Pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) are detected as nonself by host pattern recognition receptors (PRRs) and activate pattern-triggered immunity (PTI). Microbial invasions often trigger the production of host-derived endogenous signals referred to as danger- or damage-associated molecular patterns (DAMPs), which are also perceived by PRRs to modulate PTI responses. Collectively, PTI contributes to host defense against infections by a broad range of pathogens. Remarkable progress has been made toward demonstrating the cellular and physiological responses upon pattern recognition, elucidating the molecular, biochemical, and genetic mechanisms of PRR activation, and dissecting the complex signaling networks that orchestrate PTI responses. In this review, we present an update on the current understanding of how plants recognize and respond to nonself patterns, a process from which the seemingly chaotic responses form into a harmonic defense.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahuja I, Kissen R, Bones AM. 1.  2012. Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90 [Google Scholar]
  2. Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K. 2.  et al. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13:465–76 [Google Scholar]
  3. Albert I, Bohm H, Albert M, Feiler CE, Imkampe J. 3.  et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140 [Google Scholar]
  4. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q. 4.  et al. 2007. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–95 [Google Scholar]
  5. Arnaud D, Hwang I. 5.  2014. A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant 8:566–81 [Google Scholar]
  6. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL. 6.  et al. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–83 [Google Scholar]
  7. Ausubel FM. 7.  2005. Are innate immune signaling pathways in plants and animals conserved?. Nat. Immunol. 6:973–79 [Google Scholar]
  8. Avni A, Bailey BA, Mattoo AK, Anderson JD. 8.  1994. Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (Acc) synthase and Acc oxidase transcripts. Plant Physiol 106:1049–55 [Google Scholar]
  9. Bent AF, Mackey D. 9.  2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:399–436 [Google Scholar]
  10. Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA. 10.  et al. 2009. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. PNAS 106:8067–72 [Google Scholar]
  11. Blein JP, Milat ML, Ricci P. 11.  1991. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora cryptogea: possible plasmalemma involvement. Plant Physiol 95:486–91 [Google Scholar]
  12. Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T. 12.  2014. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20:47–54 [Google Scholar]
  13. Bohm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nurnberger T. 13.  2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. . PLOS Pathog. 10:e1004491 [Google Scholar]
  14. Boller T, Felix G. 14.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  15. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan LB. 15.  et al. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–22 [Google Scholar]
  16. Brauer EK, Ahsan N, Dale R, Kato N, Coluccio AE. 16.  et al. 2016. The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiol 171:1470–84 [Google Scholar]
  17. Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C. 17.  et al. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J 21:6681–88 [Google Scholar]
  18. Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. 18.  2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:9452–57 [Google Scholar]
  19. Cai R, Lewis J, Yan S, Liu H, Clarke CR. 19.  et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog 7:e1002130 [Google Scholar]
  20. Cao YR, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP. 20.  et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:e03766 [Google Scholar]
  21. Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC. 21.  2010. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. PNAS 107:8029–34 [Google Scholar]
  22. Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ. 22.  et al. 2015. Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521:213–16 [Google Scholar]
  23. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T. 23.  et al. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500 [Google Scholar]
  24. Cho MH, Lee SW. 24.  2015. Phenolic phytoalexins in rice: biological functions and biosynthesis. Int. J. Mol. Sci. 16:29120–33 [Google Scholar]
  25. Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. 25.  2016. Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLOS Pathog 12:e1005518 [Google Scholar]
  26. Choi J, Tanaka K, Cao YR, Qi Y, Qiu J. 26.  et al. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290–94 [Google Scholar]
