1932

Abstract

Plant pathology must address a number of challenges, most of which are characterized by complexity. Network analysis offers useful tools for addressing complex systems and an opportunity for synthesis within plant pathology and between it and relevant disciplines such as in the social sciences. We discuss applications of network analysis, which ultimately may be integrated together into more synthetic analyses of how to optimize plant disease management systems. The analysis of microbiome networks and tripartite phytobiome networks of host-vector-pathogen interactions offers promise for identifying biocontrol strategies and anticipating disease emergence. Linking epidemic network analysis with social network analysis will support strategies for sustainable agricultural development and for scaling up solutions for disease management. Statistical tools for evaluating networks, such as Bayesian network analysis and exponential random graph models, have been underused in plant pathology and are promising for informing strategies. We conclude with research priorities for network analysis applications in plant pathology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035326
2018-08-25
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080516-035326.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035326&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol 14:e1002352
    [Google Scholar]
  2. 2.  Aguilera PA, Fernández A, Fernández R, Rumí R, Salmerón A 2011. Bayesian networks in environmental modelling. Environ. Model. Softw. 26:1376–88
    [Google Scholar]
  3. 3.  Albert R, Jeong H, Barabasi A-L 2000. Error and attack tolerance of complex networks. Nature 406:378–82
    [Google Scholar]
  4. 4.  Alexander HM, Mauck KE, Whitfield AE, Garrett KA, Malmstrom CM 2014. Plant-virus interactions and the agro-ecological interface. Eur. J. Plant Pathol. 138:529–47
    [Google Scholar]
  5. 5.  Andersen KF, Buddenhagen CE, Rachkara P, Gibson R, Kalule S et al. 2017. Analyzing key nodes and epidemic risk in seed networks: sweetpotato in Northern Uganda. bioRxiv 107359. https://doi.org/10.1101/107359
    [Crossref]
  6. 6.  Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  7. 7.  Aung MM, Chang YS 2014. Traceability in a food supply chain: safety and quality perspectives. Food Control 39:172–84
    [Google Scholar]
  8. 8.  Bakker MG, Schlatter DC, Otto‐Hanson L, Kinkel LL 2014. Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome. Mol. Ecol. 23:1571–83
    [Google Scholar]
  9. 9.  Deleted in proof
  10. 10.  Banks NC, Paini DR, Bayliss KL, Hodda M 2015. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18:188–99
    [Google Scholar]
  11. 11.  Barberán A, Bates ST, Casamayor EO, Fierer N 2011. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–51
    [Google Scholar]
  12. 12.  Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ et al. 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1:15132
    [Google Scholar]
  13. 13.  Bensimon A, Heck AJ, Aebersold R 2012. Mass spectrometry–based proteomics and network biology. Annu. Rev. Biochem. 81:379–405
    [Google Scholar]
  14. 14.  Borer E, Laine A-L, Seabloom E 2016. A multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54:397–418
    [Google Scholar]
  15. 15.  Bormann BT, Haynes RW, Martin JR 2007. Adaptive management of forest ecosystems: Did some rubber hit the road?. BioScience 57:186–91
    [Google Scholar]
  16. 16.  Brockmann D, Helbing D 2013. The hidden geometry of complex, network-driven contagion phenomena. Science 342:1337–42
    [Google Scholar]
  17. 17.  Brown JK, Hovmøller MS 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41
    [Google Scholar]
  18. 18.  Brughmans T, Keay S, Earl G 2014. Introducing exponential random graph models for visibility networks. J. Archaeol. Sci. 49:442–54
    [Google Scholar]
  19. 19.  Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C et al. 2011. German outbreak of Escherichia coli O104:H4 associated with sprouts. N. Engl. J. Med. 365:1763–70
