1932

Abstract

Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens and . Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in , including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021722-034823
2024-09-09
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021722-034823.html?itemId=/content/journals/10.1146/annurev-phyto-021722-034823&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdallah NA, Shah D, Abbas D, Madkour M. 2010.. Stable integration and expression of a plant defensin in tomato confers resistance to Fusarium wilt. . GM Crops 1:(5):34450
    [Crossref] [Google Scholar]
  2. 2.
    Aimé S, Alabouvette C, Steinberg C, Olivain C. 2013.. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. . Mol. Plant-Microbe Interact. 26:(8):91826
    [Crossref] [Google Scholar]
  3. 3.
    Akiyama K, Hayashi H. 2006.. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. . Ann. Bot. 97:(6):92531
    [Crossref] [Google Scholar]
  4. 4.
    Alabouvette C. 1999.. Fusarium wilt suppressive soils: an example of disease-suppressive soils. . Austr. Plant Pathol. 28:(1):5764
    [Crossref] [Google Scholar]
  5. 5.
    Al-Hatmi AMS, Meis JF, de Hoog GS. 2016.. Fusarium: molecular diversity and intrinsic drug resistance. . PLOS Pathog. 12:(4):e1005464
    [Crossref] [Google Scholar]
  6. 6.
    Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, et al. 2004.. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. . Plant Cell 16:(12):346079
    [Crossref] [Google Scholar]
  7. 7.
    Armenteros A, Tsirigos JJ, Sonderby KD, Petersen CK, Winther TN. 2019.. SignalP 5.0 improves signal peptide predictions using deep neural networks. . Nat. Biotechnol. 37::42023
    [Crossref] [Google Scholar]
  8. 8.
    Bailly A, Weisskopf L. 2017.. Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. . Front. Microbiol. 8::1638
    [Crossref] [Google Scholar]
  9. 9.
    Bani M, Rubiales D, Rispail N. 2012.. A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. . Plant Pathol. 61:(3):53242
    [Crossref] [Google Scholar]
  10. 10.
    Becerra S, Baroncelli R, Boufleur TR, Sukno SA, Thon MR. 2023.. Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. . Front. Microbiol. 14::1129319
    [Crossref] [Google Scholar]
  11. 11.
    Beckman CH. 2000.. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants?. Physiol. Mol. Plant Pathol. 57:(3):10110
    [Crossref] [Google Scholar]
  12. 12.
    Beckman CH, Mueller WC, Tessier BJ, Harrison NA. 1982.. Recognition and callose deposition in response to vascular infection in Fusarium wilt-resistant or susceptible tomato plants. . Physiol. Plant Pathol. 20:(1):110
    [Crossref] [Google Scholar]
  13. 13.
    Berasategui A, Breitenbach N, García-Lozano M, Pons I, Sailer B, et al. 2022.. The leaf beetle Chelymorpha alternans propagates a plant pathogen in exchange for pupal protection. . Curr. Biol. 32:(19):411427.e6
    [Crossref] [Google Scholar]
  14. 14.
    Berasategui A, Jagdale S, Salem H. 2023.. Fusarium phytopathogens as insect mutualists. . PLOS Pathog. 19:(7):e1011497
    [Crossref] [Google Scholar]
  15. 15.
    Boedi S, Berger H, Sieber C, Münsterkötter M, Maloku I, et al. 2016.. Comparison of Fusarium graminearum transcriptomes on living or dead wheat differentiates substrate-responsive and defense-responsive genes. . Front. Microbiol. 7::1113
    [Crossref] [Google Scholar]
  16. 16.
    Boenisch MJ, Schäfer W. 2011.. Fusarium graminearum forms mycotoxin producing infection structures on wheat. . BMC Plant Biol. 11::110
    [Crossref] [Google Scholar]
  17. 17.
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, et al. 2017.. Insights into land plant evolution garnered from the Marchantia polymorpha genome. . Cell 171:(2):287304.e15
    [Crossref] [Google Scholar]
  18. 18.
    Calabria J, Wang L, Rast-Somssich MI, Chen H-W, Watt M, et al. 2023.. Spatially distinct phytohormone responses of individual Arabidopsis thaliana 2 root cells to infection and colonization by Fusarium oxysporum. . bioRxiv 521292. https://doi.org/10.1101/2022.12.20.521292
  19. 19.
    Cao L, Blekemolen MC, Tintor N, Cornelissen BJC, Takken FLW. 2018.. The Fusarium oxysporum Avr2-Six5 effector pair alters plasmodesmatal exclusion selectivity to facilitate cell-to-cell movement of Avr2. . Mol. Plant 11:(5):691705
    [Crossref] [Google Scholar]
  20. 20.
    Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, et al. 2014.. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. . eLife 3::e03766
    [Crossref] [Google Scholar]
  21. 21.
    Caracuel Z, Roncero MIG, Espeso EA, González-Verdejo CI, García-Maceira FI, Di Pietro A. 2003.. The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. . Mol. Microbiol. 48:(3):76579
    [Crossref] [Google Scholar]
  22. 22.
    Catanzariti A-M, Lim GTT, Jones DA. 2015.. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. . New Phytol. 207:(1):10618
    [Crossref] [Google Scholar]
  23. 23.