  27. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 27.  2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101 [Google Scholar]
  28. Couto D, Niebergall R, Liang X, Bucherl CA, Sklenar J. 28.  et al. 2016. The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1. PLOS Pathog 12:e1005811 [Google Scholar]
  29. Couto D, Zipfel C. 29.  2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol.16537–52 [Google Scholar]
  30. Cui W, Lee JY. 30.  2016. Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat. Plants 2:16034 [Google Scholar]
  31. Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S. 31.  et al. 2012. The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24:275–87 [Google Scholar]
  32. Day B, Henty JL, Porter KJ, Staiger CJ. 32.  2011. The pathogen-actin connection: a platform for defense signaling in plants. Annu. Rev. Phytopathol. 49:483–506 [Google Scholar]
  33. de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P. 33.  et al. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. PNAS 109:5110–15 [Google Scholar]
  34. Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LC. 34.  et al. 2015. Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nat. Plants 1:15034 [Google Scholar]
  35. Dubiella U, Seybold H, Durian G, Komander E, Lassig R. 35.  et al. 2013. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. PNAS 110:8744–49 [Google Scholar]
  36. Elmore JM, Coaker G. 36.  2011. The role of the plasma membrane H+-ATPase in plant-microbe interactions. Mol. Plant 4:416–27 [Google Scholar]
  37. Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V. 37.  et al. 2008. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem. Biol 15:438–48 [Google Scholar]
  38. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S. 38.  et al. 2013. LYM2-dependent chitin perception limits molecular flux via plasmodesmata. PNAS 110:9166–70 [Google Scholar]
  39. Felix G, Boller T. 39.  2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201–8 [Google Scholar]
  40. Felix G, Duran JD, Volko S, Boller T. 40.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–76 [Google Scholar]
  41. Feng B, Liu C, de Oliveira MV, Intorne AC, Li B. 41.  et al. 2015. Protein poly(ADP-ribosyl)ation regulates Arabidopsis immune gene expression and defense responses. PLOS Genet 11:e1004936 [Google Scholar]
  42. Feng B, Ma S, Chen S, Zhu N, Zhang S. 42.  et al. 2016. PARylation of the forkhead‐associated domain protein DAWDLE regulates plant immunity. EMBO Rep 17:1799–813 [Google Scholar]
  43. Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. 43.  2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–79 [Google Scholar]
  44. Fliegmann J, Mithofer A, Wanner G, Ebel J. 44.  2004. An ancient enzyme domain hidden in the putative β-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279:1132–40 [Google Scholar]
  45. Foresi NP, Laxalt AM, Tonon CV, Casalongue CA, Lamattina L. 45.  2007. Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–92 [Google Scholar]
  46. Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D. 46.  et al. 2012. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. Plant Physiol 159:798–809 [Google Scholar]
  47. Frias M, Gonzalez C, Brito N. 47.  2011. BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–95 [Google Scholar]
  48. Furukawa T, Inagaki H, Takai R, Hirai H, Che FS. 48.  2014. Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. . Mol. Plant-Microbe Interact. 27:113–24 [Google Scholar]
  49. Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM. 49.  et al. 2008. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–706 [Google Scholar]
  50. Glazebrook J. 50.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  51. Gomez-Gomez L, Boller T. 51.  2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. . Mol. Cell 5:1003–11 [Google Scholar]
  52. Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S. 52.  et al. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. . J. Biol. Chem. 282:32338–48 [Google Scholar]
  53. Guzel Deger A, Scherzer S, Nuhkat M, Kedzierska J, Kollist H. 53.  et al. 2015. Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytol 208:162–73 [Google Scholar]
  54. Halim VA, Altmann S, Ellinger D, Eschen-Lippold L, Miersch O. 54.  et al. 2009. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant J 57:230–42 [Google Scholar]
  55. Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S. 55.  et al. 2014. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24:134–43 [Google Scholar]
  56. Hamada H, Kurusu T, Okuma E, Nokajima H, Kiyoduka M. 56.  et al. 2012. Regulation of a proteinaceous elicitor-induced Ca2+ influx and production of phytoalexins by a putative voltage-gated cation channel, OsTPC1, in cultured rice cells. J. Biol. Chem. 287:9931–39 [Google Scholar]