    [Google Scholar]
  20. 20.  Buddenhagen CE, Hernandez Nopsa JF, Andersen KF, Andrade-Piedra J, Forbes GA et al. 2017. Epidemic network analysis for mitigation of invasive pathogens in seed systems: potato in Ecuador. Phytopathology 107:1209–18
    [Google Scholar]
  21. 21.  Chadès I, Martin TG, Nicol S, Burgman MA, Possingham HP, Buckley YM 2011. General rules for managing and surveying networks of pests, diseases, and endangered species. PNAS 108:8323–28
    [Google Scholar]
  22. 22.  Chapman D, Purse BV, Roy HE, Bullock JM 2017. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26:907–17
    [Google Scholar]
  23. 23.  Choudhury RA, Garrett KA, Klosterman SJ, Subbarao KV, McRoberts N 2017. A framework for optimizing phytosanitary thresholds in seed systems. Phytopathology 107:1219–28
    [Google Scholar]
  24. 24.  Chuang Y, Schechter L 2015. Social networks in developing countries. Annu. Rev. Resour. Econ. 7:451–72
    [Google Scholar]
  25. 25.  Colizza V, Barrat A, Barthelemy M, Vespignani A 2006. The role of the airline transportation network in the prediction and predictability of global epidemics. PNAS 103:2015–20
    [Google Scholar]
  26. 26.  Conley TG, Udry CR 2010. Learning about a new technology: pineapple in Ghana. Am. Econ. Rev. 100:35–69
    [Google Scholar]
  27. 27.  Coomes OT, McGuire SJ, Garine E, Caillon S, McKey D et al. 2015. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56:41–50
    [Google Scholar]
  28. 28.  Cooper J, Park D, Johnston P, Zydenbos S 2015. An initial genetic characterisation of the grape powdery mildew (Erysiphe necator) in New Zealand associated with recent reports of the sexual stage. N. Z. Plant Prot. 68:389–95
    [Google Scholar]
  29. 29.  Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED et al. 2010. The genetic landscape of a cell. Science 327:425–31
    [Google Scholar]
  30. 30.  Cowan R, Jonard N 2004. Network structure and the diffusion of knowledge. J. Econ. Dyn. Control 28:1557–75
    [Google Scholar]
  31. 31.  Cox CM, Bockus WW, Holt RD, Fang L, Garrett KA 2013. Spatial connectedness of plant species: potential links for apparent competition via plant diseases. Plant Pathol 62:1195–204
    [Google Scholar]
  32. 32.  Coyte KZ, Schluter J, Foster KR 2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663–66
    [Google Scholar]
  33. 33.  Cumming GS, Peterson GD 2017. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32:695–713
    [Google Scholar]
  34. 34.  Cunniffe NJ, Koskella B, Metcalf CJ, Parnell S, Gottwald TR, Gilligan CA 2015. Thirteen challenges in modelling plant diseases. Epidemics 10:6–10
    [Google Scholar]
  35. 35.  De Domenico M, Arenas A 2017. Modeling structure and resilience of the dark network. Phys. Rev. E 95:022313
    [Google Scholar]
  36. 36.  De Domenico M, Granell C, Porter MA, Arenas A 2016. The physics of spreading processes in multilayer networks. Nat. Phys. 12:901–6
    [Google Scholar]
  37. 37.  Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M 2010. Structural change in the international horticultural industry: some implications for plant health. Sci. Hortic. 125:1–15
    [Google Scholar]
  38. 38.  De Wolf ED, Francl LJ 2000. Neural network classification of tan spot and Stagonospora blotch infection periods in a wheat field environment. Phytopathology 90:108–13
    [Google Scholar]
  39. 39.  DiMaggio P, Garip F 2012. Network effects and social inequality. Annu. Rev. Sociol. 38:93–118
    [Google Scholar]
  40. 40.  Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL et al. 2016. Navigating the complexity of ecological stability. Ecol. Lett. 19:1172–85
    [Google Scholar]
  41. 41.  Dormann CF, Fründ J, Schaefer HM 2017. Opportunities and limitations for identifying the underlying causes of patterns in ecological networks. Annu. Rev. Ecol. Evol. Syst. 48:559–84
    [Google Scholar]
  42. 42.  Ducruet C 2013. Network diversity and maritime flows. J. Transp. Geogr. 30:77–88
    [Google Scholar]
