1932

Abstract

Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080508-081932
2009-09-08
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/phyto/47/1/annurev-phyto-080508-081932.html?itemId=/content/journals/10.1146/annurev-phyto-080508-081932&mimeType=html&fmt=ahah

Literature Cited

  1. Ahlquist P. 1.  2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol. 4:371–82 [Google Scholar]
  2. Allen TD, Dawe AL, Nuss DL. 2.  2003. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryot. Cell 2:1253–65 [Google Scholar]
  3. Boland GJ. 3.  1992. Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can. J. Plant Pathol. 14:10–17 [Google Scholar]
  4. Buck KW. 4.  1998. Molecular variability of viruses of fungi. Molecular Variability of Fungal Pathogens PD Bridge, Y Couteaudier, JM Clarkson 53–72 Wallingford/UK: CAB Int. [Google Scholar]
  5. Castón JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C. 5.  et al. 2003. Three-dimensional structure of Penicillium chrysogenum virus: a double-stranded RNA virus with a genuine T = 1 capsid. J. Mol. Biol. 331:417–31 [Google Scholar]
  6. Castón JR, Luque D, Trus BL, Rivas G, Alfonso C. 6.  et al. 2006. Three-dimensional structure and stoichiometry of Helmintosporium victoriae 190S totivirus. Virology 347:323–32 [Google Scholar]
  7. Castro M, Kramer K, Valdivia L, Ortiz S, Benavente J, Castillo A. 7.  1999. A new double-stranded RNA mycovirus from Botrytis cinerea. FEMS Microbiol. Lett. 175:95–99 [Google Scholar]
  8. Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. 8.  2003. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol. Lett. 228:87–91 [Google Scholar]
  9. Chen B, Choi GH, Nuss DL. 9.  1994. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264:1762–64 [Google Scholar]
  10. Chen B, Nuss DL. 10.  1999. Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virol. 73:985–92 [Google Scholar]
  11. Cheng RH, Castón JR, Wang GJ, Gu F, Smith TJ. 11.  et al. 1994. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric gag dimers. J. Mol. Biol. 244:255–58 [Google Scholar]
  12. Choi GH, Nuss DL. 12.  1992. A viral gene confers hypovirulence-associated traits to the chestnut blight fungus. EMBO J. 11:473–77 [Google Scholar]
  13. Choi GH, Nuss DL. 13.  1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800–3 [Google Scholar]
  14. Choi GH, Pawlyk DM, Nuss DL. 14.  1991. The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183:747–52 [Google Scholar]
  15. Choi GH, Shapira R, Nuss DL. 15.  1991. Cotranslational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc. Natl. Acad. Sci. USA 88:1167–71 [Google Scholar]
  16. Cogoni C, Macino G. 16.  1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–69 [Google Scholar]
  17. Cogoni C, Macino G. 17.  1999. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286:2342–44 [Google Scholar]
  18. Covelli L, Coutts RH, Di Serio F, Citir A, Acikgoz S. 18.  et al. 2004. Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. I. Characterization of a new species in the genus Chrysovirus. J. Gen. Virol. 85:3389–97 [Google Scholar]
  19. Craven MG, Pawlyk DM, Choi GH, Nuss DL. 19.  1993. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J. Virol. 67:6513–21 [Google Scholar]
  20. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG. 20.  et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2 [Google Scholar]
  21. Dawe AL, Nuss DL. 21.  2001. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu. Rev. Genet. 35:1–29 [Google Scholar]
  22. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK. 22.  et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–86 [Google Scholar]
  23. Deng F, Nuss DL. 23.  2008. Hypovirus papain-like protease p48 is required for initiation but not for maintenance of virus RNA propagation in the chestnut blight fungus Cryphonectria parasitica. J. Virol. 82:6369–78 [Google Scholar]
  24. Deng F, Allen TD, Nuss DL. 23a.  2007. Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot. Cell 6:235–44 [Google Scholar]
  25. Deng F, Xu R, Boland GJ. 24.  2003. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93:1407–14 [Google Scholar]
