1932

Abstract

Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100–200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-115201
2024-09-09
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021622-115201.html?itemId=/content/journals/10.1146/annurev-phyto-021622-115201&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aphalo PJ. 2006.. Light signals and the growth and development of plants—a gentle introduction. Plant Photobiol. Notes 1 , Univ. Helsinki, Helsinki, Finl:. https://www.mv.helsinki.fi/home/aphalo/photobio/pdf/notes1.pdf
    [Google Scholar]
  2. 2.
    Asalf B, Onofre RB, Gadoury DM, Peres NA, Stensvand A. 2021.. Pulsed water mists for suppression of strawberry powdery mildew. . Plant Dis. 105::7177
    [Crossref] [Google Scholar]
  3. 3.
    Austin CN, Wilcox WF. 2012.. Effects of sunlight exposure on grapevine powdery mildew development. . Phytopathology 102::85766
    [Crossref] [Google Scholar]
  4. 4.
    Avalos J, Estrada AF. 2010.. Regulation by light in Fusarium. . Fungal Genet. Biol. 47::93038
    [Crossref] [Google Scholar]
  5. 5.
    Baka M, Mercier J, Corcuff R, Castaigne F, Arul J. 1999.. Photochemical treatment to improve storability of fresh strawberries. . J. Food Sci. 64::106872
    [Crossref] [Google Scholar]
  6. 6.
    Ballaré CL. 2014.. Light regulation of plant defense. . Annu. Rev. Plant Biol. 65::33563
    [Crossref] [Google Scholar]
  7. 7.
    Bawden FC, Kleczkowski A. 1955.. Studies on the ability of light to counteract the inactivating action of ultraviolet radiation on plant viruses. . Microbiology 13::37082
    [Google Scholar]
  8. 8.
    Bélanger RR, Bowen PR, Ehret DL, Menzies JG. 1995.. Soluble silicon. Its role in crop disease management in greenhouse crops. . Plant Dis. 79::32936
    [Crossref] [Google Scholar]
  9. 9.
    Besaratinia A, Yoon J, Schroeder C, Bradforth SE, Cockburn M, Pfeifer GP. 2011.. Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight. . FASEB J. 25::307991
    [Crossref] [Google Scholar]
  10. 10.
    Biggs W. 1986.. Radiation measurement. . In Advanced Agricultural Instrumentation: Design and Use, ed. WG Gensler , pp. 320. Dordrecht, Neth:.: Springer
    [Google Scholar]
  11. 11.
    Blaustein AR, Sengsavanh N. 2003.. Ultraviolet radiation. . In Encyclopedia of Biodiversity, ed. SA Levin , pp. 72332. New York:: Elsevier
    [Google Scholar]
  12. 12.
    Blumenstein A, Vienken K, Tasler R, Frankenberg-Dinkel N, Fischer R. 2005.. No sex in red light: a role for phytochromes in Aspergillus nidulans. Paper presented at the 23rd Fungal Genetics Conference, Pacific Grove, CA:
    [Google Scholar]
  13. 13.
    Braun U, Cook RTA. 2012.. Taxonomic Manual of the Erysiphales (Powdery Mildews). Utrecht, Neth:.: Centraalbur. Schimmelcult.
    [Google Scholar]
  14. 14.
    Buckland KR, Ocamb CM, Rasmussen AL, Nackley LL. 2023.. Reducing powdery mildew in high-tunnel tomato production in Oregon with ultra violet-C lighting. . HortTechnology 33::14951
    [Crossref] [Google Scholar]
  15. 15.
    Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, et al. 2017.. Germicidal efficacy and mammalian skin safety of 222-nm UV light. . Radiat. Res. 187::48391
    [Crossref] [Google Scholar]
  16. 16.
    Cadet J, Sage E, Douki T. 2005.. Ultraviolet radiation-mediated damage to cellular DNA. . Mutat. Res. 571::317
    [Crossref] [Google Scholar]
  17. 17.
    Charles MT, Makhlouf J, Arul J. 2008.. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit: II. Modification of fruit surface and changes in fungal colonization. . Postharvest Biol. Technol. 47::2126
    [Crossref] [Google Scholar]
  18. 18.
    Charles MT, Tano K, Asselin A, Arul J. 2009.. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. Constitutive defence enzymes and inducible pathogenesis-related proteins. . Postharvest Biol. Technol. 51::41424
    [Crossref] [Google Scholar]
  19. 19.
    Childs JFL. 1940.. Diurnal cycle of spore maturation in certain powdery mildews. . Phytopathology 30::6573
    [Google Scholar]
  20. 20.