  43. 43.  Dunne JA, Williams RJ, Martinez ND 2002. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5:558–67
    [Google Scholar]
  44. 44.  Dybiec B, Kleczkowski A, Gilligan C 2004. Controlling disease spread on networks with incomplete knowledge. Phys. Rev. E 70:066145
    [Google Scholar]
  45. 45.  Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–20
    [Google Scholar]
  46. 46.  Estoup A, Guillemaud T 2010. Reconstructing routes of invasion using genetic data: why, how and so what?. Mol. Ecol. 19:4113–30
    [Google Scholar]
  47. 47.  Faust K, Lahti L, Gonze D, de Vos WM, Raes J 2015. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25:56–66
    [Google Scholar]
  48. 48.  Faust K, Raes J 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10:538–50
    [Google Scholar]
  49. 49.  Fears R, Aro E-M, Pais MS, ter Meulen V 2014. How should we tackle the global risks to plant health?. Trends Plant Sci 19:206–8
    [Google Scholar]
  50. 50.  Feder G, Umali DL 1993. The adoption of agricultural innovations: a review. Technol. Forecast. Soc. Change 43:215–39
    [Google Scholar]
  51. 51.  Fierer N, Ferrenberg S, Flores GE, González A, Kueneman J et al. 2012. From animalcules to an ecosystem: application of ecological concepts to the human microbiome. Annu. Rev. Ecol. Evol. Syst. 43:137–55
    [Google Scholar]
  52. 52.  Funk S, Salathé M, Jansen VAA 2010. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7:1247–56
    [Google Scholar]
  53. 53.  Gao J, Barzel B, Barabási A-L 2016. Universal resilience patterns in complex networks. Nature 530:307–12
    [Google Scholar]
  54. 54.  Garrett KA 2012. Information networks for plant disease: commonalities in human management networks and within-plant signaling networks. Eur. J. Plant Pathol. 133:75–88
    [Google Scholar]
  55. 55.  Garrett KA 2018. Impact network analysis: evaluating the success of interventions. PeerJ Preprints 6:e27037v1 https://doi.org/10.7287/peerj.preprints.27037v1
    [Google Scholar]
  56. 56.  Garrett KA, Andersen K, Bowden RL, Forbes GA, Kulakow PA, Zhou B 2017. Resistance genes in global crop breeding networks. Phytopathology 107:1268–78
    [Google Scholar]
  57. 57.  Garrett KA, Forbes GA, Savary S, Skelsey P, Sparks AH et al. 2011. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol 60:15–30
    [Google Scholar]
  58. 58.  Geenen PL, van der Gaag LC, Loeffen WLA, Elbers ARW 2011. Constructing naive Bayesian classifiers for veterinary medicine: a case study in the clinical diagnosis of classical swine fever. Res. Vet. Sci. 91:64–70
    [Google Scholar]
  59. 59.  Gilbert GS, Webb CO 2007. Phylogenetic signal in plant pathogen–host range. PNAS 104:4979–83
    [Google Scholar]
  60. 60.  Gonze D, Lahti L, Raes J, Faust K 2017. Multi-stability and the origin of microbial community types. ISME J 11:2159–66
    [Google Scholar]
  61. 61.  Goss EM 2015. Genome-enabled analysis of plant-pathogen migration. Annu. Rev. Phytopathol. 53:121–35
    [Google Scholar]
  62. 62.  Griffith GW 2012. Do we need a global strategy for microbial conservation?. Trends Ecol. Evol. 27:1–2
    [Google Scholar]
  63. 63.  Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM et al. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–91
    [Google Scholar]
  64. 64.  Hartmann M, Frey B, Mayer J, Mader P, Widmer F 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–94
    [Google Scholar]
  65. 65.  Harwood TD, Xu X, Pautasso M, Jeger MJ, Shaw MW 2009. Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK. Ecol. Model. 220:3353–61
    [Google Scholar]
  66. 66.  Henry AD, Vollan B 2014. Networks and the challenge of sustainable development. Annu. Rev. Environ. Resour. 39:583–610
    [Google Scholar]
  67. 67.  Hermans F, Stuiver M, Beers P, Kok K 2013. The distribution of roles and functions for upscaling and outscaling innovations in agricultural innovation systems. Agric. Syst. 115:117–28
    [Google Scholar]
  68. 68.  Hernandez Nopsa JF, Daglish GJ, Hagstrum DW, Leslie JF, Phillips TW et al. 2015. Ecological networks in stored grain: key postharvest nodes for emerging pests, pathogens, and mycotoxins. BioScience 65:985–1002