  26. Desselberger U. 25.  1996. Genome rearrangements of rotaviruses. Adv. Virus Res. 46:69–95 [Google Scholar]
  27. Dickinson MJ, Zhang R, Pryor A. 26.  1993. Nucleotide sequence relationships of double-stranded RNAs in flax rust, Melampsora lini. Curr. Genet. 24:428–32 [Google Scholar]
  28. Fahima T, Kazmierczak P, Hansen DR, Pfeiffer P, Van Alfen NK. 27.  1993. Membrane-associated replication of an unencapsidated double-strand RNA of the fungus, Cryphonectria parasitica. Virology 195:81–89 [Google Scholar]
  29. Faruk M, Izumino M, Suzuki N. 28.  2008. Characterization of mutants of the chestnut blight fungus (Cryphonectria parasitica) with unusual hypovirus symptoms. J. Gen. Plant Pathol. 74:425–33 [Google Scholar]
  30. Faruk MI, Eusebio-Cope A, Suzuki N. 29.  2008. A host factor involved in hypovirus symptom expression in the chestnut blight fungus, Cryphonectria parasitica. J. Virol. 82:740–54 [Google Scholar]
  31. Ghabrial S. 30.  2008. Chrysoviruses. See Ref. 69a 1503–13642
  32. Ghabrial S. 31.  2008. Totiviruses. See Ref. 69a 5163–74623
  33. Ghabrial S, Ochao W, Baker T, Nibert M. 32.  2008. Partitiviruses: general features. See Ref. 69a 468–75669
  34. Ghabrial SA. 33.  1994. New developments in fungal virology. Adv. Virus Res. 43:303–88 [Google Scholar]
  35. Ghabrial SA. 34.  1998. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16:119–31 [Google Scholar]
  36. Ghabrial SA, Havens WM. 35.  1992. The Helminthosporium victoriae 190S mycovirus has two forms distinguishable by capsid protein composition and phosphorylation state. Virology 188:657–65 [Google Scholar]
  37. Ghabrial SA, Mernaugh RL. 36.  1983. Biology and transmission of Helminthosporium victoriae mycoviruses. Double-Stranded RNA Viruses RW Compans, DHL Bishop 441–49 New York: Elsevier [Google Scholar]
  38. Ghabrial SA, Nibert ML. 37.  2009. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Arch. Virol. 154:373–79 [Google Scholar]
  39. Ghabrial SA, Soldevila AI, Havens WM. 38.  2002. Molecular genetics of the viruses infecting the plant pathogenic fungus Helminthosporium victoriae. Molecular Biology of Double-Stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine S Tavantzis 213–36 Boca Raton, FL: CRC Press [Google Scholar]
  40. Ghabrial SA, Suzuki N. 39.  2008. Fungal viruses. See Ref. 69a 2284–91585
  41. Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R. 40.  et al. 1998. The atomic structure of the bluetongue virus core. Nature 395:470–78 [Google Scholar]
  42. Guo L, Sun L-Y, Chiba S, Araki H, Suzuki N. 40a.  2009. Coupled termination/reinitiation for translation of the downstream open reading frame B of the prototypic hypovirus CHV1-EP713. Nucleic Acids Res 37: doi: 10.1093/nar/gkp224 In press [Google Scholar]
  43. Hacker CV, Brasier CM, Buck KW. 41.  2005. A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J. Gen. Virol. 86:1561–70 [Google Scholar]
  44. Hillman BI, Foglia R, Yuan W. 42.  2000. Satellite and defective RNAs of Cryphonectria hypovirus 3-Grand Haven 2, a virus species in the family Hypoviridae with a single open reading frame. Virology 276:181–89 [Google Scholar]
  45. Hillman BI, Supyani S, Kondo H, Suzuki N. 43.  2004. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the coltivirus genus of animal pathogens. J. Virol. 78:892–98 [Google Scholar]
  46. Hillman BI, Suzuki N. 44.  2004. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63:423–72 [Google Scholar]
  47. Ho T, Pallett D, Rusholme R, Dalmay T, Wang H. 45.  2006. A simplified method for cloning of short interfering RNAs from Brassica juncea infected with turnip mosaic potyvirus and turnip crinkle carmovirus. J. Virol. Methods 136:217–23 [Google Scholar]
  48. Ho T, Wang H, Pallett D, Dalmay T. 46.  2007. Evidence for targeting common siRNA hotspots and GC preference by plant dicer-like proteins. FEBS Lett. 581:3267–72 [Google Scholar]
  49. Hong Y, Dover SL, Cole TE, Brasier CM, Buck KW. 47.  1999. Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi. Virology 258:118–27 [Google Scholar]