    Claus H. 2021.. Ozone generation by ultraviolet lamps. . Photochem. Photobiol. 97::47176
    [Crossref] [Google Scholar]
  21. 21.
    Cline SD, Hanawalt PC. 2003.. Who's on first in the cellular response to DNA damage?. Nat. Rev. Mol. Cell Biol. 4::36172
    [Crossref] [Google Scholar]
  22. 22.
    Coelho S. 2009.. European pesticide rules promote resistance, researchers warn. . Science 323::450
    [Crossref] [Google Scholar]
  23. 23.
    Cohen R, Shtienberg D, Edelstein M. 1996.. Suppression of powdery mildew (Sphaerotheca fuliginea) in cucumber by the detergent Zohar LQ-215. . Eur. J. Plant Pathol. 102::6975
    [Crossref] [Google Scholar]
  24. 24.
    Cohrs KC, Simon A, Viaud M, Schumacher J. 2016.. Light governs asexual differentiation in the grey mould fungus Botrytis cinerea via the putative transcription factor BcLTF2. . Environ. Microbiol. 18::406886
    [Crossref] [Google Scholar]
  25. 25.
    Cole JS, Fernandes DL. 1970.. Effects of light, temperature and humidity on sporulation of Erysiphe cichoracearum on tobacco. . Trans. Br. Mycol. Soc. 55::34553
    [Crossref] [Google Scholar]
  26. 26.
    Cole JS, Geerligs JWG. 1976.. Time lapse photography of formation and release of conidia of Erysiphe cichoracearum on tobacco. . Trans. Br. Mycol. Soc. 67::33942
    [Crossref] [Google Scholar]
  27. 27.
    Contín MA, Benedetto MM, Quinteros-Quintana ML, Guido ME. 2016.. Light pollution: the possible consequences of excessive illumination on retina. . Eye 30::25563
    [Crossref] [Google Scholar]
  28. 28.
    Corrochano LM. 2007.. Fungal photoreceptors: sensory molecules for fungal development and behaviour. . Photochem. Photobiol. Sci. 6::72536
    [Crossref] [Google Scholar]
  29. 29.
    Corrochano LM. 2019.. Light in the fungal world: from photoreception to gene transcription and beyond. . Annu. Rev. Genet. 53::14970
    [Crossref] [Google Scholar]
  30. 30.
    Davis PA, Burns C. 2016.. Photobiology in protected horticulture. . Food Energy Secur. 5::22338
    [Crossref] [Google Scholar]
  31. 31.
    de Oliveira IR, Crizel GR, Severo J, Renard CM, Chaves FC, Rombaldi CV. 2016.. Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa. . Plant Physiol. Biochem. 108::39199
    [Crossref] [Google Scholar]
  32. 32.
    Delprato ML, Krapp AR, Carrillo N. 2015.. Green light to plant responses to pathogens: the role of chloroplast light-dependent signaling in biotic stress. . Photochem. Photobiol. 91::100411
    [Crossref] [Google Scholar]
  33. 33.
    Demkura PV, Ballaré CL. 2012.. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. . Mol. Plant 5::64252
    [Crossref] [Google Scholar]
  34. 34.
    Dulbrecco R. 1950.. Experiments on photoreactivation of bacteriophages inactivated by ultraviolet radiation. . J. Bacteriol. 59::32947
    [Crossref] [Google Scholar]
  35. 35.
    Edwards HH. 1971.. Translocation of carbon in powdery mildewed barley. . Plant Physiol. 47::32428
    [Crossref] [Google Scholar]
  36. 36.
    Elad Y, Messika Y, Brand M, David DR, Sztejnberg A. 2007.. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). . Phytoparasitica 35::28599
    [Crossref] [Google Scholar]
  37. 37.
    Eliasson B, Kogelschatz U. 1991.. Ozone generation with narrow-band UV radiation. . Ozone Sci. Eng. 13::36573
    [Crossref] [Google Scholar]
  38. 38.
    Fardhani DM, Kharisma AD, Kobayashi T, Arofatullah NA, Yamada M, et al. 2022.. Ultraviolet-B irradiation induces resistance against powdery mildew in cucumber (Cucumis sativus L.) through a different mechanism than that of heat shock-induced resistance. . Agronomy 12::3011
    [Crossref] [Google Scholar]
  39. 39.
    Forges M, Bardin M, Urban L, Aarrouf J, Charles F. 2020.. Impact of UV-C radiation applied during plant growth on pre- and postharvest disease sensitivity and fruit quality of strawberry. . Plant Dis. 104::323947
    [Crossref] [Google Scholar]
  40. 40.