    Cha J-Y, Han S, Hong H-J, Cho H, Kim D, et al. 2016.. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. . ISME J. 10:(1):11929
    [Crossref] [Google Scholar]
  24. 24.
    Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, et al. 2018.. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. . New Phytol. 220:(4):116171
    [Crossref] [Google Scholar]
  25. 25.
    Clérivet A, Déon V, Alami I, Lopez F, Geiger J-P, Nicole M. 2000.. Tyloses and gels associated with cellulose accumulation in vessels are responses of plane tree seedlings (Platanus × acerifolia) to the vascular fungus Ceratocystis fimbriata f. sp platani. . Trees 15:(1):2531
    [Crossref] [Google Scholar]
  26. 26.
    Cole SJ, Yoon AJ, Faull KF, Diener AC. 2014.. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. . Mol. Plant Pathol. 15::589600
    [Crossref] [Google Scholar]
  27. 27.
    Coleman AD, Maroschek J, Raasch L, Takken FLW, Ranf S, Hückelhoven R. 2021.. The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor. . New Phytol. 229:(6):345366
    [Crossref] [Google Scholar]
  28. 28.
    Cooper RM, Williams JS. 2004.. Elemental sulphur as an induced antifungal substance in plant defence. . J. Exp. Bot. 55:(404):194753
    [Crossref] [Google Scholar]
  29. 29.
    Cooper RM, Wood RKS. 1973.. Induction of synthesis of extracellular cell-wall degrading enzymes in vascular wilt fungi. . Nature 246:(5431):30911
    [Crossref] [Google Scholar]
  30. 30.
    da Silva Santos AC, Diniz AG, Tiago PV, Oliveira NT. 2020.. Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects. . Fungal Biol. Rev. 34:(1):4157
    [Crossref] [Google Scholar]
  31. 31.
    de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, et al. 2012.. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. . PNAS 109:(13):511015
    [Crossref] [Google Scholar]
  32. 32.
    de la Porte A, Schmidt R, Yergeau É, Constant P. 2020.. A gaseous milieu: extending the boundaries of the rhizosphere. . Trends Microbiol. 28:(7):53642
    [Crossref] [Google Scholar]
  33. 33.
    de Lamo FJ, Takken FLW. 2020.. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. . Front. Plant Sci. 11::37
    [Crossref] [Google Scholar]
  34. 34.
    de Souza RSC, Armanhi JSL, Arruda P. 2020.. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency. . Front. Plant Sci. 11::1179
    [Crossref] [Google Scholar]
  35. 35.
    Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, et al. 2012.. The Top 10 fungal pathogens in molecular plant pathology. . Mol. Plant Pathol. 13:(4):41430
    [Crossref] [Google Scholar]
  36. 36.
    DeIulio GA, Guo L, Zhang Y, Goldberg JM, Kistler HC, Ma L-J. 2018.. Kinome expansion in the Fusarium oxysporum species complex driven by accessory chromosomes. . mSphere 3:(3):e00231-18
    [Crossref] [Google Scholar]
  37. 37.
    Delaux P-M, Schornack S. 2021.. Plant evolution driven by interactions with symbiotic and pathogenic microbes. . Science 371:(6531):eaba6605
    [Crossref] [Google Scholar]
  38. 38.
    Diener AC, Ausubel FM. 2005.. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. . Genetics 171:(1):30521
    [Crossref] [Google Scholar]
  39. 39.
    Divon HH, Fluhr R. 2007.. Nutrition acquisition strategies during fungal infection of plants. . FEMS Microbiol. Lett. 266:(1):6574
    [Crossref] [Google Scholar]
  40. 40.
    Divon HH, Rothan-Denoyes B, Davydov O, Pietro D, Fluhr A. 2005.. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxysporum f. sp. lycopersici infection. . Mol. Plant Pathol. 6::45970
    [Crossref] [Google Scholar]
  41. 41.
    Doehlemann G, Hemetsberger C. 2013.. Apoplastic immunity and its suppression by filamentous plant pathogens. . New Phytol. 198:(4):100116
    [Crossref] [Google Scholar]
  42. 42.
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, et al. 2018.. Microbial interkingdom interactions in roots promote Arabidopsis survival. . Cell 175:(4):97383.e14
    [Crossref] [Google Scholar]
  43. 43.
    Dzurenko M, Galko J, Kulfan J, Vál'ka J, Holec J, et al. 2022.. Can the invasive ambrosia beetle Xylosandrus germanus withstand an unusually cold winter in the West Carpathian forest in Central Europe?. Folia Oecol. 49:(1):18
    [Crossref] [Google Scholar]
  44. 44.
    Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, et al. 2006.. Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. . Austr. Plant Pathol. 35::58191
    [Crossref] [Google Scholar]
  45. 45.
    Emms DM, Kelly S. 2019.. OrthoFinder: phylogenetic orthology inference for comparative genomics. . Genome Biol. 20:(1):238
    [Crossref] [Google Scholar]
  46. 46.
    Eskalen A, Gonzalez A, Wang DH, Twizeyimana M, Mayorquin JS, Lynch SC. 2012.. First report of a Fusarium sp. and its vector tea shot hole borer (Euwallacea fornicatus) causing Fusarium dieback on avocado in California. . Plant Dis. 96:(7):1070
    [Crossref] [Google Scholar]
  47. 47.
    Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, et al. 2016.. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. . Genome Res. 26:(8):1091100
    [Crossref] [Google Scholar]
  48. 48.
    Fatima U, Senthil-Kumar M. 2015.. Plant and pathogen nutrient acquisition strategies. . Front. Plant Sci. 6::750
    [Crossref] [Google Scholar]
  49. 49.
    Felle HH. 2001.. pH: signal and messenger in plant cells. . Plant Biol. 3:(6):57791
    [Crossref] [Google Scholar]
  50. 50.
    Fendrych M, Leung J, Friml J. 2016.. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. . eLife 5::e19048
    [Crossref] [Google Scholar]
  51. 51.
    Fernandes TR, Segorbe D, Prusky D, Di Pietro A. 2017.. How alkalinization drives fungal pathogenicity. . PLOS Pathog. 13:(11):e1006621
    [Crossref] [Google Scholar]
  52. 52.
    Fourie G, Steenkamp ET, Gordon TR, Viljoen A. 2009.. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. . Appl. Environ. Microbiol. 75:(14):477081
    [Crossref] [Google Scholar]
  53. 53.
    Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, Thomma BPHJ. 2011.. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. . Plant Physiol. 156:(4):225565
    [Crossref] [Google Scholar]
  54. 54.
    Fradin EF, Thomma BPHJ. 2006.. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. . Mol. Plant Pathol. 7:(2):7186
    [Crossref] [Google Scholar]
  55. 55.
    Franco FP, Dias RO, Toyama D, Henrique-Silva F, Moura DS, Silva-Filho MC. 2018.. Structural and functional characterization of PR-4 SUGARWINs from sugarcane and their role in plant defense. . Front. Plant Sci. 9::1916
    [Crossref] [Google Scholar]
  56. 56.
    Franco FP, Túler AC, Gallan DZ, Gonçalves FG, Favaris AP, et al. 2021.. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. . ISME J. 15:(12):352233
    [Crossref] [Google Scholar]
  57. 57.
    Gallan DZ, Henrique MO, Silva-Filho MC. 2023.. The phytopathogen Fusarium verticillioides modifies the intestinal morphology of the sugarcane borer. . Pathogens 12:(3):443
    [Crossref] [Google Scholar]
  58. 58.
    Gámez-Arjona FM, Vitale S, Voxeur A, Dora S, Müller S, et al. 2022.. Impairment of the cellulose degradation machinery enhances Fusarium oxysporum virulence but limits its reproductive fitness. . Sci. Adv. 8:(16):eabl9734
    [Crossref] [Google Scholar]
  59. 59.
    Gao F, Zhang B-S, Zhao J-H, Huang J-F, Jia P-S, et al. 2019.. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. . Nat. Plants 5:(11):116776
    [Crossref] [Google Scholar]
  60. 60.
    García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H. 2009.. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. . Mycorrhiza 19:(7):44959
    [Crossref] [Google Scholar]
  61. 61.
    Gawehns F, Houterman PM, Ichou FA, Michielse CB, Hijdra M, et al. 2014.. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. . Mol. Plant-Microbe Interact. 27:(4):33648
    [Crossref] [Google Scholar]
  62. 62.
    Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez de Ilárduya Ó. 2010.. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. . BMC Plant Biol. 10::232
    [Crossref] [Google Scholar]
  63. 63.
    Gimenez-Ibanez S, Zamarreño AM, García-Mina JM, Solano R. 2019.. An evolutionarily ancient immune system governs the interactions between Pseudomonas syringae and an early-diverging land plant lineage. . Curr. Biol. 29:(14):227081.e4
    [Crossref] [Google Scholar]
  64. 64.
    Gonzalez-Cendales Y, Catanzariti A-M, Baker B, Mcgrath DJ, Jones DA. 2016.. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. . Mol. Plant Pathol. 17:(3):44863
    [Crossref] [Google Scholar]
  65. 65.
    Gordon TR. 2017.. Fusarium oxysporum and the Fusarium wilt syndrome. . Annu. Rev. Phytopathol. 55::2339
    [Crossref] [Google Scholar]
  66. 66.
    Gulati S, Ballhausen M-B, Kulkarni P, Grosch R, Garbeva P. 2020.. A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. . Sci. Rep. 10:(1):12704
    [Crossref] [Google Scholar]
  67. 67.
    Gully K, Pelletier S, Guillou M-C, Ferrand M, Aligon S, et al. 2019.. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. . J. Exp. Bot. 70:(4):134965
    [Crossref] [Google Scholar]
  68. 68.
    Guo L, Yu H, Wang B, Vescio K, DeIulio GA, et al. 2021.. Metatranscriptomic comparison of endophytic and pathogenic Fusarium-Arabidopsis interactions reveals plant transcriptional plasticity. . Mol. Plant-Microbe Interact. 34:(9):107183
    [Crossref] [Google Scholar]
  69. 69.
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. 2017.. Interplay between innate immunity and the plant microbiota. . Annu. Rev. Phytopathol. 55::56589
    [Crossref] [Google Scholar]
  70. 70.
    Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, et al. 2015.. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. . New Phytol. 206:(3):111626
    [Crossref] [Google Scholar]
  71. 71.
    Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA. 2004.. Fine mapping of the tomato I-3 gene for Fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. . Züchter Genet. Breed. Res. 109:(2):40918
    [Google Scholar]
  72. 72.
    Hou S, Tsuda K. 2022.. Salicylic acid and jasmonic acid crosstalk in plant immunity. . Essays Biochem. 66:(5):64756
    [Crossref] [Google Scholar]
  73. 73.
    Houterman PM, Cornelissen BJC, Rep M. 2008.. Suppression of plant resistance gene-based immunity by a fungal effector. . PLOS Pathog. 4:(5):e1000061
    [Crossref] [Google Scholar]
  74. 74.
    Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJC, et al. 2009.. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. . Plant J. 58:(6):97078
    [Crossref] [Google Scholar]
  75. 75.
    Houterman PM, Speijer D, Dekker HL, Koster CGDE, Cornelissen BJC, Rep M. 2007.. The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. . Mol. Plant Pathol. 8:(2):21521
    [Crossref] [Google Scholar]
  76. 76.
    Huang C-C, Lindhout P. 1997.. Screening for resistance in wild Lycopersicon species to Fusarium oxysporum f. sp. lycopersici race 1 and race 2. . Euphytica 93::14553
    [Crossref] [Google Scholar]
  77. 77.
    Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM. 2011.. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. . PLOS Pathog. 7:(4):e1001335
    [Crossref] [Google Scholar]
  78. 78.
    Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, et al. 2023.. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. . Mol. Plant 16:(5):86581
    [Crossref] [Google Scholar]
  79. 79.
    Inamdar AA, Morath S, Bennett JW. 2020.. Fungal volatile organic compounds: more than just a funky smell?. Annu. Rev. Microbiol. 74::10116
    [Crossref] [Google Scholar]
  80. 80.
    Jashni MK, Dols IHM, Iida Y, Boeren S, Beenen HG, et al. 2015.. Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. . Mol. Plant-Microbe Interact. 28:(9):9961008
    [Crossref] [Google Scholar]
  81. 81.
    Jones JDG, Dangl JL. 2006.. The plant immune system. . Nature 444:(7117):32329
    [Crossref] [Google Scholar]
  82. 82.
    Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA. 2004.. The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. . Plant J. 39:(3):28397
    [Crossref] [Google Scholar]
  83. 83.
    Käll L, Krogh A, Sonnhammer ELL. 2004.. A combined transmembrane topology and signal peptide prediction method. . J. Mol. Biol. 338:(5):102736
    [Crossref] [Google Scholar]
  84. 84.
    Kashiwa T, Inami K, Fujinaga M, Ogiso H, Yoshida T, et al. 2013.. An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. . J. Gen. Plant Pathol. 79:(6):41221
    [Crossref] [Google Scholar]
  85. 85.
    Keen N. 1990.. Gene-for-gene complementarity in plant-pathogen interactions. . Annu. Rev. Genet. 24::44763
    [Crossref] [Google Scholar]
  86. 86.
    Kesten C, Gámez-Arjona FM, Menna A, Scholl S, Dora S, et al. 2019.. Pathogen-induced pH changes regulate the growth-defense balance in plants. . EMBO J. 38:(24):e101822
    [Crossref] [Google Scholar]
  87. 87.
    Keukens EAJ, de Vrije T, Fabrie CHJP, Demel RA, Jongen WMF, de Kruijff B. 1992.. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. . Biochim. Biophys. Acta Biomembr. 1110:(2):12736
    [Crossref] [Google Scholar]
  88. 88.
    Khan S, Guo L, Maimaiti Y, Mijit M, Qiu D. 2012.. Entomopathogenic fungi as microbial biocontrol agent. . Mol. Plant Breed. 3::6379
    [Google Scholar]
  89. 89.
    Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, et al. 2011.. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. . Mol. Plant-Microbe Interact. 24:(6):73348
    [Crossref] [Google Scholar]
  90. 90.
    King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. 2011.. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. . Biotechnol. Biofuels 4:(1):4
    [Crossref] [Google Scholar]
  91. 91.
    Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, et al. 2011.. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. . PLOS Pathog. 7:(7):e1002137
    [Crossref] [Google Scholar]
  92. 92.
    Kneeshaw S, Soriano G, Monte I, Hamberg M, Zamarreño ÁM, et al. 2022.. Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha. . PNAS 119:(36):e2202930119
    [Crossref] [Google Scholar]
  93. 93.
    Kong HG, Song GC, Sim H-J, Ryu C-M. 2021.. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. . ISME J. 15:(2):397408
    [Crossref] [Google Scholar]
  94. 94.
    Koyyappurath S, Conéjéro G, Dijoux JB, Lapeyre-Montès F, Jade K, et al. 2015.. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. Front. . Plant Sci. 6::1125
    [Google Scholar]
  95. 95.
    Krishnan HB, Natarajan SS, Bennett JO, Sicher RC. 2011.. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max). . Planta 233:(5):92131
    [Crossref] [Google Scholar]
  96. 96.
    Kubicek CP, Starr TL, Glass NL. 2014.. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. . Annu. Rev. Phytopathol. 52::42751
    [Crossref] [Google Scholar]
  97. 97.