  50. Howitt RLJ, Beever RE, Pearson MN, Forster RL. 48.  2006. Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant “potex-like” viruses. Arch. Virol. 151:563–79 [Google Scholar]
  51. Howitt RLJ, Beever RE, Pearson MN, Forster RL. 49.  2001. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant “potex-like” viruses. J. Gen. Virol. 82:67–78 [Google Scholar]
  52. Huang S, Ghabrial SA. 50.  1996. Organization and expression of the double-stranded RNA genome of Helminthosporium victoriae 190S virus, a totivirus infecting a plant pathogenic filamentous fungus. Proc. Natl. Acad. Sci. USA 93:12541–46 [Google Scholar]
  53. Huang S, Soldevila AI, Webb BA, Ghabrial SA. 51.  1997. Expression, assembly, and proteolytic processing of Helminthosporium victoriae 190S totivirus capsid protein in insect cells. Virology 234:130–37 [Google Scholar]
  54. Ikeda K, Nakamura H, Arakawa M, Matsumoto N. 52.  2004. Diversity and vertical transmission of double-stranded RNA elements in root rot pathogens of trees, Helicobasidium mompa and Rosellinia necatrix. Mycol. Res. 108:626–34 [Google Scholar]
  55. Ikeda K, Nakamura H, Matsumoto N. 53.  2003. Hypovirulent strain of the violet root rot fungus Helicobasidium mompa. J. Gen. Plant Pathol. 69:385–90 [Google Scholar]
  56. Jacob-Wilk D, Turina M, Kazmierczak P, Van Alfen NK. 54.  2009. Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica. Mol. Plant-Microbe. Interact. 22:211–21 [Google Scholar]
  57. Jacob-Wilk D, Turina M, Van Alfen NK. 55.  2006. Mycovirus Cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. J. Virol. 80:6588–96 [Google Scholar]
  58. Jiang D, Ghabrial SA. 56.  2004. Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J. Gen. Virol. 85:2111–21 [Google Scholar]
  59. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T. 57.  et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101 [Google Scholar]
  60. Kanematsu S, Arakawa M, Oikawa Y, Onoue M, Osaki H. 58.  et al. 2004. A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94:561–68 [Google Scholar]
  61. Kang J, Wu J, Bruenn JA, Park C. 59.  2001. The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Res. 76:183–89 [Google Scholar]
  62. Kojima KK, Matsumoto T, Fujiwara H. 60.  2005. Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of the non-long terminal repeat retrotransposon SART1. Mol. Cell Biol. 25:7675–86 [Google Scholar]
  63. Komoto S, Sasaki J, Taniguchi K. 61.  2006. Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc. Natl. Acad. Sci. USA 103:4646–51 [Google Scholar]
  64. Koonin E. 62.  1992. Evolution of double-stranded RNA viruses: a case for polyphyletic origin from different groups of positive-stranded RNA viruses. Sem. Virol. 3:327–39 [Google Scholar]
  65. Koonin EV, Dolja VV. 63.  1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375–430 [Google Scholar]
  66. Krstin L, Novak-Agbaba S, Rigling D, Krajacic M, Perica C. 64.  2008. Chestnut blight fungus in Croatia: diversity of vegetative compatibility types, mating types and genetic variability of associated Cryphonectria hypovirus 1. Plant Pathol. 57:1086–96 [Google Scholar]
  67. Li H, Fu Y, Jiang D, Li G, Ghabrial SA, Yi X. 65.  2008. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res. 135:95–106 [Google Scholar]
  68. Lin H, Lan X, Liao H, Parsley TB, Nuss DL, Chen B. 66.  2007. Genome sequence, full-length infectious cDNA clone, and mapping of viral double-stranded RNA accumulation determinant of hypovirus CHV1-EP721. J. Virol. 81:1813–20 [Google Scholar]
  69. Linder-Basso D, Dynek JN, Hillman BI. 67.  2005. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 337:192–203 [Google Scholar]
  70. Liu H, Fu Y, Jiang D, Li G, Xie J. 68.  et al. 2009. A novel mycovirus that is related to the human pathogen Hepatitis E virus and rubi-like viruses. J. Virol. 83:1981–91 [Google Scholar]
  71. Liu YC, Dynek JN, Hillman BI, Milgroom MG. 69.  2007. Diversity of viruses in Cryphonectria parasitica and C. nitschkei in Japan and China, and partial characterization of a new chrysovirus species. Mycol. Res. 111:433–42 [Google Scholar]