    [Google Scholar]
  69. 69.  Hoang LA, Castella J-C, Novosad P 2006. Social networks and information access: implications for agricultural extension in a rice farming community in northern Vietnam. Agric. Hum. Values 23:513–27
    [Google Scholar]
  70. 70.  Hodge S, Powell G 2008. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?. Environ. Entomol. 37:1573–81
    [Google Scholar]
  71. 71.  Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59
    [Google Scholar]
  72. 72.  Holling CS 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4:1–23
    [Google Scholar]
  73. 73.  Hui C, Richardson DM, Landi P, Minoarivelo HO, Garnas J, Roy HE 2016. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18:971–83
    [Google Scholar]
  74. 74.  Ings TC, Montoya JM, Bascompte J, Bluthgen N, Brown L et al. 2009. Ecological networks: beyond food webs. J. Anim. Ecol. 78:253–69
    [Google Scholar]
  75. 75.  Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. . BMC Biol 14:84
    [Google Scholar]
  76. 76.  Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW 2007. Modelling disease spread and control in networks: implications for plant sciences. New Phytol 174:279–97
    [Google Scholar]
  77. 77.  Kamvar ZN, Tabima JF, Grünwald NJ 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281
    [Google Scholar]
  78. 78.  Kaufmann P, Stagl S, Franks DW 2009. Simulating the diffusion of organic farming practices in two new EU member states. Ecol. Econ. 68:2580–93
    [Google Scholar]
  79. 79.  Kinkel LL, Bakker MG, Schlatter DC 2011. A coevolutionary framework for managing disease-suppressive soils. Annu. Rev. Phytopathol. 49:47–67
    [Google Scholar]
  80. 80.  Klerkx L, Aarts N, Leeuwis C 2010. Adaptive management in agricultural innovation systems: the interactions between innovation networks and their environment. Agric. Syst. 103:390–400
    [Google Scholar]
  81. 81.  Kristensen K, Rasmussen IA 2002. The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Comput. Electron. Agric. 33:197–217
    [Google Scholar]
  82. 82.  Labeyrie V, Thomas M, Muthamia ZK, Leclerc C 2016. Seed exchange networks, ethnicity, and sorghum diversity. PNAS 113:98–103
    [Google Scholar]
  83. 83.  Lahti L, Salojärvi J, Salonen A, Scheffer M, de Vos WM 2014. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5:4344
    [Google Scholar]
  84. 84.  Larkin RP 2015. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 53:199–221
    [Google Scholar]
  85. 85.  Levin SA 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–36
    [Google Scholar]
  86. 86.  Liu YY, Slotine JJ, Barabasi AL 2011. Controllability of complex networks. Nature 473:167–73
    [Google Scholar]
  87. 87.  Luke DA, Harris JK 2007. Network analysis in public health: history, methods, and applications. Annu. Rev. Public Health 28:69–93
    [Google Scholar]
  88. 88.  Luke DA, Stamatakis KA 2012. Systems science methods in public health: dynamics, networks, and agents. Annu. Rev. Public Health 33:357–76
    [Google Scholar]
  89. 89.  Lybbert TJ, Sumner DA 2012. Agricultural technologies for climate change in developing countries: policy options for innovation and technology diffusion. Food Policy 37:114–23
    [Google Scholar]
  90. 90.  Maertens A, Barrett CB 2013. Measuring social networks' effects on agricultural technology adoption. Am. J. Agric. Econ. 95:353–59
    [Google Scholar]
  91. 91.  Margosian ML, Garrett KA, Hutchinson JMS, With KA 2009. Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience 59:141–51
    [Google Scholar]
  92. 92.  Mauck KE, De Moraes CM, Mescher MC 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. PNAS 107:3600–5
    [Google Scholar]
  93. 93.  May RM, Levin SA, Sugihara G 2008. Complex systems: ecology for bankers. Nature 451:893–95
    [Google Scholar]
  94. 94.  Meadows DH, Wright D 2008. Thinking in Systems: A Primer White River Junction, VT: Chelsea Green Publ.