    Li C, Chen S, Zuo C, Sun Q, Ye Q, et al. 2011.. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. . Eur. J. Plant Pathol. 131:(2):32740
    [Crossref] [Google Scholar]
  98. 98.
    Li C, Zuo C, Deng G, Kuang R, Yang Q, et al. 2013.. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. . PLOS ONE 8:(7):e70226
    [Crossref] [Google Scholar]
  99. 99.
    Li D, Sirakova T, Rogers L, Ettinger WF, Kolattukudy PE. 2002.. Regulation of constitutively expressed and induced cutinase genes by different zinc finger transcription factors in Fusarium solani f. sp. pisi (Nectria haematococca). . J. Biol. Chem. 277:(10):790512
    [Crossref] [Google Scholar]
  100. 100.
    Li M, Yu R, Bai X, Wang H, Zhang H. 2020.. Fusarium: a treasure trove of bioactive secondary metabolites. . Nat. Prod. Rep. 37:(12):156888
    [Crossref] [Google Scholar]
  101. 101.
    Lievens B, Houterman PM, Rep M. 2009.. Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. . FEMS Microbiol. Lett. 300:(2):20115
    [Crossref] [Google Scholar]
  102. 102.
    Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, et al. 2015.. Fungal effectors and plant susceptibility. . Annu. Rev. Plant Biol. 66::51345
    [Crossref] [Google Scholar]
  103. 103.
    Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, et al. 1998.. Beauvericin production by Fusarium species. . Appl. Environ. Microbiol. 64:(8):308488
    [Crossref] [Google Scholar]
  104. 104.
    Lowe-Power TM, Khokhani D, Allen C. 2018.. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. . Trends Microbiol. 26:(11):92942
    [Crossref] [Google Scholar]
  105. 105.
    Lu G, Guo S, Zhang H, Geng L, Martyn RD. 2014.. Colonization of Fusarium wilt-resistant and susceptible watermelon roots by a green-fluorescent-protein-tagged isolate of Fusarium oxysporum f. sp. niveum. . J. Phytopathol. 162::22837
    [Crossref] [Google Scholar]
  106. 106.
    Ma L, Houterman PM, Gawehns F, Cao L, Sillo F, et al. 2015.. The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato. . New Phytol. 208:(2):50718
    [Crossref] [Google Scholar]
  107. 107.
    Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, et al. 2013.. Fusarium pathogenomics. . Annu. Rev. Microbiol. 67::399416
    [Crossref] [Google Scholar]
  108. 108.
    Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, et al. 2010.. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. . Nature 464:(7287):36773
    [Crossref] [Google Scholar]
  109. 109.
    Madry N, Zocher R, Kleinkauf H. 1983.. Enniatin production by Fusarium oxysporum in chemically defined media. . Eur. J. Appl. Microbiol. Biotechnol. 17:(2):7579
    [Crossref] [Google Scholar]
  110. 110.
    Mandal S, Mitra A. 2007.. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. . Physiol. Mol. Plant Pathol. 71:(4–6):2019
    [Crossref] [Google Scholar]
  111. 111.
    Mandal S, Mitra A. 2008.. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill. .). Biotechnol. Lett. 30:(7):125358
    [Crossref] [Google Scholar]
  112. 112.
    Marasas WFO, Nelson PE, Toussoun TA. 1984.. Toxigenic Fusarium Species: Identity and Mycotoxicology. University Park, PA:: Penn State Univ. Press
    [Google Scholar]
  113. 113.
    Martínez-Soto D, Yu H, Allen KS, Ma L-J. 2023.. Differential colonization of the plant vasculature between endophytic versus pathogenic Fusarium oxysporum strains. . Mol. Plant-Microbe Interact. 36:(1):413
    [Crossref] [Google Scholar]
  114. 114.
    Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, et al. 2016.. A fungal pathogen secretes plant alkalinizing peptides to increase infection. . Nat. Microbiol. 1:(6):16043
    [Crossref] [Google Scholar]
  115. 115.
    Mayers CG, Harrington TC, Biedermann PHW. 2022.. The Convergent Evolution of Agriculture in Humans and Insects. Cambridge, MA:: MIT Press
    [Google Scholar]
  116. 116.
    Medeiros AH, Franco FP, Matos JL, de Castro PA, Santos-Silva LK, et al. 2012.. Sugarwin: a sugarcane insect-induced gene with antipathogenic activity. . Mol. Plant-Microbe Interact. 25:(5):61324
    [Crossref] [Google Scholar]
  117. 117.
    Menna A, Dora S, Sancho-Andrés G, Kashyap A, Meena MK, et al. 2021.. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. . BMC Biol. 19:(1):161
    [Crossref] [Google Scholar]
  118. 118.
    Michielse CB, van Wijk R, Reijnen L, Manders EMM, Boas S, et al. 2009.. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. . PLOS Pathog. 5:(10):e1000637
    [Crossref] [Google Scholar]
  119. 119.
    Möbius N, Hertweck C. 2009.. Fungal phytotoxins as mediators of virulence. . Curr. Opin. Plant Biol. 12:(4):39098
    [Crossref] [Google Scholar]
  120. 120.