  72. Mahy BWJ, Van Regenmortel M. 69a.  2008. Encyclopedia of Virology Oxford: Elsevier, 3rd. 1–53234 [Google Scholar]
  73. Maejima K, Himeno M, Komatsu K, Kakizawa S, Yamaji Y. 70.  et al. 2008. Complete nucleotide sequence of a new double-stranded RNA virus from the rice blast fungus, Magnaporthe oryzae. Arch. Virol. 153:389–91 [Google Scholar]
  74. Maoka T, Omura T, Harjosudarmo J, Usugi T, Hibino H, Tsuchizaki T. 71.  1993. Loss of vector-transmissibility by maintaining rice ragged stunt virus in rice plants without vector transmission. Ann. Phytopathol. Soc. Jpn. 59:185–87 [Google Scholar]
  75. Martelli GP, Adams MJ, Kreuze JF, Dolja VV. 72.  2007. Family Flexiviridae: a case study in virion and genome plasticity. Annu. Rev. Phytopathol. 45:73–100 [Google Scholar]
  76. Matsumoto N. 73.  1998. Biological control of root diseases with dsRNA based on population structure of pathogenes. JARQ 32:31–35 [Google Scholar]
  77. McCabe PM, Pfeiffer P, Van Alfen NK. 74.  1999. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol. 7:377–81 [Google Scholar]
  78. Melzer MS, Boland GJ. 75.  1996. Transmissible hypovirulence in Sclerotinia minor. Can. J. Plant Pathol. 18:19–28 [Google Scholar]
  79. Melzer MS, Ikeda SS, Boland GJ. 76.  2002. Interspecific transmission of double-stranded RNA and hypovirulence from Sclerotinia sclerotiorum to S. minor. Phytopathology 92:780–84 [Google Scholar]
  80. Meyers G. 77.  2007. Characterization of the sequence element directing translation reinitiation in RNA of the calicivirus rabbit hemorrhagic disease virus. J. Virol. 81:9623–32 [Google Scholar]
  81. Milgroom MG, Cortesi P. 78.  2004. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42:311–38 [Google Scholar]
  82. Moleleki N, van Heerden SW, Wingfield MJ, Wingfield BD, Preisig O. 79.  2003. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl. Environ. Microbiol. 69:3952–56 [Google Scholar]
  83. Molnar A, Csorba T, Lakatos L, Varallyay E, Lacomme C, Burgyan J. 80.  2005. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79:7812–18 [Google Scholar]
  84. Nagy PD. 81.  2008. Yeast as a model host to explore plant virus-host interactions. Annu. Rev. Phytopathol. 46:217–42 [Google Scholar]
  85. Naitow H, Tang J, Canady M, Wickner RB, Johnson JE. 82.  2002. L-Å virus at 3.4 A resolution reveals particle architecture and mRNA decapping mechanism. Nat. Struct. Biol. 9:725–28 [Google Scholar]
  86. Nakayashiki H, Nguyen QB. 83.  2008. RNA interference: roles in fungal biology. Curr. Opin. Microbiol. 11:494–502 [Google Scholar]
  87. Nomura K, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. 84.  2003. Cloning and characterization of a totivirus double-stranded RNA from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Genes 26:219–26 [Google Scholar]
  88. Nuss DL. 85.  1984. Molecular biology of wound tumor virus. Adv. Virus Res. 29:57–93 [Google Scholar]
  89. Nuss DL. 86.  2005. Hypovirulence: mycoviruses at the fungal-plant interface. Nat. Rev. Microbiol. 3:632–42 [Google Scholar]
  90. Ochoa WF, Havens WM, Sinkovits RS, Nibert ML, Ghabrial SA, Baker TS. 87.  2008. Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. Structure 16:776–86 [Google Scholar]
  91. Osaki H, Nakamura H, Nomura K, Matsumoto N, Yoshida K. 88.  2005. Nucleotide sequence of a mitochondrial RNA virus from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Res. 107:39–46 [Google Scholar]
  92. Osaki H, Nakamura H, Sasaki A, Matsumoto N, Yoshida K. 89.  2006. An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. Virus Res. 118:143–49 [Google Scholar]
  93. Osaki H, Nomura K, Iwanami T, Kanematsu S, Okabe I. 90.  et al. 2002. Detection of a double-stranded RNA virus from a strain of the violet root rot fungus Helicobasidium mompa Tanaka. Virus Genes 25:139–45 [Google Scholar]
  94. Osaki H, Nomura K, Matsumoto N, Ohtsu Y. 91.  2004. Characterization of double-stranded RNA elements in the violet root rot fungus Helicobasidium mompa. Mycol. Res. 108:635–40 [Google Scholar]