  57. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M. 57.  et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. PNAS 111:E404–13 [Google Scholar]
  58. Hegenauer V, Furst U, Kaiser B, Smoker M, Zipfel C. 58.  et al. 2016. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 353:478–81 [Google Scholar]
  59. Henty-Ridilla JL, Li J, Day B, Staiger CJ. 59.  2014. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. . Plant Cell 26:340–52 [Google Scholar]
  60. Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. 60.  2013. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLOS Pathog 9:e1003290 [Google Scholar]
  61. Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z. 61.  et al. 2016. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2:16128 [Google Scholar]
  62. Hou S, Wang X, Chen D, Yang X, Wang M. 62.  et al. 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLOS Pathog 10:e1004331 [Google Scholar]
  63. Huffaker A, Pearce G, Ryan CA. 63.  2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. PNAS 103:10098–103 [Google Scholar]
  64. Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. 64.  1997. Elicitor-stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. PNAS 94:4800–5 [Google Scholar]
  65. Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Furst U. 65.  et al. 2013. The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25:2330–40 [Google Scholar]
  66. Jeworutzki E, Roelfsema MR, Anschutz U, Krol E, Elzenga JT. 66.  et al. 2010. Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. Plant J 62:367–78 [Google Scholar]
  67. Jones JD, Dangl JL. 67.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  68. Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S. 68.  et al. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43–55 [Google Scholar]
  69. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N. 69.  et al. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. PNAS 103:11086–91 [Google Scholar]
  70. Kang S, Yang F, Li L, Chen H, Chen S, Zhang J. 70.  2015. The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 is a direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity. Plant Physiol 167:1076–86 [Google Scholar]
  71. Khatib M, Lafitte C, Esquerre-Tugaye M-T, Bottin A, Rickauer M. 71.  2004. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol 162:501–10 [Google Scholar]
  72. Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA. 72.  2014. Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). Mol. Plant Pathol. 15:747–61 [Google Scholar]
  73. Kong Q, Qu N, Gao M, Zhang Z, Ding X. 73.  et al. 2012. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. . Plant Cell 24:2225–36 [Google Scholar]
  74. Kong Q, Sun T, Qu N, Ma J, Li M. 74.  et al. 2016. Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis. Plant Physiol 171:1344–54 [Google Scholar]
  75. Krol E, Mentzel T, Chinchilla D, Boller T, Felix G. 75.  et al. 2010. Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chem. 285:13471–79 [Google Scholar]
  76. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 76.  2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–507 [Google Scholar]
  77. Laxalt AM, Raho N, Have AT, Lamattina L. 77.  2007. Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. J. Biol. Chem. 282:21160–68 [Google Scholar]
  78. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. 78.  2002. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–41 [Google Scholar]
  79. Lee JY, Lu H. 79.  2011. Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–10 [Google Scholar]
  80. Lee JY, Wang X, Cui W, Sager R, Modla S. 80.  et al. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. . Plant Cell 23:3353–73 [Google Scholar]
  81. Li B, Jiang S, Yu X, Cheng C, Chen S. 81.  et al. 2015. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27:839–56 [Google Scholar]
  82. Li B, Meng X, Shan L, He P. 82.  2016. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19:641–50 [Google Scholar]
  83. Li F, Cheng C, Cui F, de Oliveira MV, Yu X. 83.  et al. 2014. Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity. Cell Host Microbe 16:748–58 [Google Scholar]
  84. Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. 84.  2015. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat. Commun. 6:7206 [Google Scholar]
  85. Li L, Li M, Yu LP, Zhou ZY, Liang XX. 85.  et al. 2014. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–38 [Google Scholar]
  86. Liang XX, Ding PT, Liang KH, Wang JL, Ma MM. 86.  et al. 2016. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife 5:e13568 [Google Scholar]
  87. Liebrand TWH, van den Berg GCM, Zhang Z, Smit P, Cordewener JHG. 87.  et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. PNAS 110:10010–15 [Google Scholar]