    Forges M, Vàsquez H, Charles F, Sari DC, Urban L, et al. 2018.. Impact of UV-C radiation on the sensitivity of three strawberry plant cultivars (Fragaria × ananassa) against Botrytis cinerea. . Sci. Hortic. 240::60313
    [Crossref] [Google Scholar]
  41. 41.
    Frinking HD. 1977.. Research on wind dispersion of rose mildew spores (Sphaerotheca pannosa) in field, glasshouse and climate room. . Grava 16::15558
    [Google Scholar]
  42. 42.
    Gadoury DM, Pearson RC, Seem RC, Henick-Kling T, Creasy LL, Michaloski A. 1992.. Control of fungal diseases of grapevine by short-wave ultraviolet light. . Phytopathology 82::243 ( Abstr. )
    [Google Scholar]
  43. 43.
    Gadoury DM, Sapkota S, Cadle-Davidson L, Underhill A, McCann T, et al. 2023.. Effects of nighttime applications of germicidal ultraviolet light upon powdery mildew (Erysiphe necator), downy mildew (Plasmopara viticola), and sour rot of grapevine. . Plant Dis. 107::145262
    [Crossref] [Google Scholar]
  44. 44.
    Gallé A, Czékus Z, Toth L, Galgoczy L, Poor P. 2021.. Pest and disease management by red light. . Plant Cell Environ. 44::3197210
    [Crossref] [Google Scholar]
  45. 45.
    Gidske R. 2020.. The effect of UV radiation on Myzus persicae and the biological control agent Aphidius colemani. MS thesis , Nor. Univ. Life Sci., Ås, Nor.:
    [Google Scholar]
  46. 46.
    Glawe DA. 2008.. The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. . Annu. Rev. Phytopathol. 46::2751
    [Crossref] [Google Scholar]
  47. 47.
    Green R, Fluhr R. 1995.. UV-B induced PR-1 accumulation is mediated by active oxygen species. . Plant Cell 7::20312
    [Crossref] [Google Scholar]
  48. 48.
    Ha J-W, Lee J-I, Kang D-H. 2017.. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms. . Int. J. Food Microbiol. 243::96102
    [Crossref] [Google Scholar]
  49. 49.
    Heintzen C. 2012.. Plant and fungal photopigments. . Wiley Interdiscip. Rev. Membr. Transp. Signal. 1::41132
    [Crossref] [Google Scholar]
  50. 50.
    Hendricks KEM, Roberts PD. 2023.. Evaluation of the sensitivity of Podosphaera xanthii to several fungicides for management of powdery mildew on squash in Florida. . Crop Prot. 172::106328
    [Crossref] [Google Scholar]
  51. 51.
    Horst RK, Kawamoto SO, Porter LL. 1992.. Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. . Plant Dis. 76::24751
    [Crossref] [Google Scholar]
  52. 52.
    Idnurm A, Verma S, Corrochano LM. 2010.. A glimpse into the basis of vision in the kingdom Mycota. . Fungal Genet. Biol. 47::88192
    [Crossref] [Google Scholar]
  53. 53.
    Jain S. 2021.. Radiation in medical practice & health effects of radiation: rationale, risks, and rewards. . J. Fam. Med. Prim. Care 10::152024
    [Crossref] [Google Scholar]
  54. 54.
    Janisiewicz W, Takeda F, Evans B, Camp M. 2021.. Potential of far ultraviolet (UV) 222 nm light for management of strawberry fungal pathogens. . Crop Prot. 150::105791
    [Crossref] [Google Scholar]
  55. 55.
    Janisiewicz WJ, Takeda F, Glenn DM, Camp MJ, Jurick WM II. 2016.. Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. . Phytopathology 106::38694
    [Crossref] [Google Scholar]
  56. 56.
    Janisiewicz WJ, Takeda F, Nichols B, Glenn DM, Jurick WM II, Camp MJ. 2016.. Use of low-dose UV-C irradiation to control powdery mildew caused by Podosphaera aphanis on strawberry plants. . Can. J. Plant Pathol. 38::43039
    [Crossref] [Google Scholar]
  57. 57.
    Jansen MAK, Gaba V, Greenberg BM. 1998.. Higher plants and UV-B radiation: balancing damage, repair and acclimation. . Trends Plant Sci. 3::13135
    [Crossref] [Google Scholar]
  58. 58.
    Jing X, Wang H, Gong B, Liu S, Wei M, et al. 2018.. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. . Plant Physiol. Biochem. 124::7787
    [Crossref] [Google Scholar]
  59. 59.
    Kanto T, Matsuura K, Ogawa T, Yamada M, Ishiwata M, et al. 2014.. A new UV-B lighting system controls powdery mildew of strawberry. . Acta Hortic. 1049::65560
    [Crossref] [Google Scholar]
  60. 60.