  95. Osaki H, Wei CZ, Arakawa M, Iwanami T, Nomura K. 92.  et al. 2002. Nucleotide sequences of double-stranded RNA segments from a hypovirulent strain of the white root rot fungus Rosellinia necatrix: possibility of the first member of the Reoviridae from fungus. Virus Genes 25:101–7 [Google Scholar]
  96. Pan J, Dong L, Lin L, Ochoa W, Sinkovits R. 93.  et al. 2009. Atomic structure reveals the unique capsid organization of a dsRNA virus. Proc. Natl. Acad. Sci. USA 106:4225–30 [Google Scholar]
  97. Park SM, Kim JM, Chung HJ, Lim JY, Kwon BR. 94.  et al. 2008. Occurrence of diverse dsRNA in a Korean population of the chestnut blight fungus, Cryphonectria parasitica. Mycol. Res. 112:1220–26 [Google Scholar]
  98. Powell ML, Napthine S, Jackson RJ, Brierley I, Brown TD. 95.  2008. Characterization of the termination-reinitiation strategy employed in the expression of influenza B virus BM2 protein. RNA 14:2394–406 [Google Scholar]
  99. Poyry TA, Kaminski A, Connell EJ, Fraser CS, Jackson RJ. 96.  2007. The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev. 21:3149–62 [Google Scholar]
  100. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ. 97.  2000. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J. Gen. Virol. 81:3107–14 [Google Scholar]
  101. Sasaki A, Kanematsu S, Onoue M, Oikawa Y, Nakamura H, Yoshida K. 98.  2007. Artificial infection of Rosellinia necatrix with purified viral particles of a member of the genus Mycoreovirus reveals its uneven distribution in single colonies. Phytopathology 97:278–86 [Google Scholar]
  102. Sasaki A, Kanematsu S, Onoue M, Oyama Y, Yoshida K. 99.  2006. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8). Arch. Virol. 151:697–707 [Google Scholar]
  103. Sasaki A, Miyanishi M, Ozaki K, Onoue M, Yoshida K. 100.  2005. Molecular characterization of a partitivirus from the plant pathogenic ascomycete Rosellinia necatrix. Arch. Virol. 150:1069–83 [Google Scholar]
  104. Segers GC, van Wezel R, Zhang X, Hong Y, Nuss DL. 101.  2006. Hypovirus papain-like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system. Eukaryot. Cell 5:896–904 [Google Scholar]
  105. Segers GC, Zhang X, Deng F, Sun Q, Nuss DL. 102.  2007. Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc. Natl. Acad. Sci. USA 104:12902–6 [Google Scholar]
  106. Shapira R, Choi GH, Hillman BI, Nuss DL. 103.  1991. The contribution of defective RNAs to the complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus Cryphonectria parasitica. EMBO J. 10:741–46 [Google Scholar]
  107. Shapira R, Choi GH, Nuss DL. 104.  1991. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10:731–39 [Google Scholar]
  108. Soldevila AI, Ghabrial SA. 105.  2000. Expression of the Totivirus Helminthosporium victoriae 190S virus RNA-dependent RNA polymerase from its downstream open reading frame in dicistronic constructs. J. Virol. 74:997–1003 [Google Scholar]
  109. Soldevila AI, Ghabrial SA. 106.  2001. A novel alcohol oxidase/RNA-binding protein with affinity for mycovirus double-stranded RNA from the filamentous fungus Helminthosporium (Cochliobolus) victoriae: molecular and functional characterization. J. Biol. Chem. 276:4652–61 [Google Scholar]
  110. Soldevila AI, Huang S, Ghabrial SA. 107.  1998. Assembly of the Hv190S totivirus capsid is independent of posttranslational modification of the capsid protein. Virology 251:327–33 [Google Scholar]
  111. Sun L, Suzuki N. 108.  2008. Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. RNA 14:2557–71 [Google Scholar]
  112. Sun LY, Nuss DL, Suzuki N. 109.  2006. Synergism between a mycoreovirus and a hypovirus mediated by the papain-like protease p29 of the prototypic hypovirus CHV1-EP713. J. Gen. Virol. 87:3703–14 [Google Scholar]
  113. Sun Q, Choi GH, Nuss DL. 109a.  2009. Hypovirus-responsive transcription factor gene pro1 of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection. Eukaryot. Cell 8:262–270 [Google Scholar]
  114. Suzaki K, Ikeda K, Sasaki A, Kanematsu S, Matsumoto N, Yoshida K. 110.  2005. Horizontal transmission and host-virulence attenuation of totivirus in violet root rot fungus Helicobasidium mompa. J. Gen. Plant Pathol. 71:161–68 [Google Scholar]