  88. Liebrand TWH, van den Burg HA, Joosten MHAJ. 88.  2014. Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci 19:123–32 [Google Scholar]
  89. Lin WW, Li B, Lu DP, Chen SX, Zhu N. 89.  et al. 2014. Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity. PNAS 111:3632–37 [Google Scholar]
  90. Lin ZJ, Liebrand TW, Yadeta KA, Coaker G. 90.  2015. PBL13 is a serine/threonine protein kinase that negatively regulates Arabidopsis immune responses. Plant Physiol 169:2950–62 [Google Scholar]
  91. Liu B, Li JF, Ao Y, Li Z, Liu J. 91.  et al. 2013. OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction. Plant Signal. Behav. 8:e22980 [Google Scholar]
  92. Liu B, Li JF, Ao Y, Qu J, Li Z. 92.  et al. 2012. Lysin motif–containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–19 [Google Scholar]
  93. Liu J, Ding P, Sun T, Nitta Y, Dong O. 93.  et al. 2013. Heterotrimeric G proteins serve as a converging point in plant defense signaling activated by multiple receptor-like kinases. Plant Physiol 161:2146–58 [Google Scholar]
  94. Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. 94.  2016. Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24:1192–200 [Google Scholar]
  95. Liu T, Liu Z, Song C, Hu Y, Han Z. 95.  et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–64 [Google Scholar]
  96. Liu X, Grabherr HM, Willmann R, Kolb D, Brunner F. 96.  et al. 2014. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis. . eLife 3:e01990 [Google Scholar]
  97. Liu Y, Zhang S. 97.  2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. . Plant Cell 16:3386–99 [Google Scholar]
  98. Liu Z, Wu Y, Yang F, Zhang Y, Chen S. 98.  et al. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110:6205–10 [Google Scholar]
  99. Lu D, Lin W, Gao X, Wu S, Cheng C. 99.  et al. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–42 [Google Scholar]
  100. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. 100.  2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. PNAS 107:496–501 [Google Scholar]
  101. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. 101.  2011. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24:183–93 [Google Scholar]
  102. Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA. 102.  2008. Innate immunity signaling: Cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–28 [Google Scholar]
  103. Ma X, Xu G, He P, Shan L. 103.  2016. SERKing coreceptors for receptors. Trends Plant Sci 21:1017–33 [Google Scholar]
  104. Ma Y, Walker RK, Zhao YC, Berkowitz GA. 104.  2012. Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. PNAS 109:19852–57 [Google Scholar]
  105. Ma Y, Zhao Y, Walker RK, Berkowitz GA. 105.  2013. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. Plant Physiol 163:1459–71 [Google Scholar]
  106. Ma Z, Song T, Zhu L, Ye W, Wang Y. 106.  et al. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057–72 [Google Scholar]
  107. Maldonado-Bonilla LD, Eschen-Lippold L, Gago-Zachert S, Tabassum N, Bauer N. 107.  et al. 2014. The Arabidopsis tandem zinc finger 9 protein binds RNA and mediates pathogen-associated molecular pattern-triggered immune responses. Plant Cell Physiol 55:412–25 [Google Scholar]
  108. Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR. 108.  2015. Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–16 [Google Scholar]
  109. Mbengue M, Bourdais G, Gervasi F, Beck M, Zhou J. 109.  et al. 2016. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. PNAS 113:11034–39 [Google Scholar]
  110. Melotto M, Underwood W, Koczan J, Nomura K, He SY. 110.  2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–80 [Google Scholar]
  111. Meng X, Zhang S. 111.  2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–66 [Google Scholar]
  112. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD. 112.  et al. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–90 [Google Scholar]
  113. Mithoe SC, Ludwig C, Pel MJ, Cucinotta M, Casartelli A. 113.  et al. 2016. Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase. EMBO Rep 17:441–54 [Google Scholar]
  114. Monaghan J, Matschi S, Shorinola O, Rovenich H, Matei A. 114.  et al. 2014. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16:605–15 [Google Scholar]
  115. Nuhse TS, Bottrill AR, Jones AM, Peck SC. 115.  2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–40 [Google Scholar]
  116. Nurnberger T, Brunner F, Kemmerling B, Piater L. 116.  2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:249–66 [Google Scholar]
  117. Ortiz-Morea FA, Savatin DV, Dejonghe W, Kumar R, Luo Y. 117.  et al. 2016. Danger-associated peptide signaling in Arabidopsis requires clathrin. PNAS 113:11028–33 [Google Scholar]
  118. Park CJ, Peng Y, Chen XW, Dardick C, Ruan DL. 118.  et al. 2008. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLOS Biol 6:1910–26 [Google Scholar]