    Kanto T, Matsuura K, Yamada M, Usami T, Amemiya Y. 2009.. UV-B radiation for control of strawberry powdery mildew. . Acta Hortic. 842::35962
    [Crossref] [Google Scholar]
  61. 61.
    Konstantinidou-Doltsinis S, Markellou E, Kasselaki AM, Siranidou E, Kalamarakis A, et al. 2007.. Control of powdery mildew of grape in Greece using Sporodex® L and Milsana®. . J. Plant Dis. Prot. 114::25662
    [Crossref] [Google Scholar]
  62. 62.
    Koveos DS, Suzuki T, Terzidou A, Kokkari A, Floros G, et al. 2017.. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae. . Exp. Appl. Acarol. 71::3546
    [Crossref] [Google Scholar]
  63. 63.
    Kucera B, Leubner-Metzger G, Wellmann E. 2003.. Distinct ultraviolet-signaling pathways in bean leaves. DNA damage is associated with β-1,3-glucanase gene induction, but not with flavanoid formation. . Plant Physiol. 133::144552
    [Crossref] [Google Scholar]
  64. 64.
    Kuluncsics Z, Perdiz D, Brulay E, Muel B, Sage E. 1999.. Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. . J. Photochem. Photobiol. B 49::7180
    [Crossref] [Google Scholar]
  65. 65.
    Kunz BA, Dando PK, Grice DM, Mohr PG, Schenk PM, Cahill DM. 2008.. UV-induced DNA damage promotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis. . Plant Physiol. 148::102131
    [Crossref] [Google Scholar]
  66. 66.
    Laurijssen S, Melis P, Baets D, Van Delm T. 2021.. Autonomous UV-C application to deal with low and high powdery mildew disease pressure in strawberry. . Acta Hortic. 1309::34148
    [Crossref] [Google Scholar]
  67. 67.
    Ledermann L, Daouda S, Gouttesoulard C, Aarrouf J, Urban L. 2021.. Flashes of UV-C light stimulate defenses of Vitis vinifera L. ‘Chardonnay’ against Erysiphe necator in greenhouse and vineyard conditions. . Plant Dis. 105::210613
    [Crossref] [Google Scholar]
  68. 68.
    Leskey TC, Short BD, Emery M, Evans B, Janisiewicz W, Takeda F. 2021.. Effect of UV-C irradiation on greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). . Fla. Entomol. 104::14850
    [Crossref] [Google Scholar]
  69. 69.
    Leu LS, Kao CW. 1975.. Conidial liberation and germination of the rose powdery mildew fungus, Sphaerotheca pannosa. . Plant Prot. Bull. 17::31118
    [Google Scholar]
  70. 70.
    Longzhou L, Xiaojun Y, Run C, Junsong P, Huanle H, et al. 2008.. Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. . J. Phytopathol. 156::69197
    [Crossref] [Google Scholar]
  71. 71.
    Lopes UP, Alonzo G, Onofre RB, Mello PP, Gadoury DM, et al. 2023.. Effective management of powdery mildew in cantaloupe plants using nighttime applications of UV light. . Plant Dis. 107::248389
    [Crossref] [Google Scholar]
  72. 72.
    Mackerness SA-H, John CF, Jordan B, Thomas B. 2001.. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. . FEBS Lett. 489::23742
    [Crossref] [Google Scholar]
  73. 73.
    Manova V, Gruszka D. 2015.. DNA damage and repair in plants: from models to crops. . Front. Plant Sci. 6::885
    [Crossref] [Google Scholar]
  74. 74.
    Marquenie D, Michiels CW, Geeraerd AH, Schenk A, Soontjens C, et al. 2002.. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. . Int. J. Food Microbiol. 73::18796
    [Crossref] [Google Scholar]
  75. 75.
    Matafonova GG, Batoev VB, Astakhova SA, Gómez M, Christofi N. 2008.. Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension. . Lett. Appl. Microbiol. 47::50813
    [Crossref] [Google Scholar]
  76. 76.
    Matsuura S, Ishikura S. 2014.. Suppression of Tomato mosaic virus disease in tomato plants by deep ultraviolet irradiation using light-emitting diodes. . Lett. Appl. Microbiol. 59::45763
    [Crossref] [Google Scholar]
  77. 77.
    McGrath MT. 2001.. Fungicide resistance in cucurbit powdery mildew: experiences and challenges. . Plant Dis. 85::23645
    [Crossref] [Google Scholar]
  78. 78.