  115. Suzaki K, Sasaki A, Kanematsu S, Matsumoto N, Yoshida K. 111.  2003. Transmissibility of viral double-stranded RNA between strains of the violet root rot fungus Helicobasidium mompa and the potential for viral dsRNA infection to this fungus using monokaryotic strains. Mycoscience 44:139–47 [Google Scholar]
  116. Suzuki N, Chen B, Nuss DL. 112.  1999. Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J. Virol. 73:9478–84 [Google Scholar]
  117. Suzuki N, Maruyama K, Moriyama M, Nuss DL. 113.  2003. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J. Virol. 77:11697–707 [Google Scholar]
  118. Suzuki N, Nuss DL. 114.  2002. Contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J. Virol. 76:7747–59 [Google Scholar]
  119. Suzuki N, Supyani S, Maruyama K, Hillman BI. 115.  2004. Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. J. Gen. Virol. 85:3437–48 [Google Scholar]
  120. Taniguchi K, Urasawa S. 116.  1995. Diversity in rotavirus genomes. Semin. Virol. 6:123–31 [Google Scholar]
  121. Turina M, Rostagno L. 117.  2007. Virus-induced hypovirulence in Cryphonectria parasitica: still an unresolved conundrum. J. Plant Pathol. 89:165–78 [Google Scholar]
  122. Turina M, Zhang L, Van Alfen NK. 117a.  2006. Effect of Cryphonectria hypovirus 1 (CHV1) infection on Cpkk1, a mitogen-activated protein kinase kinase of the filamentous fungus Cryphonectria parasitica. Fungal Genet. Biol. 43:764–774 [Google Scholar]
  123. Vilches S, Castillo A. 118.  1997. A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiol. Lett. 155:125–30 [Google Scholar]
  124. Wei CZ, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. 119.  2003. Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellinia necatrix. J. Gen. Virol. 84:2431–37 [Google Scholar]
  125. Wei CZ, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. 120.  2004. Complete nucleotide sequences of genome segments 1 and 3 of Rosellinia anti-rot virus in the family Reoviridae. Arch. Virol. 149:773–77 [Google Scholar]
  126. Wickner RB. 121.  1996. Double-stranded RNA viruses of Saccharomyces cerevisiae. Microbiol. Rev. 60:250–65 [Google Scholar]
  127. Wu MD, Zhang L, Li GQ, Jiang DH, Hou MS, Huang HC. 122.  2007. Hypovirulence and double-stranded RNA in Botrytis cinerea. Phytopathology 97:1590–99 [Google Scholar]
  128. Xie J, Wei D, Jiang D, Fu Y, Li G. 123.  et al. 2006. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J. Gen. Virol. 87:241–49 [Google Scholar]
  129. Yamashita S, Doi Y, Yora K. 124.  1971. A polyhedral virus found in rice blast fungus, Pyricularia oryzae cavara. Ann. Phytopathol. Soc. Jpn. 37:356–59 [Google Scholar]
  130. Yokoi T, Takemoto Y, Suzuki M, Yamashita S, Hibi T. 125.  1999. The nucleotide sequence and genome organization of Sclerophthora macrospora virus B. Virology 264:344–49 [Google Scholar]
  131. Yokoi T, Yamashita S, Hibi T. 126.  2003. The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311:394–99 [Google Scholar]
  132. Yokoi T, Yamashita S, Hibi T. 127.  2007. The nucleotide sequence and genome organization of Magnaporthe oryzae virus 1. Arch. Virol. 152:2265–69 [Google Scholar]
  133. Zhang X, Nuss DL. 128.  2008. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc. Natl. Acad. Sci. USA 105:16749–54 [Google Scholar]
  134. Zhang X, Segers GC, Sun Q, Deng F, Nuss DL. 129.  2008. Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J. Virol. 82:2613–19 [Google Scholar]
  135. Zhao T, Havens WM, Ghabrial SA. 130.  2006. Disease phenotype of virus-infected helminthosporium victoriae is independent of overexpression of the cellular alcohol oxidase/RNA-binding protein Hv-p68. Phytopathology 96:326–32 [Google Scholar]
  136. Zhou T, Boland GJ. 131.  1997. Hypovirulence and double-stranded RNA in sclerotinia homoeocarpa. Phytopathology 87:147–53 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080508-081932
Loading
/content/journals/10.1146/annurev-phyto-080508-081932
Loading

Data & Media loading...

Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error