    Monaghan J, Zipfel C. 2012.. Plant pattern recognition receptor complexes at the plasma membrane. . Curr. Opin. Plant Biol. 15:(4):34957
    [Crossref] [Google Scholar]
  121. 121.
    Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM, et al. 2018.. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. . Nat. Chem. Biol. 14:(5):48088
    [Crossref] [Google Scholar]
  122. 122.
    Mulero-Aparicio A, Cernava T, Turrà D, Schaefer A, Di Pietro A, et al. 2019.. The role of volatile organic compounds and rhizosphere competence in mode of action of the non-pathogenic Fusarium oxysporum FO12 toward Verticillium wilt. . Front. Microbiol. 10::1808
    [Crossref] [Google Scholar]
  123. 123.
    Nucci M, Nouér SA, Cappone D, Anaissie E. 2013.. Early diagnosis of invasive pulmonary aspergillosis in hematologic patients: an opportunity to improve the outcome. . Haematologica 98:(11):165760
    [Crossref] [Google Scholar]
  124. 124.
    O'Donnell K, Humber RA, Geiser DM, Kang S, Park B. 2012.. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. . Mycologia 104:(2):42745
    [Crossref] [Google Scholar]
  125. 125.
    O'Donnell K, Sutton DA, Rinaldi MG, Magnon KC, Cox PA. 2004.. Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. . J. Clin. Microbiol. 42:(11):510920
    [Crossref] [Google Scholar]
  126. 126.
    O'Donnell K, Sutton DA, Wiederhold N, Robert V, Crous PW, Geiser DM. 2016.. Veterinary fusarioses within the United States. . J. Clin. Microbiol. 54:(11):281319
    [Crossref] [Google Scholar]
  127. 127.
    Olivain C, Humbert C, Nahalkova J, Fatehi J, L'Haridon F, Alabouvette C. 2006.. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. . Appl. Environ. Microbiol. 72:(2):152331
    [Crossref] [Google Scholar]
  128. 128.
    Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, et al. 2015.. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet. . PLOS Pathog. 11:(11):e1005197
    [Crossref] [Google Scholar]
  129. 129.
    Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MIG, et al. 2004.. Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. . Infect. Immun. 72:(3):176066
    [Crossref] [Google Scholar]
  130. 130.
    Oumouloud A, Arnedo-Andres MS, Gonzalez-Torres R, Alvarez JM. 2008.. Development of molecular markers linked to the Fom-1 locus for resistance to Fusarium race 2 in melon. . Euphytica 164:(2):34756
    [Crossref] [Google Scholar]
  131. 131.
    Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, et al. 2014.. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. . PLOS Pathog. 10:(10):e1004464
    [Crossref] [Google Scholar]
  132. 132.
    Palmieri D, Vitale S, Lima G, Di Pietro A, Turrà D. 2020.. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. . Nat. Commun. 11:(1):5264
    [Crossref] [Google Scholar]
  133. 133.
    Peñalva MA, Tilburn J, Bignell E, Arst HN Jr. 2008.. Ambient pH gene regulation in fungi: making connections. . Trends Microbiol. 16:(6):291300
    [Crossref] [Google Scholar]
  134. 134.
    Penninckx IA, Thomma BPHJ, Buchala A, Métraux JP, Broekaert WF. 1998.. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. . Plant Cell 10:(12):210313
    [Crossref] [Google Scholar]
  135. 135.
    Perez-Nadales E, Di Pietro A. 2015.. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum. . Mol. Plant Pathol. 16:(6):593603
    [Crossref] [Google Scholar]
  136. 136.
    Plaumann P-L, Koch C. 2020.. The many questions about mini chromosomes in Colletotrichum spp. . Plants 9:(5):641
    [Crossref] [Google Scholar]
  137. 137.
    Ploetz RC. 2006.. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. . Phytopathology 96:(6):65356
    [Crossref] [Google Scholar]
  138. 138.
    Purcell AH, Hopkins DL. 1996.. Fastidious xylem-limited bacterial plant pathogens. . Annu. Rev. Phytopathol. 34::13151
    [Crossref] [Google Scholar]
  139. 139.
    Qin J, Wang K, Sun L, Xing H, Wang S, et al. 2018.. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. . eLife 7::e34902
    [Crossref] [Google Scholar]
  140. 140.
    Rahman MA, Abdullah H, Vanhaecke M. 1999.. Histopathology of susceptible and resistant Capsicum annuum cultivars infected with Ralstonia solanacearum. . J. Phytopathol. 147:(3):12940
    [Crossref] [Google Scholar]
  141. 141.
    Ravalason H, Grisel S, Chevret D, Favel A, Berrin J-G, et al. 2012.. Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. . Bioresour. Technol. 114::58996
    [Crossref] [Google Scholar]
  142. 142.
    Redkar A, Gimenez Ibanez S, Sabale M, Zechmann B, Solano R, Di Pietro A. 2022.. Marchantia polymorpha model reveals conserved infection mechanisms in the vascular wilt fungal pathogen Fusarium oxysporum. . New Phytol. 234:(1):22741
    [Crossref] [Google Scholar]
  143. 143.