    [Google Scholar]
  95. 95.  Meyer M, Cox J, Hitchings M, Burgin L, Hort M et al. 2017. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants 3:780–86
    [Google Scholar]
  96. 96.  Mikaberidze A, Mundt CC, Bonhoeffer S 2016. Invasiveness of plant pathogens depends on the spatial scale of host distribution. Ecol. Appl. 26:1238–48
    [Google Scholar]
  97. 97.  Milgroom MG, Del Mar Jiménez-Gasco M, Olivares-García C, Jiménez-Díaz RM 2016. Clonal expansion and migration of a highly virulent, defoliating lineage of Verticillium dahliae. . Phytopathology 106:1038–46
    [Google Scholar]
  98. 98.  Miller SA, Beed FD, Harmon CL 2009. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47:15–38
    [Google Scholar]
  99. 99.  Mills P, Dehnen-Schmutz K, Ilbery B, Jeger M, Jones G et al. 2011. Integrating natural and social science perspectives on plant disease risk, management and policy formulation. Philos. Trans. R. Soc. B 366:2035–44
    [Google Scholar]
  100. 100.  Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G et al. 2010. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26:2927–28
    [Google Scholar]
  101. 101.  Morrison DA 2014. Phylogenetic networks: a review of methods to display evolutionary history. Annu. Res. Rev. Biol. 4:1518–43
    [Google Scholar]
  102. 102.  Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T et al. 2011. Networks in plant epidemiology: from genes to landscapes, countries, and continents. Phytopathology 101:392–403
    [Google Scholar]
  103. 103.  Mundt CC, Wallace LD, Allen TW, Hollier CA, Kemerait RC, Sikora EJ 2013. Initial epidemic area is strongly associated with the yearly extent of soybean rust spread in North America. Biol. Invasions 15:1431–38
    [Google Scholar]
  104. 104.  Munshi K 2004. Social learning in a heterogeneous population: technology diffusion in the Indian Green Revolution. J. Dev. Econ. 73:185–213
    [Google Scholar]
  105. 105.  Nelson MF, Bone CE 2015. Effectiveness of dynamic quarantines against pathogen spread in models of the horticultural trade network. Ecol. Complex. 24:14–28
    [Google Scholar]
  106. 106.  Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ 2010. Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol 18:365–73
    [Google Scholar]
  107. 107.  Ng JCK, Perry KL 2004. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 5:505–11
    [Google Scholar]
  108. 108.  Ng W-L, Bassler BL 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43:197–222
    [Google Scholar]
  109. 109.  Nicol S, Sabbadin R, Peyrard N, Chadès I 2017. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 54:1989–99
    [Google Scholar]
  110. 110.  Opara LU 2003. Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1:101–6
    [Google Scholar]
  111. 111.  Otten W, Bailey DJ, Gilligan CA 2004. Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol 163:125–32
    [Google Scholar]
  112. 112.  Parsa S, Morse S, Bonifacio A, Chancellor TC, Condori B et al. 2014. Obstacles to integrated pest management adoption in developing countries. PNAS 111:3889–94