    McGrath MT, Shishkoff N. 2000.. Control of cucurbit powdery mildew with JMS Stylet-Oil. . Plant Dis. 84::98993
    [Crossref] [Google Scholar]
  79. 79.
    Melis P, Vervoort M, Stoffels K. 2019.. Autonomous control of powdery mildew as part of IPM strategy in strawberry. . IOBC/WPRS Bull. 144::6470
    [Google Scholar]
  80. 80.
    Mello PP, Onofre RO, Rea M, Bierman A, Gadoury DM, et al. 2022.. Design, construction, and evaluation of equipment for nighttime applications of UV-C for management of strawberry powdery mildew in Florida and California. . Plant Health Prog. 23::32127
    [Crossref] [Google Scholar]
  81. 81.
    Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, et al. 2012.. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. . Plant Cell Physiol. 53::154660
    [Crossref] [Google Scholar]
  82. 82.
    Meyer P, Van de Poel B, De Coninck B. 2021.. UV-B light and its application potential to reduce disease and pest incidence in crops. . Hortic. Res. 8::194
    [Crossref] [Google Scholar]
  83. 83.
    Mmbando GS. 2023.. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. . Plant Signal. Behav. 18:(1):2191463
    [Crossref] [Google Scholar]
  84. 84.
    Montemayor JD, Smith HA, Peres NA, Lahiri S. 2023.. Potential of UV-C for management of two-spotted spider mites and thrips in Florida strawberry. . Pest Manag. Sci. 79::89198
    [Crossref] [Google Scholar]
  85. 85.
    Murata Y, Osakabe M. 2014.. Factors affecting photoreactivation in UVB-irradiated herbivorous spider mite (Tetranychus urticae). . Exp. Appl. Acarol. 63::25365
    [Crossref] [Google Scholar]
  86. 86.
    Murata Y, Osakabe M. 2017.. Photo-enzymatic repair of UVB-induced DNA damage in the two-spotted spider mite Tetranychus urticae. . Exp. Appl. Acarol. 71::1534
    [Crossref] [Google Scholar]
  87. 87.
    Möglich A, Yang X, Ayers RA, Moffat K. 2010.. Structure and function of plant photoreceptors. . Annu. Rev. Plant Biol. 61::2147
    [Crossref] [Google Scholar]
  88. 88.
    Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. 2018.. Navigating complexity to breed disease-resistant crops. . Nat. Rev. Genet. 19::2133
    [Crossref] [Google Scholar]
  89. 89.
    Newsham KK, Low MNR, McLeod AR, Greenslade PD, Emmett BA. 1997.. Ultraviolet-B radiation influences the abundance and distribution of phylloplane fungi on pedunculate oak (Quercus robur). . New Phytol. 136::28797
    [Crossref] [Google Scholar]
  90. 90.
    Newsham KK, Oxborough K, White R, Greenslade PD, McLeod AR. 2000.. UV-B radiation constrains the photosynthesis of Quercus robur through impacts on the abundance of Microsphaera alphitoides. . For. Pathol. 30::26575
    [Crossref] [Google Scholar]
  91. 91.
    Nigro F, Ippolito A, Lattanzio V, Di Venere D, Salerno M. 2000.. Effect of ultraviolet-C light on postharvest decay of strawberry. . J. Plant Pathol. 82::2937
    [Google Scholar]
  92. 92.
    Obande MA, Tucker GA, Shama G. 2011.. Effect of preharvest UV-C treatment of tomatoes (Solanum lycopersicon Mill.) on ripening and pathogen resistance. . Postharvest Biol. Technol. 62::18892
    [Crossref] [Google Scholar]
  93. 93.
    Onofre RB, Gadoury DM, Stensvand A, Bierman A, Rea M, Peres NA. 2021.. Use of ultraviolet light to suppress powdery mildew in strawberry fruit production fields. . Plant Dis. 105::24029
    [Crossref] [Google Scholar]
  94. 94.
    Onofre RB, Gadoury DM, Stensvand A, Bierman A, Rea M, Peres NA. 2022.. UV-transmitting plastics reduce powdery mildew in strawberry tunnel production. . Plant Dis. 106::245561
    [Crossref] [Google Scholar]
  95. 95.
    Oppenlander T. 2007.. Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment. . J. Environ. Eng. Sci. 6::25364
    [Crossref] [Google Scholar]
  96. 96.
    Osakabe M. 2021.. Biological impact of ultraviolet-B radiation on spider mites and its application in integrated pest management. . Appl. Entomol. Zool. 56::13955
    [Crossref] [Google Scholar]
  97. 97.