  119. Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K. 119.  et al. 2014. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of “VQ-motif”-containing proteins to regulate immune responses. New Phytol 203:592–606 [Google Scholar]
  120. Pel MJC, van Dijken AJH, Bardoel BW, Seidl MF, van der Ent S. 120.  et al. 2014. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol. Plant-Microbe Interact. 27:603–10 [Google Scholar]
  121. Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H. 121.  et al. 2013. Arabidopsis phospholipase dδ is involved in basal defense and nonhost resistance to powdery mildew fungi. Plant Physiol 163:896–906 [Google Scholar]
  122. Poinssot B, Vandelle E, Bentejac M, Adrian M, Levis C. 122.  et al. 2003. The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol. Plant-Microbe Interact. 16:553–64 [Google Scholar]
  123. Postma J, Liebrand TW, Bi G, Evrard A, Bye RR. 123.  et al. 2016. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity. New Phytol 210:627–42 [Google Scholar]
  124. Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F. 124.  et al. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1:e1500245 [Google Scholar]
  125. Pugin A, Frachisse JM, Tavernier E, Bligny R, Gout E. 125.  et al. 1997. Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9:2077–91 [Google Scholar]
  126. Rajniak J, Barco B, Clay NK, Sattely ES. 126.  2015. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence. Nature 525:376–79 [Google Scholar]
  127. Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D. 127.  2011. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68:100–13 [Google Scholar]
  128. Ranf S, Gisch N, Schaffer M, Illig T, Westphal L. 128.  et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. . Nat. Immunol. 16:426–33 [Google Scholar]
  129. Robinson SM, Bostock RM. 129.  2015. β-Glucans and eicosapolyenoic acids as MAMPs in plant-oomycete interactions: past and present. Front. Plant Sci. 5:797 [Google Scholar]
  130. Ron M, Avni A. 130.  2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–15 [Google Scholar]
  131. Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A. 131.  2002. Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–55 [Google Scholar]
  132. Roux ME, Rasmussen MW, Palma K, Lolle S, Regue AM. 132.  et al. 2015. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 34:593–608 [Google Scholar]
  133. Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE. 133.  et al. 2005. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato. Plant Cell 17:295–310 [Google Scholar]
  134. Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E. 134.  et al. 2016. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. . PNAS 113:3389–94 [Google Scholar]
  135. Scheler C, Durner J, Astier J. 135.  2013. Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol. 16:534–39 [Google Scholar]
  136. Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X. 136.  et al. 2014. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–78 [Google Scholar]
  137. Segonzac C, Macho AP, Sanmartin M, Ntoukakis V, Sanchez-Serrano JJ, Zipfel C. 137.  2014. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. EMBO J 33:2069–79 [Google Scholar]
  138. Seybold H, Trempel F, Ranf S, Scheel D, Romeis T, Lee J. 138.  2014. Ca2+ signalling in plant immune response: from pattern recognition receptors to Ca2+ decoding mechanisms. New Phytol 204:782–90 [Google Scholar]
  139. Shi H, Shen Q, Qi Y, Yan H, Nie H. 139.  et al. 2013. BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. . Plant Cell 25:1143–57 [Google Scholar]
  140. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N. 140.  et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–14 [Google Scholar]
  141. Shinya T, Nakagawa T, Kaku H, Shibuya N. 141.  2015. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr. Opin. Plant Biol. 26:64–71 [Google Scholar]
  142. Shinya T, Yamaguchi K, Desaki Y, Yamada K, Narisawa T. 142.  et al. 2014. Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J 79:56–66 [Google Scholar]
  143. Shiu SH, Karlowski WM, Pan RS, Tzeng YH, Mayer KFX. 143.  et al. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–34 [Google Scholar]
  144. Song WY, Wang GL, Chen LL, Kim HS, Pi LY. 144.  et al. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–6 [Google Scholar]
  145. Spoel SH, Dong X. 145.  2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89–100 [Google Scholar]
  146. Sreekanta S, Bethke G, Hatsugai N, Tsuda K, Thao A. 146.  et al. 2015. The receptor-like cytoplasmic kinase PCRK1 contributes to pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. . New Phytol. 207:78–90 [Google Scholar]
  147. Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, Zhang Y. 147.  2015. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 6:10159 [Google Scholar]