    Redkar A, Sabale M, Schudoma C, Zechmann B, Gupta YK, et al. 2022.. Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. . Plant Cell 34:(9):321432
    [Crossref] [Google Scholar]
  144. 144.
    Redkar A, Sabale M, Zuccaro A, Di Pietro A. 2022.. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. . Curr. Opin. Plant Biol. 67::102226
    [Crossref] [Google Scholar]
  145. 145.
    Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, et al. 2002.. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. . Plant Physiol. 130:(2):90417
    [Crossref] [Google Scholar]
  146. 146.
    Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, et al. 2004.. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. . Mol. Microbiol. 53:(5):137383
    [Crossref] [Google Scholar]
  147. 147.
    Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, et al. 2012.. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. . Plant Cell 24:(9):382337
    [Crossref] [Google Scholar]
  148. 148.
    Rhodes J, Yang H, Moussu S, Boutrot F, Santiago J, Zipfel C. 2021.. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. . Nat. Commun. 12:(1):705
    [Crossref] [Google Scholar]
  149. 149.
    Rich-Griffin C, Eichmann R, Reitz MU, Hermann S, Woolley-Allen K, et al. 2020.. Regulation of cell type-specific immunity networks in Arabidopsis roots. . Plant Cell 32:(9):274262
    [Crossref] [Google Scholar]
  150. 150.
    Rodriguez-Galvez E, Mendgen K. 1995.. The infection process of Fusarium oxysporum in cotton root tips. . Protoplasma 189::6172
    [Crossref] [Google Scholar]
  151. 151.
    Roth R, Hillmer S, Funaya C, Chiapello M, Schumacher K, et al. 2019.. Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. . Nat. Plants 5:(2):20411
    [Crossref] [Google Scholar]
  152. 152.
    Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, et al. 2013.. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. . BMC Genom. 14:(1):119
    [Crossref] [Google Scholar]
  153. 153.
    Schornack S, Kamoun S. 2023.. EVO-MPMI: from fundamental science to practical applications. . Curr. Opin. Plant Biol. 76::102469
    [Crossref] [Google Scholar]
  154. 154.
    Seidl MF, Thomma BPHJ. 2017.. Transposable elements direct the coevolution between plants and microbes. . Trends Genet. 33:(11):84251
    [Crossref] [Google Scholar]
  155. 155.
    Shigeto J, Tsutsumi Y. 2016.. Diverse functions and reactions of class III peroxidases. . New Phytol. 209:(4):1395402
    [Crossref] [Google Scholar]
  156. 156.
    Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, et al. 1998.. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. . Plant Cell 10:(6):105568
    [Crossref] [Google Scholar]
  157. 157.
    Skamnioti P, Gurr SJ. 2007.. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. . Plant Cell 19:(8):267489
    [Crossref] [Google Scholar]
  158. 158.
    Snelders NC, Boshoven JC, Song Y, Schmitz N, Fiorin GL, et al. 2023.. A highly polymorphic effector protein promotes fungal virulence through suppression of plant-associated Actinobacteria. . New Phytol. 237:(3):94458
    [Crossref] [Google Scholar]
  159. 159.
    Snelders NC, Petti GC, van den Berg GCM, Seidl MF, Thomma BPHJ. 2021.. An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation. . PNAS 118:(49):e2110968118
    [Crossref] [Google Scholar]
  160. 160.
    Snelders NC, Rovenich H, Petti GC, Rocafort M, van den Berg GCM, et al. 2020.. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. . Nat. Plants 6:(11):136574
    [Crossref] [Google Scholar]
  161. 161.
    Sperschneider J, Dodds PN. 2022.. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. . Mol. Plant-Microbe Interact. 35:(2):14656
    [Crossref] [Google Scholar]
  162. 162.
    Steinkellner S, Mammerler R, Vierheilig H. 2005.. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. . J. Plant Interact. 1::2330
    [Crossref] [Google Scholar]
  163. 163.
    Summerell BA. 2019.. Resolving Fusarium: current status of the genus. . Annu. Rev. Phytopathol. 57::32339
    [Crossref] [Google Scholar]
  164. 164.
    Takken F, Rep M. 2010.. The arms race between tomato and Fusarium oxysporum. . Mol. Plant Pathol. 11:(2):30914
    [Crossref] [Google Scholar]
  165. 165.
    Teetor-Barsch GH, Roberts DW. 1983.. Entomogenous Fusarium species. . Mycopathologia 84:(1):316
    [Crossref] [Google Scholar]
  166. 166.
    Thatcher LF, Gardiner DM, Kazan K, Manners JM. 2012.. A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. . Mol. Plant-Microbe Interact. 25:(2):18090
    [Crossref] [Google Scholar]
  167. 167.
    Thatcher LF, Manners JM, Kazan K. 2009.. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. . Plant J. 58:(6):92739
    [Crossref] [Google Scholar]
  168. 168.
    Thomma BPHJ, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang B, et al. 1998.. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. . PNAS 95:(25):1510711
    [Crossref] [Google Scholar]
  169. 169.
    Tintor N, Paauw M, Rep M, Takken FLW. 2020.. The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. . New Phytol. 227:(5):147992
    [Crossref] [Google Scholar]
  170. 170.
    Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, et al. 2009.. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. . Plant J. 58:(1):6981
    [Crossref] [Google Scholar]
  171. 171.
