. . Annu. Rev. Ecol. Evol. Syst. 50::381403
    [Crossref] [Google Scholar]
  127. 127.
    Smalley EB, Guries RP. 1993.. Breeding elms for resistance to Dutch elm disease. . Annu. Rev. Phytopathol. 31::32554
    [Crossref] [Google Scholar]
  128. 128.
    Sniezko RA. 2006.. Resistance breeding against nonnative pathogens in forest trees—current successes in North America. . Can. J. Plant Pathol. 28:(sup1):S27079
    [Crossref] [Google Scholar]
  129. 129.
    Sniezko RA, Johnson JS, Reeser P, Kegley A, Hansen EM, et al. 2020.. Genetic resistance to Phytophthora lateralis in Port-Orford-cedar (Chamaecyparis lawsoniana): basic building blocks for a resistance program. . Plants People Planet 2:(1):6983
    [Crossref] [Google Scholar]
  130. 130.
    Sniezko RA, Koch J. 2017.. Breeding trees resistant to insects and diseases: putting theory into application. . Biol. Invasions 19:(11):3377400
    [Crossref] [Google Scholar]
  131. 131.
    Sniezko RA, Liu J-J. 2022.. Genetic resistance to white pine blister rust, restoration options, and potential use of biotechnology. . For. Ecol. Manag. 520::120168
    [Crossref] [Google Scholar]
  132. 132.
    Søndreli KL, Kanaskie A, Keriö S, LeBoldus JM. 2019.. Variation in susceptibility of tanoak to the NA1 and EU1 lineages of Phytophthora ramorum, the cause of sudden oak death. . Plant Dis. 103:(12):315460
    [Crossref] [Google Scholar]
  133. 133.
    Steiner KC, Westbrook JW, Hebard FV, Georgi LL, Powell WA, Fitzsimmons SF. 2017.. Rescue of American chestnut with extraspecific genes following its destruction by a naturalized pathogen. . New For. 48:(2):31736
    [Crossref] [Google Scholar]
  134. 134.
    Stoler AB, Burke DJ, Relyea RA. 2016.. Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. . Ecology 97:(7):178395
    [Crossref] [Google Scholar]
  135. 135.
    Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, et al. 2011.. Climate change and forest diseases. . Plant Pathol. 60:(1):13349
    [Crossref] [Google Scholar]
  136. 136.
    Swei A, Ostfeld RS, Lane RS, Briggs CJ. 2011.. Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus. . Oecologia 166:(1):91100
    [Crossref] [Google Scholar]
  137. 137.
    Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffiths NA, et al. 2010.. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape. . PNAS 107:(41):1764550
    [Crossref] [Google Scholar]
  138. 138.
    Tomback DF, Achuff P. 2010.. Blister rust and western forest biodiversity: ecology, values and outlook for white pines. . For. Pathol. 40:(3–4):186225
    [Crossref] [Google Scholar]
  139. 139.
    Ullah C, Unsicker SB, Fellenberg C, Constabel CP, Schmidt A, et al. 2017.. Flavan-3-ols are an effective chemical defense against rust infection. . Plant Physiol. 175:(4):156078
    [Crossref] [Google Scholar]
  140. 140.
    Valachovic YS, Lee CA, Scanlon H, Varner JM, Glebocki R, et al. 2011.. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests. . For. Ecol. Manag. 261:(11):197386
    [Crossref] [Google Scholar]
  141. 141.
    Vauramo S, Pasonen H-L, Pappinen A, Setälä H. 2006.. Decomposition of leaf litter from chitinase transgenic silver birch (Betula pendula) and effects on decomposer populations in a field trial. . Appl. Soil Ecol. 32:(3):33849
    [Crossref] [Google Scholar]
  142. 142.
    Vázquez-Lobo A, De La Torre AR, Martínez-García PJ, Vangestel C, Wegzryn JL, et al. 2017.. Finding loci associated to partial resistance to white pine blister rust in sugar pine (Pinus lambertiana Dougl.). . Tree Genet. Genomes 13::108
    [Crossref] [Google Scholar]
  143. 143.
    Wang GG, Knapp BO, Clark SL, Mudder BT. 2013.. The silvics of Castanea dentata (Marsh.) Borkh., American chestnut, Fagaceae (beech family). Gen. Tech. Rep. SRS-GTR-173 , USDA For. Serv., South. Res. Stn., Asheville, NC:
    [Google Scholar]
  144. 144.
    Wang J, Street NR, Scofield DG, Ingvarsson PK. 2016.. Natural selection and recombination rate variation shape nucleotide polymorphism across the genomes of three related Populus species. . Genetics 202:(3):1185200
    [Crossref] [Google Scholar]
  145. 145.
    Wang W, Bai X-D, Chen K, Gu C-R, Yu Q-B, et al. 2022.. Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata (Fr.) Keissl in Populus. . Int. J. Mol. Sci. 23:(14):7537
    [Crossref] [Google Scholar]
  146. 146.
    Weed AS, Ayres MP, Hicke JA. 2013.. Consequences of climate change for biotic disturbances in North American forests. . Ecol. Monogr. 83:(4):44170
    [Crossref] [Google Scholar]
  147. 147.
    Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, et al. 2013.. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. . Science 342:(6154):11823
    [Crossref] [Google Scholar]
  148. 148.
    Westbrook JW, James JB, Sisco PH, Frampton J, Lucas S, Jeffers SN. 2019.. Resistance to Phytophthora cinnamomi in American chestnut (Castanea dentata) backcross populations that descended from two Chinese chestnut (Castanea mollissima) sources of resistance. . Plant Dis. 103:(7):163141
    [Crossref] [Google Scholar]
  149. 149.
    Westbrook JW, Zhang Q, Mandal MK, Jenkins EV, Barth LE, et al. 2020.. Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic. . Evol. Appl. 13:(1):3147
    [Crossref] [Google Scholar]
  150. 150.
    Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. 2015.. Planted forest health: the need for a global strategy. . Science 349:(6250):83236
    [Crossref] [Google Scholar]
  151. 151.
    Yang Y, Li H-G, Liu M, Wang H-L, Yang Q, et al. 2022.. PeTGA1 enhances disease resistance against Colletotrichum gloeosporioides through directly regulating PeSARD1 in poplar. . Int. J. Biol. Macromol. 214::67284
    [Crossref] [Google Scholar]
  152. 152.
    Ye S, Jiang Y, Duan Y, Karim A, Fan D, et al. 2014.. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. . Tree Physiol. 34:(10):111829
    [Crossref] [Google Scholar]
  153. 153.
    Yevtushenko DP, Misra S. 2019.. Enhancing disease resistance in poplar through modification of its natural defense pathway. . Plant Mol. Biol. 100:(4):48194
    [Crossref] [Google Scholar]
  154. 154.
    Zhang J, Yang Y, Zheng K, Xie M, Feng K, et al. 2018.. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. . New Phytol. 220:(2):50216
    [Crossref] [Google Scholar]
  155. 155.
    Zhao H, Jiang J, Li K, Liu G. 2017.. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. . Tree Physiol. 37:(6):82744
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-114434
Loading
/content/journals/10.1146/annurev-phyto-021622-114434
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error