  148. Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. 148.  2006. Within-species flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18:764–79 [Google Scholar]
  149. Sun YD, Li L, Macho AP, Han ZF, Hu ZH. 149.  et al. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–28 [Google Scholar]
  150. Tanaka K, Choi JM, Cao YR, Stacey G. 150.  2014. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5:446 [Google Scholar]
  151. Tanaka K, Swanson SJ, Gilroy S, Stacey G. 151.  2010. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. . Plant Physiol. 154:705–19 [Google Scholar]
  152. Testerink C, Munnik T. 152.  2011. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J. Exp. Bot. 62:2349–61 [Google Scholar]
  153. Torres MA, Jones JD, Dangl JL. 153.  2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–78 [Google Scholar]
  154. Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F. 154.  2008. Interplay between MAMP-triggered and SA-mediated defense responses. Plant J 53:763–75 [Google Scholar]
  155. Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F. 155.  2009. Network properties of robust immunity in plants. PLOS Genet 5:e1000772 [Google Scholar]
  156. Tunc-Ozdemir M, Urano D, Jaiswal DK, Clouse SD, Jones AM. 156.  2016. Direct modulation of heterotrimeric G protein–coupled signaling by a receptor kinase complex. J. Biol. Chem. 291:13918–25 [Google Scholar]
  157. van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G. 157.  et al. 2000. Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–15 [Google Scholar]
  158. Vleeshouwers VG, Driesprong JD, Kamphuis LG, Torto-Alalibo T, Van't Slot KA. 158.  et al. 2006. Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. . Mol. Plant Pathol. 7:499–510 [Google Scholar]
  159. Wang L, Tsuda K, Truman W, Sato M, Nguyen LEV. 159.  et al. 2011. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J 67:1029–41 [Google Scholar]
  160. Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D. 160.  et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. PNAS 108:19824–29 [Google Scholar]
  161. Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T. 161.  et al. 2007. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–34 [Google Scholar]
  162. Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A. 162.  et al. 2016. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J 35:2468–83 [Google Scholar]
  163. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N. 163.  et al. 2013. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13:347–57 [Google Scholar]
  164. Yamaguchi T, Minami E, Shibuya N. 164.  2003. Activation of phospholipases by N-acetylchitooligo-saccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiol. Plant. 118:361–70 [Google Scholar]
  165. Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N. 165.  2000. Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817–26 [Google Scholar]
  166. Yamaguchi Y, Pearce G, Ryan CA. 166.  2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. PNAS 103:10104–9 [Google Scholar]
  167. Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T. 167.  et al. 2004. Innate immunity in Arabidopsis thaliana: Lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. PNAS 101:15811–16 [Google Scholar]
  168. Zhang J, Li W, Xiang T, Liu Z, Laluk K. 168.  et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301 [Google Scholar]
  169. Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L. 169.  et al. 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:352–64 [Google Scholar]
  170. Zhang W, Fraiture M, Kolb D, Loffelhardt B, Desaki Y. 170.  et al. 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–41 [Google Scholar]
  171. Zhang W, He SY, Assmann SM. 171.  2008. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 56:984–96 [Google Scholar]
  172. Zhang X, Mou Z. 172.  2009. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. . Plant J. 57:302–12 [Google Scholar]
  173. Zhang Y, Xu S, Ding P, Wang D, Cheng YT. 173.  et al. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. PNAS 107:18220–25 [Google Scholar]
  174. Zhang Y, Zhu H, Zhang Q, Li M, Yan M. 174.  et al. 2009. Phospholipase dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–77 [Google Scholar]
  175. Zhou J, Lu D, Xu G, Finlayson SA, He P, Shan L. 175.  2015. The dominant negative ARM domain uncovers multiple functions of PUB13 in Arabidopsis immunity, flowering, and senescence. J. Exp. Bot. 66:3353–66 [Google Scholar]
  176. Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar SP. 176.  2010. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–18 [Google Scholar]
  177. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD. 177.  et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error