    [Google Scholar]
  113. 113.  Pautasso M 2015. Network simulations to study seed exchange for agrobiodiversity conservation. Agron. Sustain. Dev. 35:145–50
    [Google Scholar]
  114. 114.  Pautasso M, Aistara G, Barnaud A, Caillon S, Clouvel P et al. 2013. Seed exchange networks for agrobiodiversity conservation. A review. Agron. Sustain. Dev. 33:151–75
    [Google Scholar]
  115. 115.  Pautasso M, Jeger MJ 2008. Epidemic threshold and network structure: the interplay of probability of transmission and of persistence in small-size directed networks. Ecol. Complex. 5:1–8
    [Google Scholar]
  116. 116.  Pautasso M, Jeger MJ 2014. Network epidemiology and plant trade networks. AoB Plants 6:plu007
    [Google Scholar]
  117. 117.  Pautasso M, Moslonka-Lefebvre M, Jeger MJ 2010. The number of links to and from the starting node as a predictor of epidemic size in small-size directed networks. Ecol. Complex. 7:424–32
    [Google Scholar]
  118. 118.  Pautasso M, Xu XM, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L 2010. Disease spread in small-size directed trade networks: the role of hierarchical categories. J. Appl. Ecol. 47:1300–9
    [Google Scholar]
  119. 119.  Perez-Ariza CB, Nicholson AE, Flores MJ 2012. Prediction of coffee rust disease using Bayesian networks. Proceedings of the Sixth European Workshop On Probabilistic Graphical Models259–66 Dordrecht, Neth: Springer
    [Google Scholar]
  120. 120.  Perez-Cobas AE, Artacho A, Ott SJ, Moya A, Gosalbes MJ, Latorre A 2014. Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Front. Microbiol. 5:335
    [Google Scholar]
  121. 121.  Perilla-Henao LM, Casteel CL 2016. Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front. Plant Sci. 7:1163
    [Google Scholar]
  122. 122.  Pilosof S, Porter MA, Pascual M, Kéfi S 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1:0101
    [Google Scholar]
  123. 123.  Ploetz RC, Kendra PE, Choudhury RA, Rollins JA, Campbell A et al. 2017. Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests 8:48
    [Google Scholar]
  124. 124.  Podolny JM, Page KL 1998. Network forms of organization. Annu. Rev. Sociol. 24:57–76
    [Google Scholar]
  125. 125.  Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener B et al. 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–96
    [Google Scholar]
  126. 126.  Powell G, Tosh CR, Hardie J 2006. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51:309–30
    [Google Scholar]
  127. 127.  Power A, Flecker A 2008. The role of vector diversity in disease dynamics. Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems R Ostfeld, F Keesing, V Eviner 30–47 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  128. 128.  Rauschert ESJ, Mortensen DA, Bloser SM 2017. Human-mediated dispersal via rural road maintenance can move invasive propagules. Biol. Invasions 19:2047–58
    [Google Scholar]
  129. 129.  Rebaudo F, Dangles O 2011. Coupled information diffusion-pest dynamics models predict delayed benefits of farmer cooperation in pest management programs. PLOS Comput. Biol. 7:e1002222