    Ota E, Nishimura F, Mori M, Tanaka M, Kanto T, et al. 2021.. Up-regulation of pathogenesis-related genes in strawberry leaves treated with powdery mildew-suppressing ultraviolet irradiation. . Plant Pathol. 70::137887
    [Crossref] [Google Scholar]
  98. 98.
    Pady SM, Kramer CL, Clary R. 1969.. Sporulation in some species of Erysiphe. . Phytopathology 59::84448
    [Google Scholar]
  99. 99.
    Patel JS, Radetsky LC, Nagare R, Rea MS. 2020.. Nighttime application of UV-C to control cucumber powdery mildew. . Plant Health Prog. 21::4046
    [Crossref] [Google Scholar]
  100. 100.
    Pathak R, Ergon Å, Stensvand A, Gislerød HR, Solhaug KA, et al. 2020.. Functional characterization of Pseudoidium neolycopersici photolyase reveals mechanisms behind the efficacy of nighttime UV on powdery mildew suppression. . Front Microbiol. 11::1091
    [Crossref] [Google Scholar]
  101. 101.
    Pathak R, Sundaram A, Davidson LC, Solhaug KA, Stensvand A, et al. 2017.. Sensing of UV and visible light by powdery mildew pathogens. . Phytopathology 107::S5.475.48
    [Google Scholar]
  102. 102.
    Paul ND, Gwynn-Jones D. 2003.. Ecological roles of solar UV radiation: towards an integrated approach. . Trends Ecol. Evol. 18::4855
    [Crossref] [Google Scholar]
  103. 103.
    Pombo MA, Rosli HG, Martínez GA, Civello PM. 2011.. UV-C treatment affects the expression and activity of defense genes in strawberry fruit (Fragaria × ananassa Duch. .). Postharvest Biol. Technol. 59::94102
    [Crossref] [Google Scholar]
  104. 104.
    Porter ML. 2016.. Beyond the eye: molecular evolution of extraocular photoreception. . Integr. Compar. Biol. 56::84252
    [Crossref] [Google Scholar]
  105. 105.
    Purchwitz J, Muller S, Kastner C, Fischer R. 2006.. Seeing the rainbow: light sensing in fungi. . Curr. Opin. Microbiol. 9::56671
    [Crossref] [Google Scholar]
  106. 106.
    Reed NG. 2010.. The history of ultraviolet germicidal irradiation for air disinfection. . Public Health Rep. 125::1527
    [Crossref] [Google Scholar]
  107. 107.
    Roberts MR, Paul ND. 2006.. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. . New Phytol. 170::67799
    [Crossref] [Google Scholar]
  108. 108.
    Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R. 2010.. Fungi, hidden in soil or up in the air: Light makes a difference. . Annu. Rev. Microbiol. 64::585610
    [Crossref] [Google Scholar]
  109. 109.
    Sakai Y, Osakabe M. 2010.. Spectrum-specific damage and solar ultraviolet radiation avoidance in the two-spotted spider mite. . Photochem. Photobiol. 86::92532
    [Crossref] [Google Scholar]
  110. 110.
    Schuerger AC, Brown CS. 1997.. Spectral quality affects disease development of three pathogens on hydroponically grown plants. . HortScience 32::96100
    [Crossref] [Google Scholar]
  111. 111.
    Scott C, Punja ZK. 2021.. Evaluation of disease management approaches for powdery mildew on Cannabis sativa L. (marijuana) plants. . Can. J. Plant Pathol. 43::394412
    [Crossref] [Google Scholar]
  112. 112.
    Shibuya T, Itagaki K, Tojo M, Endo R, Kitaya Y. 2011.. Fluorescent illumination with high red-to-far-red ratio improves resistance of cucumber seedlings to powdery mildew. . HortScience 46::42931
    [Crossref] [Google Scholar]
  113. 113.
    Short BD, Janisiewicz W, Takeda F, Leskey TC. 2018.. UV-C irradiation as a management tool for Tetranychus urticae on strawberries. . Pest Manag. Sci. 74::241923
    [Crossref] [Google Scholar]
  114. 114.
    Smith BJ, Rezazadeh A, Stafne ET, Sakhanokho HF. 2022.. Effect of light-emitting diodes, ultraviolet-B, and fluorescent supplemental greenhouse lights on strawberry plant growth and response to infection by the anthracnose pathogen Colletotrichum gloeosporioides. . HortScience 57::85663
    [Crossref] [Google Scholar]
  115. 115.
    Stensvand A, Wang N-Y, Le VH, Da Silva CD Jr., Asalf B, et al. 2023.. Aerated steam eradicates powdery mildew from strawberry transplants. . Eur. J. Plant Pathol. 168::199205
    [Crossref] [Google Scholar]
  116. 116.