    Turlier M-F, Eparvier A, Alabouvette C. 1994.. Early dynamic interactions between Fusarium oxysporum f. sp. lini and the roots of Linum usitatissimum as revealed by transgenic GUS-marked hyphae. . Botany 72::160512
    [Google Scholar]
  172. 172.
    Turrà D, Di Pietro A. 2015.. Chemotropic sensing in fungus-plant interactions. . Curr. Opin. Plant Biol. 26::13540
    [Crossref] [Google Scholar]
  173. 173.
    Turrà D, El Ghalid M, Rossi F, Di Pietro A. 2015.. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. . Nature 527:(7579):52124
    [Crossref] [Google Scholar]
  174. 174.
    Upson JL, Zess EK, Białas A, Wu C-H, Kamoun S. 2018.. The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. . Curr. Opin. Plant Biol. 44::10816
    [Crossref] [Google Scholar]
  175. 175.
    Vakalounakis DJ. 1996.. Allelism of the Fcu-1 and Foc genes conferring resistance to Fusarium wilt in cucumber. . Eur. J. Plant Pathol. 102:(9):85558
    [Crossref] [Google Scholar]
  176. 176.
    van Dam P, Fokkens L, Schmidt SM, Linmans JHJ, Kistler HC, et al. 2016.. Effector profiles distinguish formae speciales of Fusarium oxysporum. . Environ. Microbiol. 18:(11):4087102
    [Crossref] [Google Scholar]
  177. 177.
    van den Brink J, de Vries RP. 2011.. Fungal enzyme sets for plant polysaccharide degradation. . Appl. Microbiol. Biotechnol. 91:(6):147792
    [Crossref] [Google Scholar]
  178. 178.
    van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF, et al. 2017.. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. . PLOS Genet. 13:(6):e1006832
    [Crossref] [Google Scholar]
  179. 179.
    van der Does HC, Duyvesteijn RGE, Goltstein PM, van Schie CCN, Manders EMM, et al. 2008.. Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. . Fungal Genet. Biol. 45:(9):125764
    [Crossref] [Google Scholar]
  180. 180.
    Vitale S, Di Pietro A, Turrà D. 2019.. Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. . Nat. Microbiol. 4:(9):144349
    [Crossref] [Google Scholar]
  181. 181.
    Wang B, Kang Q, Lu Y, Bai L, Wang C. 2012.. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. . PNAS 109:(4):128792
    [Crossref] [Google Scholar]
  182. 182.
    Wang L, Calabria J, Chen H-W, Somssich M. 2022.. The Arabidopsis thaliana-Fusarium oxysporum strain 5176 pathosystem: an overview. . J. Exp. Bot. 73:(18):605267
    [Crossref] [Google Scholar]
  183. 183.
    Watt M, Silk WK, Passioura JB. 2006.. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. . Ann. Bot. 97:(5):83955
    [Crossref] [Google Scholar]
  184. 184.
    Williams JS, Hall SA, Hawkesford MJ, Beale MH, Cooper RM. 2002.. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. . Plant Physiol. 128:(1):15059
    [Crossref] [Google Scholar]
  185. 185.
    Xu R-Q, Blanvillain S, Feng J-X, Jiang B-L, Li X-Z, Wei H-Y. 2008.. AvrACXcc8004, a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. . J. Bacteriol. 190::34355
    [Crossref] [Google Scholar]
  186. 186.
    Yadeta KA, Thomma BPHJ. 2013.. The xylem as battleground for plant hosts and vascular wilt pathogens. . Front. Plant Sci. 4::97
    [Google Scholar]
  187. 187.
    Yang H, Yu H, Ma L-J. 2020.. Accessory chromosomes in Fusarium oxysporum. . Phytopathology 110:(9):148896
    [Crossref] [Google Scholar]
  188. 188.
    Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG. 2000.. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. . Fungal Genet. Biol. 31:(1):720
    [Crossref] [Google Scholar]
  189. 189.
    Zhang J, Zhao J, Yang Y, Bao Q, Li Y, et al. 2022.. EWR1 as a SCOOP peptide activates MIK2-dependent immunity in Arabidopsis. . J. Plant Interact. 17:(1):56268
    [Crossref] [Google Scholar]
  190. 190.
    Zhang X, Yang Z, Wu D, Yu F. 2020.. RALF-FERONIA signaling: linking plant immune response with cell growth. . Plant Commun. 1:(4):100084
    [Crossref] [Google Scholar]
  191. 191.
    Zhang Y, Yang H, Turra D, Zhou S, Ayhan DH, et al. 2020.. The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. . Commun. Biol. 3:(1):50
    [Crossref] [Google Scholar]
  192. 192.
    Zhou X, Wang J, Liu F, Liang J, Zhao P, et al. 2022.. Cross-kingdom synthetic microbiota supports tomato suppression of Fusarium wilt disease. . Nat. Commun. 13:(1):7890
    [Crossref] [Google Scholar]
  193. 193.
    Zhu Q-H, Stephen S, Kazan K, Jin G, Fan L, et al. 2013.. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. . Gene 512:(2):25966
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-021722-034823
Loading
/content/journals/10.1146/annurev-phyto-021722-034823
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error