    [Google Scholar]
  130. 130.  Reisen WK 2010. Landscape epidemiology of vector-borne diseases. Annu. Rev. Entomol. 55:461–83
    [Google Scholar]
  131. 131.  Robins G, Pattison P, Kalish Y, Lusher D 2007. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29:173–91
    [Google Scholar]
  132. 132.  Rogers EM 2003. Diffusion of Innovations New York: Free Press
    [Google Scholar]
  133. 133.  Sanatkar MR, Scoglio C, Natarajan B, Isard S, Garrett KA 2015. History, epidemic evolution, and model burn-in for a network of annual invasion: soybean rust. Phytopathology 105:947–55
    [Google Scholar]
  134. 134.  Sarrocco S, Vannacci G 2017. Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: a review. Crop Prot 110:160–70
    [Google Scholar]
  135. 135.  Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W et al. 2012. Anticipating critical transitions. Science 338:344–48
    [Google Scholar]
  136. 136.  Shade A 2017. Diversity is the question, not the answer. ISME J 11:1–6
    [Google Scholar]
  137. 137.  Shade A, Peter H, Allison SD, Baho DL, Berga M et al. 2012. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3:417
    [Google Scholar]
  138. 138.  Shaw MW, Pautasso M 2014. Networks and plant disease management: concepts and applications. Annu. Rev. Phytopathol. 52:477–93
    [Google Scholar]
  139. 139.  Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK 2016. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19:926–36
    [Google Scholar]
  140. 140.  Siettos CI, Anastassopoulou C, Russo L, Grigoras C, Mylonakis E 2016. Forecasting and control policy assessment for the Ebola virus disease (EVD) epidemic in Sierra Leone using small-world networked model simulations. BMJ Open 6:e008649
    [Google Scholar]
  141. 141.  Skelsey P, Rossing WAH, Kessel GJT, Powell J, van der Werf W 2005. Influence of host diversity on development of epidemics: an evaluation and elaboration of mixture theory. Phytopathology 95:328–38
    [Google Scholar]
  142. 142.  Smid JH, Verloo D, Barker GC, Havelaar AH 2010. Strengths and weaknesses of Monte Carlo simulation models and Bayesian belief networks in microbial risk assessment. Int. J. Food Microbiol. 139:Suppl. 1S57–63
    [Google Scholar]
  143. 143.  Smith CS, Howes AL, Price B, McAlpine CA 2007. Using a Bayesian belief network to predict suitable habitat of an endangered mammal: the Julia Creek dunnart (Sminthopsis douglasi). Biol. Conserv. 139:333–47
    [Google Scholar]
  144. 144.  Spielman DJ, Davis K, Negash M, Ayele G 2011. Rural innovation systems and networks: findings from a study of Ethiopian smallholders. Agric. Hum. Values 28:195–212
    [Google Scholar]
  145. 145.  Stack J, Cardwell K, Hammerschmidt R, Byrne J, Loria R et al. 2006. The National Plant Diagnostic Network. Plant Dis 90:128–36
    [Google Scholar]
  146. 146.  Sunding D, Zilberman D 2001. The agricultural innovation process: research and technology adoption in a changing agricultural sector. Handbook of Agricultural Economics B Gardner, G Rausser 207–61 Amsterdam: Elsevier Sci. B.V.