    Stuthman DD, Leonard KJ, Miller-Garvin J. 2007.. Breeding crops for durable resistance to disease. . Adv. Agron. 95::31967
    [Crossref] [Google Scholar]
  117. 117.
    Sugeno W, Iwasaki Y, Hachiya Y. 2018.. Irradiation with UV-B fluorescent bulbs suppresses strawberry powdery mildew. . Acta Hortic. 1227::54953
    [Crossref] [Google Scholar]
  118. 118.
    Suthaparan A. 2023.. Short wavelength UV in combination with cold storage can minimize postharvest gray mold losses in strawberry. Paper presented at the 2023 International Conference on Radiation Applications (RAP), Attica, Greece:, May 30
    [Google Scholar]
  119. 119.
    Suthaparan A, Pathak R, Solhaug KA, Gislerød HR. 2018.. Wavelength dependent recovery of UV-mediated damage: tying up the loose ends of optical based powdery mildew management. . J. Photochem. Photobiol. B 178::63140
    [Crossref] [Google Scholar]
  120. 120.
    Suthaparan A, Solhaug KA, Bjugstad N, Gislerod HR, Gadoury DM, Stensvand A. 2016.. Suppression of powdery mildews by UV-B: application frequency and timing, dose, reflectance, and automation. . Plant Dis. 100::164350
    [Crossref] [Google Scholar]
  121. 121.
    Suthaparan A, Solhaug KA, Stensvand A, Gislerød HR. 2016.. Determination of UV action spectra affecting the infection process of Oidium neolycopersici, the cause of tomato powdery mildew. . J. Photochem. Photobiol. B 156::4149
    [Crossref] [Google Scholar]
  122. 122.
    Suthaparan A, Solhaug KA, Stensvand A, Gislerød HR. 2017.. Daily light integral and day light quality: potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. . J. Photochem. Photobiol. B 175::14148
    [Crossref] [Google Scholar]
  123. 123.
    Suthaparan A, Stensvand A, Solhaug KA, Torre S, Mortensen LM, et al. 2012.. Interruption of the night period by UV-B suppresses powdery mildew of rose and cucumber. . Acta Hortic. 956::61720
    [Crossref] [Google Scholar]
  124. 124.
    Suthaparan A, Stensvand A, Solhaug KA, Torre S, Mortensen LM, et al. 2012.. Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. . Plant Dis. 96::165360
    [Crossref] [Google Scholar]
  125. 125.
    Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer KH, et al. 2012.. Suppression of cucumber powdery mildew by UV-B is affected by background light quality. . Phytopathology 102:(S4):116 ( Abstr.)
    [Google Scholar]
  126. 126.
    Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer KH, et al. 2014.. Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. . Plant Dis. 98::134957
    [Crossref] [Google Scholar]
  127. 127.
    Suthaparan A, Stensvand A, Torre S, Herrero ML, Pettersen RI, et al. 2010.. Continuous lighting reduces conidial production and germinability in the rose powdery mildew pathosystem. . Plant Dis. 94::33944
    [Crossref] [Google Scholar]
  128. 128.
    Suthaparan A, Torre S, Stensvand A, Herrero ML, Pettersen RI, et al. 2010.. Specific light emitting diodes can suppress sporulation of Podosphaera pannosa on greenhouse roses. . Plant Dis. 94::110510
    [Crossref] [Google Scholar]
  129. 129.
    Suzuki T, Nishimura S, Yagi K, Nakamura R, Takikawa Y, et al. 2018.. Effects of light quality on conidiophore formation of the melon powdery mildew pathogen Podosphaera xanthii. . Phytoparasitica 46::3143
    [Crossref] [Google Scholar]
  130. 130.
    Sztejnberg A, Galper S, Mazar S, Lisker N. 1989.. Ampelomyces quisqualis for biological and integrated control of powdery mildews in Israel. . J. Phytopathol. 124::28595
    [Crossref] [Google Scholar]
  131. 131.
    Takeda F, Janisiewicz W, Short B, Leskey T, Stager A. 2021.. Ultraviolet-C (UV-C) for disease and pest management and automating UV-C delivery technology for strawberry. . Acta Hortic. 1309::53342
    [Crossref] [Google Scholar]
  132. 132.
    Tyrrell RM, Keyse SM. 1990.. New trends in photobiology. The interaction of UVA radiation with cultured cells. . J. Photochem. Photobiol. B 4::34961
    [Crossref] [Google Scholar]
  133. 133.
    Urquhart EJ, Menzies JG, Punja ZK. 1994.. Growth and biological control activity of Tilletiopsis species against powdery mildew (Spaerotheca fuliginea) on greenhouse cucumber. . Phytopathology 84::34151
    [Crossref] [Google Scholar]
  134. 134.