    [Google Scholar]
  147. 147.  Sutrave S, Scoglio C, Isard SA, Hutchinson JMS, Garrett KA 2012. Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. PLOS ONE 7:e3779
    [Google Scholar]
  148. 148.  Thiele G 1999. Informal potato seed systems in the Andes: Why are they important and what should we do with them?. World Dev 27:83–99
    [Google Scholar]
  149. 149.  Thoen MP, Davila Olivas NH, Kloth KJ, Coolen S, Huang PP et al. 2016. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol 213:1346–62
    [Google Scholar]
  150. 150.  Thomas-Sharma S, Abdurahman A, Ali S, Andrade‐Piedra J, Bao S et al. 2016. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol 65:3–16
    [Google Scholar]
  151. 151.  Thomas-Sharma S, Andrade-Piedra J, Carvajal Yepes M, Hernandez Nopsa J, Jeger M et al. 2017. A risk assessment framework for seed degeneration: informing an integrated seed health strategy for vegetatively-propagated crops. Phytopathology 107:1123–35
    [Google Scholar]
  152. 152.  Thompson PL, Gonzalez A 2017. Dispersal governs the reorganization of ecological networks under environmental change. Nat. Ecol. Evol. 1:0162
    [Google Scholar]
  153. 153.  Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ 2016. Management of invading pathogens should be informed by epidemiology rather than administrative boundaries. Ecol. Model. 324:28–32
    [Google Scholar]
  154. 154.  Trøjelsgaard K, Olesen JM 2016. Ecological networks in motion: micro‐ and macroscopic variability across scales. Funct. Ecol. 30:1926–35
    [Google Scholar]
  155. 155.  Tylianakis JM, Morris RJ 2017. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48:25–48
    [Google Scholar]
  156. 156.  Urruty N, Tailliez-Lefebvre D, Huyghe C 2016. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 36:1–15
    [Google Scholar]
  157. 157.  Valente TW, Pitts SR 2017. An appraisal of social network theory and analysis as applied to public health: challenges and opportunities. Annu. Rev. Public Health 38:103–18
    [Google Scholar]
  158. 158.  Valente TW 1995. Network Models of the Diffusion of Innovations Cresskill, NJ: Hampton Press
    [Google Scholar]
  159. 159.  van der Heijden MGA, Hartmann M 2016. Networking in the plant microbiome. PLOS Biol 14:e1002378
    [Google Scholar]
  160. 160.  Wang A 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45–66
    [Google Scholar]
  161. 161.  Watts DJ, Dodds PS 2007. Influentials, networks, and public opinion formation. J. Consum. Res. 34:441–58
    [Google Scholar]
  162. 162.  Whitfield AE, Falk BW, Rotenberg D 2015. Insect vector–mediated transmission of plant viruses. Virology 479–480:278–89
    [Google Scholar]
  163. 163.  Wilkinson K, Grant WP, Green LE, Hunter S, Jeger MJ et al. 2011. Infectious diseases of animals and plants: an interdisciplinary approach. Philos. Trans. R. Soc. B 366:1933–42
    [Google Scholar]
  164. 164.  Wilmers CC, Sinha S, Brede M 2002. Examining the effects of species richness on community stability: an assembly model approach. Oikos 99:363–67
    [Google Scholar]
  165. 165.  Wolfenbarger S, Twomey M, Gadoury D, Knaus B, Grünwald N, Gent D 2015. Identification and distribution of mating‐type idiomorphs in populations of Podosphaera macularis and development of chasmothecia of the fungus. Plant Pathol 64:1094–102
    [Google Scholar]
  166. 166.  Wu F, Guclu H 2012. Aflatoxin regulations in a network of global maize trade. PLOS ONE 7:e45151
    [Google Scholar]
  167. 167.  Wu F, Guclu H 2013. Global maize trade and food security: implications from a social network model. Risk Anal 33:2168–78
    [Google Scholar]
  168. 168.  Wyckhuys KA, O'Neil RJ 2007. Role of opinion leadership, social connectedness and information sources in the diffusion of IPM in Honduran subsistence maize agriculture. Int. J. Pest Manag. 53:35–44
    [Google Scholar]
  169. 169.  Xing Y, Hernandez Nopsa J, Andrade-Piedra J, Beed F, Blomme G et al. 2017. Global cropland connectivity: a risk factor for invasion and saturation by emerging pathogens and pests. bioRxiv 106542. https://doi.org/10.1101/106542
    [Crossref]
  170. 170.  Xu XM, Harwood TD, Pautasso M, Jeger MJ 2009. Spatio-temporal analysis of an invasive plant pathogen (Phytophthora ramorum) in England and Wales. Ecography 32:504–16
    [Google Scholar]
  171. 171.  Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT et al. 2013. GeneMANIA prediction server 2013 update. Nucleic Acids Res 41:W115–22
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035326
Loading
/content/journals/10.1146/annurev-phyto-080516-035326
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error