    Van Delm T, Melis P, Stoffels K, Baets W. 2014.. Control of powdery mildew by UV-C treatments in commercial strawberry production. . Acta Hortic. 1049::67984
    [Crossref] [Google Scholar]
  135. 135.
    Van Hemelrijck W, Van Laer S, Hoekstra S, Aiking A, Creemers P. 2010.. UV-C radiation as an alternative tool to control powdery mildew on apple and strawberry. . In Proceedings of the 14th International Conference on Organic Fruit-Growing, pp. 2224. Hohenheim, Ger:.: Support. Assoc. Org. Fruit Grow.
    [Google Scholar]
  136. 136.
    Vandenbussche F, Yu N, Li W, Vanhaelewyn L, Hamshou M, et al. 2018.. An ultraviolet B condition that affects growth and defense in Arabidopsis. . Plant Sci. 268::5463
    [Crossref] [Google Scholar]
  137. 137.
    Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. 2020.. Ultraviolet radiation from a plant perspective: the plant-microorganism context. . Front. Plant Sci. 11::597642
    [Crossref] [Google Scholar]
  138. 138.
    Vasquez H, Ouhibi C, Forges M, Lizzi Y, Urban L, Arrouf J. 2020.. Hormetic doses of UV-C light decrease the susceptibility of tomato plants to Botrytis cinerea infection. . J. Phytopathol. 168::52432
    [Crossref] [Google Scholar]
  139. 139.
    Vervoort M, Stoffels K, Baets D, Melis P, Van Delm T. 2020.. UV-C irradiation after sunset increases control of powdery mildew in strawberries with side-effect on mite populations. . Acta Hortic. 1296::101926
    [Crossref] [Google Scholar]
  140. 140.
    Vielba-Fernández A, Polonio Á, Ruiz-Jiménez L, de Vicente A, Pérez-García A, Fernández-Ortuño D. 2020.. Fungicide resistance in powdery mildew fungi. . Microorganisms 8::1431
    [Crossref] [Google Scholar]
  141. 141.
    Wang H, Jiang YP, Yu HJ, Xia XJ, Shi K, et al. 2010.. Light quality affects incidence of powdery mildew, expression of defence related genes and associated metabolism in cucumber plants. . Eur. J. Plant Pathol. 127::12535
    [Crossref] [Google Scholar]
  142. 142.
    Wang L, Wu X, Xing Q, Zhao Y, Yu B, et al. 2023.. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon. . Plant Cell Environ. 46::172642
    [Crossref] [Google Scholar]
  143. 143.
    Weber S. 2005.. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. . Biochim. Biophys. Acta Bioenerg. 1707::123
    [Crossref] [Google Scholar]
  144. 144.
    Willocquet L, Colombet D, Rougier M, Fargues J, Clerjeau M. 1996.. Effects of radiation, especially ultraviolet B, on conidial germination and mycelial growth of grape powdery mildew. . Eur. J. Plant Pathol. 102::44149
    [Crossref] [Google Scholar]
  145. 145.
    Wong A, Moyer M, Gadoury D, Mahaffee W. 2022.. UV-C light as a tool to manage grape powdery mildew. Paper presented at the BIO Web of Conferences 50
    [Google Scholar]
  146. 146.
    Wright DP, Baldwin BC, Shephard MC, Scholes JD. 1995.. Source-sink relationships in wheat leaves infected with powdery mildew. II. Changes in the regulation of the Calvin cycle. . Physiol. Mol. Plant Pathol. 47::25567
    [Crossref] [Google Scholar]
  147. 147.
    Yalpani N, Enyedi AJ, Leon J, Raskin I. 1994.. Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. . Planta 193::37276
    [Crossref] [Google Scholar]
  148. 148.
    Yannuzzi I, Gadoury DM, Davidson A, Cox KD. 2023.. Applications of germicidal ultraviolet light as a tool for fire blight management (Erwinia amylovora) in apple. . Phytopathology 113::221521
    [Crossref] [Google Scholar]
  149. 149.
    Yu Z, Fischer R. 2019.. Light sensing and responses in fungi. . Nat. Rev. Microbiol. 17::2536
    [Crossref] [Google Scholar]
  150. 150.
    Zhu M, Riederer M, Hildebrandt U. 2019.. UV-C irradiation compromises conidial germination, formation of appressoria, and induces transcription of three putative photolyase genes in the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. . Fungal Biol. 123::21830
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-115201
Loading
/content/journals/10.1146/annurev-phyto-021622-115201
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error